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Two challenges of HTS:

•What is the mechanism of HTS?

•How can we start making money of HTS?
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First-generation (1G) HTS conductor:
BiSrCaCuO-Ag tape (AMSC products shown)
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Second-generation (2G) HTS conductor:
YBCO tape (AMSC products shown)
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Why industry is switching to 2G wire.
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Artificial pinning centers: DyO nano-dots.

AMSC presentation at DOE peer-review 2006.
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Artificial pinning centers: BZO nano-rods.

PLD deposited YBCO with BZO columnar structures, S. Kang, et al. Science, 311, p. 1911 (2006).
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Performance of 3 µµµµm films in liquid nitrogen.

�BNL 3 µµµµm sample exhibited very strong isotropic pinning, which 
was combined with high Tc.
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1PLD deposited YBCO with BZO columnar structures, S. Kang, et al. Science, 311, p. 1911 (2006).
2X. Jia, S. R. Foltyn, P. N. Arendt, and J. F. Smith, Appl. Phys. Lett., 80, p. 1601, (2002). 
3Transport Jc measurement by L. Civale and B. Maiorov, LANL.
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How do we make materials?

Nuclei (grains)

Flux of add-atoms
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Two metrics of material-building process:

•Flux of add-atoms, or growth rate (nm/s).

•Distance between the nuclei, or grain size (nm).
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Grain size vs. growth rate diagram.
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Typical morphology of a thick film sample.
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Substrate Ni grain
≈≈≈≈ 50 µµµµm

YBCO grain
≈≈≈≈ 15 µµµµm



13

Growth of c-axis oriented layer:
Grain boundary morphology. 

�After the nucleation stage the growth proceeds as series on 
nucleation-merging events.

� The gain boundary meanders over distance equal to the grain 
size.

Ni grain 1 Ni grain 2

Grain boundary

Nucleation Growth

Hetero-nuclei Homo-nuclei

Grain size
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Straight vs. meandering grain boundary. 

Grain boundary

Very small sub-grain
Straight grain boundary
PLD, MBE

Large sub-grain
Meandering grain boundary

Feldmann et al,
“Evidence for extensive grain boundary meander and overgrowth of substrate grain boundaries in high 
critical current density ex situ YBa2Cu3O7-x coated conductors”, JMR, 80 (2005).
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What’s wrong with a straight grain boundary? 

CPMS Seminar October 23 2006 



16

Sub-grains make GB to meander, 
thus they tolerate much higher misorientations. 
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Growth rate effect: improvement of pinning. 

�Fast growth and low growth temperature: two key ingredients for 
strong isotropic pinning.
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Comparison: TEM plane view of atmospheric and 
sub-atmospheric processed 3 µµµµm samples. 

1998, atmospheric growth at 0.1 nm/s                 2005 sub-atmospheric growth at 0.7 nm/s

�Density of obvious defects (precipitates) is about the same.

�Is there something we don’t see in plane-view TEM?

Y2O3
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Possible source of pinning in granular samples.
YBCO plane distortion.

TEM cross section by Li-Hua, CFN.

Fast growth of relatively large grains introduces 
Strong isotropic pinning which does not degrade Tc.
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Grains cannot be too big:
Structure degrades rapidly if they are over 20 µµµµm.
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Isolated grain imbedded in precursor.

Ordered YBCO
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Critical current vs. the grain size.
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Why is it difficult to reduce the grain size? 
Epitaxy on non-ideal substrates.

�For an ideal substrate, rate of epitaxial nucleation is much higher 
than homogeneous one. Large safety margin.

�Real-life substrates are not so effective catalysts and the safety 
margin may be very low, especially for thick films.

Real-life substrate B

Homogeneous (in bulk) nucleation

 

Real-life substrate A

Heterogeneous (epitaxial) nucleation
catalyzed by an ideal substrate.
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Post-conclusion notes.
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S = ∆µ∆µ∆µ∆µ/kT (supersaturation)

Low S.
Flux-grown perfect crystals.
Point-like pinning by O-2

vacancies.

Intermediate S.
Atmospheric processing,
Pinning by extended defects 
(stacking faults etc.).

High S.
Sub-atmospheric processing, 
Isotropic pinning.

Critical current anisotropy in un-doped YBCO

Equilibrium

GrowthDecomposition

Metallurgic example: quenching of eutectoid (0.83%C) steel
Is there a “critical rate”?
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