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ABSTRACT 

Recently it has been shown that many traditional models used for a 
description of dilute magnetic alloys are completely integrable and may be solved 
exactly without any approximation. In this article we summarize the results 
which have been obtained in this way. 

The main part of the article is devoted to the consistent and detailed account of 
the Bethe-Ansatz technique for the s-d exchange (Kondo) model with arbitrary 
impurity spin, s-d model with anisotropic exchange, degenerate exchange model 
and for the canonical Anderson model. The thermodynamic properties of a 
magnetic impurity in a non-magnetic metal host obtained by the Bethe method 
are considered in detail. Mainly attention is paid to the analysis of singularities 
associated with the formation of a localized moment, Kondo effect and mixed- 
valence phenomenon, which can be treated analytically. 

In the introductory part of the article we discuss the applicability of the 
models which we study in the paper to the real alloys and consider some modern 
experimental data which give the evidence of the many-body effects in dilute 
magnetic alloys. A brief review of some theoretical results which have been 
obtained using alternative approaches is given. We think that these results 
illustrate some features of the exact solution. 

This review was completed in June 1982. 
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INTRODUCTION 

In the last two decades theoretical physicists have frequently encountered 
quantum many-body problems characterized by the growth of an effective coupling 
at low energies. The  principal difficulty in solving these problems, which attracts a 
great deal of attention from both condensed matter and particle physicists, is that the 
relevant low-energy phenomena cannot be treated in the framework of conventional 
perturbation theory. This implies that the genuine ground state of the system is 
radically different from that of the perturbation theory. Sometimes this can be 
understood intuitively and one can employ a suitable phenomenological theory. 
Even so, there remains the difficult p rob lem--how to treat the crossover between the 
infrared and ultraviolet regions of the spectrum. A widespread opinion is that one 
can learn about the crossover only via numerical analysis. 

The third approach, and an alternative method of avoiding perturbation theory, 
in which active development and growing popularity has recently been witnessed, is 
integrability. We have now had half a century since the work of Hans Bethe (1931) in 
which the integrability concept was discovered and foundations of the theory of 
integrable systems were laid. Remarkably, integrability was discovered only 6½ years 
after Schr6dinger's 'Erste Mitteilung' had been published; however, the subsequent 
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development  of the theory had to wait until the 1960s. T h e  growing interest of recent 
years in the integrability approach is a peculiar revelation of the ' retro ' .  Indeed,  
starting s imple-mindedly with conventional quan tum field theory one immediately 
encounters mathematical  difficulties. The  presence of many  particles brings in a 
broad range of physical effects which have made the solution of the many-body  
problem a more elusive goal. On the other hand, the integrability proper ty  is not 
directly related to features of the many-body  behaviour.  Rather it is a consequence of 
specific, so-called 'h idden symmetr ies ' ,  which show up already at the two-particle 
level. All the propert ies of the many-part ic le  system are already built-in in the two- 
particle system: one has to start f rom two particles, then add the next ones. 

T h e  subject of this paper  is a microscopic theory of dilute magnetic alloys. As is 
well known, a small amount  of magnetic  impurit ies dissolved in a non-magnet ic  
metal  drastically affect its properties.  T h e  problem encountered in the theory of this 
phenomenon is that the per turbat ion theory in the impur i ty-conduct ion  electron 
exchange interaction is not applicable at low temperatures.  

The  exchange interaction between the magnetic impuri ty  and the electrons, 
which is responsible for those striking effects in the above alloys, can be described by 
a simple model  hamiltonian. I t  is the so-called s-d  exchange model of the Kondo 
hamiltonian, which is apparently one of the first and, perhaps,  simplest quantum 
field theories with a growth of coupling at low energies. I t  is this model  which has 
been successfully treated in the strong coupling limit in the f ramework of the 
phenomenological  and numerical  approaches ment ioned above. A phenomenologi-  
cal description of the low-temperature  limit was given by Nozi~res (1974, 1975), 
whereas a numerical  t reatment  of the crossover was given by Wilson (1974, 1975). 

I t  has been shown recently that many  of the models,  which for more than two 
decades have been applied to the description of dilute magnetic alloys, are 
completely integrable and the relevant solutions have been produced. These include 
the s-d  exchange (Kondo) model,  the degenerate exchange model,  the Anderson 
model and the degenerate Anderson model.  

The  subject of this review is a Bethe-Ansatz approach to the above-mentioned 
models and a discussion of physical results which can be obtained using exact 
solutions. Our  t reatment  differs f rom that of a conventional review article. Our  goal 
is to present  a self-contained microscopic theory of the dilute magnetic alloys based 
on a systematic use of the Bethe-Ansatz technique. T h e  theory of dilute magnetic 
alloys and quan tum integrable systems are interwoven to such an extent that we have 
tried to make our review an introduction to the theory of integrable systems also; 
though our principal subject is the physics of the magnetic alloys. To  preserve the 
self-contained character we have in places recapitulated some details we have given 
elsewhere. 

T h e  subject Magnetic impurities in nonmagnetic metals is rather wide. The  first 
experimental  data on this subject belong to the early days of quantum metal physics 
when a striking phenomenon,  the resistance min imum,  was found in certain, 
supposed to be pure, metals at low temperatures.  Later  it was realized that the effect 
is due to transition element impurit ies and is proport ional  to their concentration. 
Experimental  data on transition impurit ies in simple metals obtained in the course of 
extensive researches of the 1960s-1970s can be found in numerous  reviews, for 
instance: van den Berg (1964), Heeger  (1969), Nara th  (1970, 1973), Fisher (1970) 
and Daybell  (1973). T h e  most  complete reviews are those by Rizzuto (1974) and 
Grfiner (1974), which cover more than 800 papers published f rom 1962 to 1975. 
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458 A . M .  Tsvelick and P. B. Wiegmann  

Detailed studies of dilute magnetic alloys have shown that in all alloys below a 
certain temperature  TK, called the Kondo temperature,  the impuri ty  part  of the 
magnetic susceptibility becomes tempera ture  independent  and remains finite at 
T =  0. One may say the effective magnetic momen t  of the impuri ty  vanishes as the 
tempera ture  is lowered. T h e  peculiar anomalies of thermal  and t ransport  propert ies 
of magnetic alloys are due to the smooth transition into the non-magnet ic  state. The  
Kondo temperature  may change by orders in magni tude f rom impuri ty  to impuri ty  
and/or f rom the matrix metal  to m e t a l - - f r o m  mill iKelvins to 102 K; for instance, 
f rom 1 K for LaCe alloy (Sugawara and Eguichi 1966) to 40 K for YCe alloys (Maple 
and Wittig 1971), f rom 0"8 K for AuFe (Daybell  1973) to 300 K for AuV (van D a m  
et al. 1972). Hence the Kondo effect is not always a low-temperature  phenomenon,  it 
can be observed at room temperatures.  

The  propert ies of dilute alloys with localized moments  are basically determined 
by the exchange interaction between the conduction electrons of the metal  and the 
impuri ty  magnetic moment .  A conventional description of this interaction is based 
on the so-called s-d  exchange (Kondo) model. I t  is the simplest model in which the 
impuri ty is represented by the localized magnetic momen t  S = ( S x ,  Sy, S~). The  
origin of this model goes back to the early 1950s (Zener 1951, Vonsovskii 1946). In 
1964 Jun Kondo applied per turbat ion theory to this model  and explained the 
logarithmic growth of the resistivity at low temperatures.  His paper  gave rise to an 
enormous amount  of theoretical activity in this area, which continued up to the mid-  
1970s. 

The  hamiltonian of the s -d  exchange model is 

k ,a  k,k" 
~, tT' 

where c[~, Ck~ are the conduction electron creation and annihilation operators,  Ck is the 
electron's kinetic energy and 0- is the Pauli matrices. 

As far as the linear effects in the impuri ty  concentration are concerned we can 
confine ourselves to a s ingle-impuri ty problem,  the impuri ty  being located at X =  0, 
as was supposed when writing down (I). 

In real alloys the exchange interaction is always antiferromagnetic:  I >  0, with a 
small dimensionless coupling p(eF)I<< I(p(EF) is the density of states at the Fermi  
surface). 

Kondo observed that the spin-flip scattering effective amplitude,  computed  to 
second order of per turbat ion theory, rises as energy and temperature  decreases: 

p l ( e ) = p I  + ( p I )  2 l n D / e + O ( ( p I ) 3 ) ,  (p=p(eF)) ,  (II)  

where D is the cut-off of the order of the Fermi  energy. 
The  resistivity due to the magnetic impuri ty  is proport ional  to the scattering 

ampli tude squared: 

R i ~ c I 2 ( T )  ~-- c[I  + p I  2 In D~ T + 0(p213)] 2, (I I I) 

where c is a concentration of magnetic impurities.  I t  increases with decreasing T, in 
contrast with the phonon part  of resistivity Rph , which rapidly decreases. Hence the 
total, phonon-  and impuri ty- induced,  resistivity should have a m in imum at R i ~ Rph. 
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Exact results in the theory of magnetic alloys 459 

When the tempera ture  is of the order of the Kondo temperature  

T K ~ D exp ( -- 1/pI)  (IV) 

all the terms of the per turbat ion expansion are of the same order in magni tude and, 
despite the weak bare coupling, per turbat ion theory no longer holds. 

Soon after Kondo ' s  paper  Abrikosov in his pioneering work (Abrikosov 1965) 
summed the most  divergent terms in per turbat ion theory expansion (the so-called 
leading-log terms): 

I 
I ( T ) -  1 - p l l n D / T "  (V) 

T h e  same result was derived by Suhl (1965) who used the unitarity equation in the 
two-particle scattering approximation.  Besides summing  the leading-logs, 
Abrikosov proved that the exchange hamiltonian (I) is renormalizable. This  implies 
that for the antiferromagnetic interaction at pI<<l and D ~ o e  all the physical 
quantities are universal functions of the temperature,  magnetic field, etc. For  
instance, the tempera ture  dependence of the resistivity is of the form: 

R i =constf(T/TK). 

Formula  (V) is but  a leading approximation at T>> TK: 

I ( T ) = p l n T / T  K +O plna T/TK . 

In the case of a ferromagnetic exchange interaction eqn. (V) gives a complete 
solution since the effective ampli tude is small at all temperatures  and the higher- 
order per turbat ion terms are irrelevant. For  example, the impuri ty  part  of the 
magnetic susceptibility differs f rom that given by Curie law by logarithmic terms 
which are small at all temperatures  and, moreover,  vanish at T--*0 

Z i -  3 ~ ( # B g )  2 1 + l nD/~  + . . . .  (VII)  

One encounters a distinct situation at I >  0. In this case the effective interaction 
ampli tude increases as tempera ture  decreases. The  next-to-leading-log terms do not 
alter the situation. For instance, the magnetic susceptibility which at this order is 
proport ional  to the scattering amplitude, equals 

S(S+I )  ( l lnlnT/TK ) 
Z l -  3 ~ ( # B g )  z 1 In T/T K 21n a T/T K + . . . .  

It  is quite obvious that such a divergence is rather an artefact of the 
approximat ion used. The  per turbat ion expansion parameter  is (ln T/TK)- 1 hence 
per turbat ion theory breaks down at T , - -T  K and has nothing to tell us about the 
ground state of magnetic impur i ty  in a non-magnet ic  metal. This  problem is called 
the Kondo problem. 

The  exceptional simplicity of the s d exchange model (I), combined with giant 
effects easily observed experimentally made the Kondo  problem rather popular.  
Simple though it is, the physical and mathematical  features of the phenomena  
described by this hamiltonian proved to be not so simple. There  have been many  
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460 A . M .  Tsvelick and P. B. Wiegmann  

at tempts to go beyond per turbat ion theory. Most  of the theories, put  forward in the 
1960s, are but unsuccessful at tempts to develop an approximate  approach to the 
ground state of the impurity.  However,  the lack of any parameter  at T~< T K leads 
inevitably to uncontrolled approximations resulting frequently in wrong results. 

I t  would be impossible to survey the ' jungle '  of more  than 1-5 x 103 papers on the 
Kondo problem,  though a critical and valuable survey may well prove instructive as a 
contr ibution into the sociology of sciencet.  In the course of this section we shall 
ment ion the main lines of thought  which have been explored during the 1960s. More  
than 20 review articles, some of which are cited below, on the magnetic alloys 
prob lem have appeared since 1962; early theoretical works have been reviewed by 
Abrikosov (1969), Kondo (1969), Grfiner and Zawadowski (1974, 1978), Fischer 
(1970), and also by Yosida and Yoshimori  (1973), Brenig and Zittartz (1973) and 
Anderson and Yuval (1973) collected in the book Magnetism, Vol. V, edited by 
H. Suhl. For a more exhaustive bibliography we refer the reader to these articles. 

Although a consistent theoretical s tudy of the low-temperature  propert ies of 
magnetic alloys was lacking, in 1965 Nagaoka had already made a correct conjecture 
on the nature of the ground state of the impuri ty  (Nagaoka 1965, 1969). He  
constructed the special mean field theory using the decoupling scheme, which 
resulted in complex singular integral equations. T h e n  Nagaoka solved these 
equations 'approximately '  and obtained the desired result: namely, the ground state 
of the 1/2-spin impuri ty  is a singlet one. As a result he found the simple power laws at 
low temperature.  Other  approximate  methods (dispersion theory of Suhl (1965 a, b, 
1966) and Maleev (1966, 1967), per turbat ion expansions of Brenig and Ggtze (1968), 
etc.) proved to be equivalent to the equations of mot ion of Nagaoka. Fur thermore ,  it 
turned out that these approximate  equations can be solved exactly (Bloomfield and 
Hamann  1967, Zittarz and Mt i l le r -Har tmann 1968). This  exact solution of the Suh l -  
Nagaoka equations is drastically different f rom Nagaoka 's  approximate  solution, and 
results in physically meaningless behaviour when T ~ 0 .  In particular, instead of 
Nagaoka 's  powers one again finds, as at T>> TK, the inverse logs of the temperatureS. 

Factually, the starting approximat ion in all of these theories is poor at low 
temperatures.  It  was sensible only at T>> T K and only in the leading-log approxi-  
mation. Hence,  nothing comes out except formulae such as (VI) and (VII) .  Since 
Abrikosov's  approach was more  consistent, it explicitly stated what was neglected, 
one has never been tempted  to go beyond the per turbat ion- theory  approach. 

Of  all the works of the 1960s one can single out that of Mattis  (1967), in which 
it has rightly been conjectured that (i) the ground state of the S-spin  impuri ty  is 
2S-fold degenerate, (ii) for S > 1/2 the impuri ty  remains magnetic even at T =  0, but  
the spin becomes S - 1 / 2 .  

A qualitative understanding of the phenomenon dates back to the early 1970s and 
is due to remarkable papers by Anderson and Yuval (1969) and Anderson et al. 
(1970 a) (see also, Anderson 1970, 1971, Yuval and Anderson 1970, Anderson et al. 
1970b, a review of this approach is given by Anderson and Yuval (1973)), and by 
Wilson (1974, 1975) and Nozi~res (1974, 1975). As was stated, they produced 

A study of this kind on the specialized topic 'The formation of the localized moment in 
metals' was made by Morandi et al. (1981). 

Interestingly enough, there exists the logarithmic situation as T-~O, but only for S=# 1/2 
(see § 5). 
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Exact results in the theory of magnetic alloys 461 

(100--~)~o proof  that as the temperature decreases the effective coupling increases 
unboundedly,  which implies the complete compensation of the impuri ty magnetic 
moment  by the conduction electrons. As a result the ground state of the impurity is a 
singlet one, the magnetic susceptibility is finite at T = 0  and all physical quantities 
have a simple power law behaviour at T<< T K. Moreover,  the Fermi-liquid-like 
relationships have been proven between the lowest-order coefficients of the 
temperature expansions for the specific heat and magnetic susceptibility (Wilson 
1974, 1975, Nozi6res 1974, 1975) and resistivity (Nozi6res 1974, 1975). 

zi-2 TK\ + O  , 

c -3 T K \ I + O  ' ( v I n )  

Ro - T2 --7z2+ O ~ ' 

where R 0 = 3/(n(p Vre) 2) is the unitary limit. 
When the temperature goes through TK, the qualitative physical Fermi-liquid- 

like picture changes--only perturbative logarithmic terms make the impurity unlike 
the free spin. These limits T>> TI( and T<< T K are both conceptually rather simple. 

The  well-known anomalies in the specific heat, magnetic susceptibility, 
resistance, thermopower,  etc., can be qualitatively understood in terms of the 
concept of a many-body resonance at the Fermi level. The  phase shift r/(co), defined 
a s  

1 [- Im T(~o)T(c°) a ] '  r/(a)) = t a n -  [Ree 

where T(co) is a T-scattering matrix, reaches its unitary limit at co+0 and can be 
expanded in integer powers of co/TK<< 1: 

= (co/2 2 + 

Far away from the Fermi level the tail of the resonance has a perturbative logarithmic 
behaviour. This  so-called Abrikosov-Suhl  narrow many-body resonance is evidence 
of formation of the complex many-body bound state. 

One can justify all the theoretical efforts and theoretical games devoted to this 
fairly limited problem not only by the strong correlation of theory and experiments 
'in this particular field of solid-state physics, but  also by referring to the fact that 
many of the methods developed to attack it proved to be universal ones and 
productive in other branches of theoretical physics as well. For instance, the 
recursion procedure, the basic ingredient of the renormalization group approach, 
was first employed by Anderson et al. (1970). Th e  bosonic representation of the 
fermion operators, so effective in one-dimensional quantum and two-dimensional 
classical physics was developed in the remarkable papers by Schotte and Schotte 
(1969) and Schotte (1970) (for a review see Wiegmann 1980 b). This  list can easily be 
continued. 

Th e  first half of this paper is devoted to the solution of the Kondo problem. In the 
second half (§§ 4.5, 8 and 9) we discuss the solution of the model which describes the 
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462 A . M .  Tsvelick and P. B. Wiegmann 

electronic mechanism of the formation of the magnetic m o m e n t  of an ion with an 
incomplete inner shell placed in a metal. 

As is well known the behaviours of different impurit ies with incomplete inner 
shells in different metals are quite different. For  instance, Mn,  Cr and Fe in Cu, Au 
and Ag matrices, like Ce in La, possess well-defined magnetic moments :  the 
impuri ty  susceptibility follows the Curie law at high temperatures.  On the other 
hand, Ni and Ti  in the same Cu, .Au and Ag samples prove to be non-magnetic:  
rather weak Pauli paramagnet i sm is observed. Transi t ion ions which proved to be 
magnetic in Cu, Au or Ag samples, lose this proper ty  in A1 (see, for example,  
Rizzutto 1974). Similarly, Ce in La  ceases to be magnetic after T h  and/or Y is 
introduced, or under  a pressure of ,,. 6 kbar  (see Maple et al. 1978 and Steglich 1977 
for a review). 

Whether  the impuri ty  is magnetic or non-magnet ic ,  depends on the propert ies of 
both the impuri ty  ion and the host metal. A free 3d or 4 f  ion is obviously magnetic.  
However,  the metal  overlap of the 3d or 4 f  electron wave function with that of the 
conduction electron band of the host metal  leads to delocalization of the impuri ty  
electron states and can destroy the magnetic moment ,  a situation first recognized by 
Friedel (1958). A conventional approach to the formation of the localized magnetic 
moments  in metals is based on the Anderson model (Anderson 1961, see also 
Anderson 1978) 

J~4'~A = Z CkCt, Ck~+ V~, (Ck+~d,+d+Ck,)+ Zcand,+ Un~n s. (IX) 
k ,  a k ,  ff ff 

It  is the so-called non-degenerate  Anderson model where orbital degeneracy of 
the impuri ty  shell is neglected. I t  is supposed that no more than two electrons with 
spins a = T ,  J, can simultaneously occupy the impuri ty  level % The  intratomic 
Coulomb interaction is given by the te rm U, and g is the admixture  of the d level 
with conduction band states. 

The  mixing of d and s states leads to broadening of the d level. I f  U ~ 0  the 
resonance level has the width F = 7~p@F)r 2 and is centred at c a. If, after adding or 
removing one electron to and f rom the impuri ty  shell, the respective energy variation 

- *a and ¢ a + U exceeds the resonance width, the shell can be considered as singly- 
occupied and the impuri ty  would possess a magnetic moment .  The  virtual processes, 
which change the number  of particles by + 1, induce the exchange interaction 
between the conduction electrons and the localized momen t  (Anderson and Clogston 
1962). Schrieffer and Wolf  (1966) produced the formal proof  of the equivalence of 
the S =  1/2 Kondo model and the Anderson model in the limit 

F << - ca, ~a + U, (X) 

with the antiferromagnetic exchange 

1 , )  
- - - - + - -  >0 .  P(£F)[= Ed (;d+ 

In the opposite case, when a broad resonance level is formed near the Fermi  level 
ledr<<F and the Coulomb energy is relatively small compared  with F(U.%<F) the 
impuri ty  is partially occupied with spin-up and spin-down electrons. This  state is 
non-magnetic ,  only the fluctuation of the occupation numbers  for different spins can 
result in magnetic susceptibility. For this reason at temperatures  below the level 
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Exact results in the theory of magnetic alloys 463 

width (T~< F) all the physical quantities can be expanded in integer powers of T. For  
instance, for the symmetr ic  Anderson model  (U  = - 2q), the magnetic susceptibility 
is 

( (7 ) ~(u/r)  1+ /~(U/F) + 
Z i =  F F " "  ' 

where dimensionless coefficients ~ and fl can be calculated in perturbat ion theory in 
u/r. 

I f  we change the relative values of U, Q and F the non-magnet ic  regime goes over 
continuously to the magnetic regime, but, simultaneously, the impuri ty  magnetic 
m o m e n t  is compensated by the conduction electrons due to the Kondo effect. Hence, 
the Anderson model,  being the microscopic justification of the exchange hamiltonian 
(I), provides, simultaneously, a unified description of the narrow many-body  and the 
broad single-particle resonances. With regard to the Anderson model the theoretical 
part  of the prob lem has not been developed in a satisfactory manner  and has lagged 
behind the advances in the theory of the exchange model.  

The  Har t r ee -Fock  approach to the description of transition between the 
magnetic and non-magnet ic  regimes was proposed by Anderson (1961). I t  is a fairly 
rough approximat ion which leads to the sharp transition at U =  ~I ~ and, frankly, has 
no region of applicability. None the less, it provides the qualitatively correct 
description of the tendency of the formation of the localized moment ,  i.e. splitting of 
the peak in the impuri ty  density of states, and is confirmed by the available optical 
data (for a review see Grfiner 1974). Early theoretical works based on the Har t r ee -  
Fock approximation are reviewed by Blandin (1973). Correlation effects, due to the 
Coulomb repulsion, were treated in a large number  of papers; the reader can find a 
detailed analysis of these in Mills et al. (1973) and Grfiner and Zawadowski (1974). 
In  the early 1970s great hopes were related to the functional integral method,  
reviewed by H a m a n n  and Schrieffer (1973) and Morandi  et al. (1974). We refer also 
to the book by Morandi  et al. (1981) for analysis of all theoretical papers on the 
format ion of local magnetic m om en t  in metals published between 1952 and 1973. 
This  volume contains an interesting study of the sociology of this area of creative 
activity. 

Of  all the approaches to the Anderson model,  as well as the exchange model,  the 
most  reliable and productive ones proved to be the Fermi-l iquid approach by Yosida 
and Yamada (1970, 1975) and Yamada (1975) for the symmetr ic  Anderson model, 
the scaling approach by Haldane (1978) for the asymmetr ic  Anderson model and 
Wilson's  numerical  renormalization group approach by Kr i shna-Mur thy  et al. 
(1975, 1980a, b) for both  the symmetrical  and asymmetrical  cases. 

Yamada and Yosida gave the closed mathematical  form for the per turbat ion 
theory in U and used it to prove the Fermi-l iquid like general relations between 
different physical quantities, particularly, relation (VI I I )  in the Kondo limit U-+ oo. 

Recently, interest has been aroused in the asymmetr ic  Anderson model in view of 
the mixed valence problem. In the asymmetr ic  limit [Q[, F << U the state with double 
occupation may only be a virtual one, whereas in the states with n d = 0 and 1 the 
impuri ty  ion may be stable for a long time. In  the mixed valence regime 1QI ~ F ,  
which is apparently the most  interesting one, there appear new features due to the 
average occupation number  being essentially non-integer,  thus leading to strong 
renormalization of the effective level: E ~ = q + F / ~ I n U / U .  Haldane (1978) for- 
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464 A . M .  Tsvelick and P. B. Wiegmann  

mulated the scaling approach to this case and showed that all the physical quantities 
are universal functions of F/¢~, the latter being the real expansion parameter .  For  
example, the average occupation number  n d has the form 

1 + F/nE~ + O(F2/E~ 2 in F/IE~=I) 
n,~= 2F/mE~ q- O(F2/E~ 2 In F / ~  =) 

(ey < 0), 

(c~ > 0). 

Thus ,  one encounters a situation reminiscent of that in the Kondo  problem: 
despite the bare coupling being arbitrarily small, F<< U, when the level approaches 
the Fermi  surface the effective mixing increases and in the most  interesting region 
[eYl ~< F per turbat ion theory no longer holds. (A much  closer analogy exists between 
the Kondo and mixed valence problem for the single impuri ty,  see below.) 

Kr i shna -Mur thy  et al. (1975, 1980a, b) extended Wilson's  numerical  re- 
normalization group technique to the general Anderson model.  The i r  results, 
though being only numerical,  provide a comprehensive tempera ture  dependence of 
the magnetic susceptibility in all the possible regimes and enable one to follow the 
smooth crossovers f rom one to another regime as the parameters  are varied. 

The  bulk of this review is devoted to the exact solution of the s-d  exchange model 
(§8 4.2, 4.3, 5, 6) and the Anderson model (88 4.5, 8). T h e  crossover between the low- 
and high-energy regimes in the Kondo  model  will be described in an analytical way. 
For the Anderson model we give a similar analytic description of the crossovers 
between non-magnet ic  and local m om en t  regimes and between local momen t  and 
mixed-valence regimes. T h e  theory to be exposed below restores our naive 
perception of hamiltonians (I, XI )  as simple ones. The i r  simplicity reveals itself, 
however, not in the many-body  dynamics,  but  rather at a quite different level- - in  the 
dynamics of the two-particle scattering. Readers familiar with the history of studies 
in the Kondo and Anderson models could not miss noticing what a frightening 
mathematical  debris one is t rapped in, while attacking by inadequate methods the 
phenomena which were eventually described by such simple mathematics.  

Despite the considerable contributions of the theory of integrable systems to 
mathematical  physics in one-dimension,  the elegant methods  of this algebraic theory 
are not that wide-spread. For this reason we have tried to make our presentation of 
the Bethe-Ansatz technique as applied to the s-d  exchange (Kondo) model (§4.2), 
the exchange model with anisotropic exchange (84.3), the degenerate exchange 
model (8 4.4), the Anderson model  (8 4.5), the degenerate Anderson model  (§ 4.6) and 
the resonant level (RL) model (supplement)  as self-contained as possible, so that one 
should not need to consult the original papers. In  our presentation we employ the 
recently discovered quantum inverse scattering method (for a review, see Faddeev 
1980). 

The  Bethe-Ansatz technique enables one to parametrize the spect rum of the 
hamil tonian in terms of the so-called rapidities which characterize the state of the 
many-body  system. These rapidities obey the system of algebraic transcendental 
equations, the so-called Bethe-Ansatz equations. T o  find that the system is 
integrable is not the same as to solve it. In  order to get certain results, one has to 
construct the equil ibrium state of the system at the given temperature  and solve the 
relevant Bethe-Ansatz equations. T h e  relevant mathematical  technique is exposed 
in detail on an example of the s-d  exchange model  (8 5.1, 6.1) and applied afterwards 
to other models (8 5.2, 6.2, 7). 
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Exact results in the theory of magnetic alloys 465 

Once the Bethe-Ansatz equations are solved, one can comprehensively describe 
the magnetic and thermal properties of the impurity in the non-magnetic metal. 

We conclude with a discussion of the thermodynamic properties of the non- 
degenerate and degenerate Anderson model in §§8 and 9. In these sections the 
relation between the Anderson model and the s-d exchange model in terms of the 
exact solutions will also be discussed. Particular attention is paid to the asymmetric 
Anderson model for the mixed-valence states. 

The detailed presentation and discussion of exact solutions follows the three 
introductory review sections (§§ 1-3). Some recent theoretical developments will be 
briefly reviewed in § 3. We have selected only those papers which are the most 
instructive in that the ideas developed are related to the mathematical structure of 
the solutions and shed light on the physical meaning of the latter. On the other hand, 
an exact solution enables us to justify and visualize the physical approximations and 
hypotheses of these works. This is most relevant in the phenomenological Fermi- 
liquid picture which played an important heuristic role in the construction of exact 
solutions. 

Reviews of Nozi~res' phenomenological Fermi-liquid approach to the Kondo 
model and Yamad~Yos ida ' s  approach to the Anderson model are given in §§ 3.1.2 
and 3.2.1. In § 3.1.1 we discuss the Anderson et al. (1970 a, b) approach to the triad of 
Kondo hamiltonian, Coulomb gas partition function and resonant level model 
equivalences. Also in §§ 3.1.2 and 3.2.4 we give a brief review of Wilson's numerical 
renormalization group approach to the Kondo and Anderson models. The pertur- 
bation theory motivated scaling approaches to the exchange models and asymmetric 
Anderson model are discussed in §§ 2.2.4 and 3.2.4 respectively. 

Theoretical activity on magnetic alloys was based mainly on the simple exchange 
Kondo hamiltonian, although until recently there were no known magnetic 
impurities to which application of this model in its present over-simplified form was 
justified without ignoring qualitatively important features. Now such substances are 
found among La-based compounds,  two of which are discussed in § 1.1.1. Hence, it 
seemed worthwhile to present the microscopic derivation of realistic hamiltonians 
with allowance for the orbital structure of the impurity ion, the crystal field effects, 
fine and hyperfine structure, etc., and to discuss the limits of applicability of the 
traditional models to real metal (§ 2). 

§ 1. EXPERIMENTAL EVIDENCE FOR THE MANY-BODY EFFECTS IN DILUTE MAGNETIC 
ALLOYS. KONDO-LIKE BEHAVIOUR IN DILUTE LANTHANIDE IMPURITY SYSTEMS 

In the 1960s considerable efforts were made in experimental investigation of the 
properties of dilute alloys in the Kondo state. 

One of the results of this effort is that even in classical Kondo transition alloys 
there are always traces of interimpurity correlation. To  avoid impuri ty- impuri ty  
interaction effects it is required that the impurity concentration be in the p.p.m. 
region, which makes it difficult to extract the single-impurity effect from the 
measured signal. For instance, in the case of the traditional CuMn alloy the estimate 
of the RKKY-interact ion energy proves that at temperatures near and below T K the 
alloy can be regarded as dilute only if the concentration is less than 5 p.p.m. Such 
pure substances are not in fact available (Hirshkoff et al. 1971). 

The  situation is contrary in Kondo systems containing rare-earth ions such as Ce 
and Yb. In these systems the interaction between rare-earth ions is believed to be 
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466 A . M .  Tsvelick and P. B. Wiegmann 

negligible. In rare-earth alloys the impurity can be considered as isolated for 
amounts up to l~ot .  Moreover, the concentrated lanthanide systems exhibit 
anomalies strongly resembling those of the dilute transitional alloys. 

In 1965 Sugawara observed the first resistance minimum phenomenon due to a 
lanthanide solution in the dilute alloy system YCe. Following this discovery of the 
Kondo effect in the YCe system numerous dilute and concentrated lanthanide 
metallic systems have been investigated. Of the thirteen lanthanide ions with a 
partially-filled 4f  shell only Ce, Sin, T u  and Yb have Kondo-like behaviour. We 
shall confine the discussion below mainly to Ce as the most explicit example of an 
ambivalent rare-earth element. 

Recent developments confirm that RE-alloys have great advantages over similar 
transition metal systems. First, as we have mentioned above, the single-impurity 
effects can probably be studied not only in the extremely low-concentration range. 
The second reason is that the structure of the moment  in the magnetic state is well 
defined and rather simple. 

The Hund  correlations between the 4 f  electrons and the spin-orbit coupling 
result in a ground state of the 4 f  shell which exhibits a magnetic momentum of the 4 f  
shell. Further  simplification is due to a strong crystal field. The Kramers .ion Ce 3 + 
(2F5/2) in a crystal environment of the cubic La-based compounds Splits into a F 7 
doublet ground state and a F 8 quartet separated by AcF ~-, 150-200 K. Therefore, at 
sufficiently low temperatures only the doublet is important and the orbital structure 
of the shell is maximally simplified. 

To have a sufficiently wide temperature range above and below T K to observe the 
low-temperature properties as well as high-temperature properties of the Kondo 
state, the Kondo temperature of such systems should be of the order of degrees. At 
the same time T K is sufficiently small in comparison with the crystal electric field 
(CEF) splitting and the Ce alloys may be perfect examples of substances adequately 
described by the s-d exchange model (!) with the 1/2 spin. Such an arrangement of 
the magnetic CEF levels enables one to observe simultaneously the Kondo, and CEF 
effects. Both these effects are characteristic of the single Ce impurity in lanthanide 
systems. 

Finally, there are important phenomena relevant to the Kondo effect of Ce 
dilutely dissolved in La-based compounds,  namely, a strong increase of the Kondo 
temperature and, as a result, destruction of the local-moment state under pressure or 
under the so-called 'chemical pressure'. 

1.1. Two typical examples: (La, Ce)AI 2 and (La, Ce)B 6 

Recently, great attention has been drawn to the matrix-lanthanide impurity 
systems, where the metallic matrix is a compound.  Today,  such systems exhibiting 
Kondo-like anomalies have been observed. Of all these, the system (La, Ce)A12 has 
been by far the most extensively investigated and, therefore, we discuss properties of 

The reason that the RKKY interaction displays itself so weakly is not quite clear since the 
exchange integral in the RE-alloys is of the same order as that for the transition alloys; 
however, numerous experiments have consistently indicated that the result of the RKKY 
polarization of the conduction electrons must be weak and does not lead to any appreciable 
modification of the local moment. 
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Exact results in the theory of magnetic alloys 467 

this example in some detail. T h e  Kondo effect of (La, Ce)A12 was first discovered by 
Maple and Fisk (1968). Kondo anomalies were observed in 

(i) resistivity (Winzer 1973), 
(ii) magnetic resistivity (Felsch and Winzer 1973), 

(iii) specific heat (Deenades et al. 1971, Armbr/ister et al. 1974, Steglich and 
Ambr/ister 1972, Bader et al. 1975, Steglich 1976), 

(iv) thermoelectric power (Moeser et al. 1974), 
(v) magnetic susceptibility (Felsch et al. 1975) and in addition 

(vi) (La, Ce)A12 is a classical example of the ' re-entrant '  superconductivity 
phenomenon (Maple et al. 1972). 

Unfortunately the investigations of these Kondo anomalies in (La, Ce)A12 are 
restricted to Ce concentrations ~>0"7 at.~o because for smaller concentrations the 
system becomes superconducting in the temperature range of interest. 

Another typiehl La-based compound exhibiting Kondo-like anomalies but  not 
showing superconductivity was found in the borides. It is (La, Ce)B 6 whose 
conductive and magnetic properties were investigated in the remarkable experi- 
ments by Winzer (1975), Samwer and Winzer (1976) and Felsch (1978). 

As is known, the most characteristic behaviours of the many-body effects are: 

(i) Fermi-liquid simple power behaviour at low temperatures (T<< TK); 
(ii) logarithmic behaviour at high temperatures (T>> TK). 

Experiments in a magnetic field also testify to the appearance of the characteristic 
scale: unlike a free ion, dimensionless physical quantities are not determined by the 
ratio #sH/kBT only- - they  change with variation of, for instance, H with I~BH/kBT 
constant. Note that the observation of pure many-body effects is rather delicate: at 
low temperatures the interimpuri ty interaction becomes involved, at high tempera- 
tures in magnetic experiments a strong influence of the crystal field is observed and 
separation of the logarithmic behaviour is a difficult task. For some measured 
quantities, for instance for the specific heat, the logarithmic behaviour displays itself 
at extremely high temperatures: In T/TK,,~6-7. 

More clear-cut evidence of the logarithmic behaviour is given by the temperature 
dependence of the impuri ty resistivity. Note that the simple power low-temperature 
behaviour above cannot be considered as evidence of the many-body effects. Th e  
case is that due to the broad one-body resonance the Fermi-liquid like behaviour is 
demonstrated also by the non-magnetic alloys for which the criterion of the local- 
moment  state and the Kondo effect, defined as U>>F, is not fulfilled. Only the change 
of the regime from logarithmic to simple power laws is the characteristic feature of 
the Kondo effect. 

We shall give below certain experimental data for magnetic susceptibility, 
magnetization, specific heat, resistivity, magnetoresistivity, lattice pressure effects 
and re-entrant superconductivity effect for (La, Ce)A12 and (La, Ce)B 6 testifying to 
the many-body effects. 

(a) The crystal field effects 
The  6F5/z term of Ce 3 + ion is usually believed to be split by the cubic crystal field 

into the doublet F v and quartet F s. In recent neutron scattering experiments on 
(La, Ce)A12 Loewenhaupt  et al. (1979) studied the energetic level scheme of the 
Ce 3 + ion. A well-resolved inelastic peak was observed at an energy transfer 100 K in 
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468 A . M .  Tsvelick and P. B. Wiegmann 

the energy-gain spectrum. In  addition, extra scattering intensity was observed at 
180 K. The  first peak is at tr ibuted to the C E F  transition between F 7 and F8, while 
the second is considered to be due to a dynamic strain which couples the states inside 
the excited F 8 quartet.  

Thus  at T<< 100 K only the doublet  F 7 is significantly populated. According to 
Murao and Matsubara  (1957) this F 7 state may be described by a spin with the 
magni tude S = 1/2 and a modified Lande factor g' = - (5/3)g with g = 6/7 for the free 
Ce 3 + ion. Therefore,  the CEF  theory gives g ' =  --5/3 x 6/7--- --1"43 for the ground 
state of cerium impurities in the La-based compounds¢.  T h e  effective magnetic 
momen t  #ef f=g ' (S(S+l) )  1/2 is 1"24~B. Then  the exchange interaction with the 
conduction electrons will be described by the effective s-d  exchange hamiltonian (I) 
with an impuri ty  spin S = 1/2 and g = 1"43. Note,  that al though the splitting of the F 8 
quartet  may appear sufficiently large, it is evident that the matr ix  elements of the 
quadrupole operator are also large and lead to a large Van Vleck contr ibution to the 
magnetic susceptibility (Loewenhaupt  et al. 1979). 

(b) Magnetic susceptibility and magnetization 
Felsch (1977, 1978) measured the low-field magnetic susceptibility of the rare- 

earth (RE) Kondo system (La, Ce)B 6 for low and modera te  Ce concentrations in the 
temperature  range between 30 m K  and 300 K as well as low-temperature  magneti-  
zation extending to high magnetic fields. He  studied the single impuri ty  behaviour of 
Ce ions subjected to the Kondo effect and found out how the impuri ty  interaction 
and crystal field effects interfere with the Kondo  effect. In  fig. 1.1 the data for the 
inverse low-field impuri ty  susceptibility are represented as Z-1, for two (La, Ce)B 6 
alloys with 0"072 and 0"13 a t .~  Ce as a function of the tempera ture  in the regime 
below 10 K. 

The  data scale well with the concentration, indicating that Z originates f rom 
isolated Ce ions. In  a wide temperature  range the solute susceptibility can be 
described by the Curie-Weiss  law 

C 
Z=  T + ~  

with the Curie temperature  0=(2-8__0"1)K which is independent  of the Ce 
concentration, and the Curie constant C =  1/3#2ff yielding the effective magnetic 
momen t  #eff= (1'13 __ 0"02)# B ( remember  that the theory gives #elf= 1"24#B). 

However,  the behaviour of the susceptibility even at high temperatures  could not 
be described in terms of the crystal field effects alone as is illustrated in fig. 1.2. 
Alongside these effects one should take into account the logarithmic corrections due 
to the Kondo  effect. 

At temperatures  below ~,0"3 K X -1 decreases more  slowly with tempera ture  
decrease than according to the Curie-Weiss  law. This  is demonstra ted by the insert 
in fig. 1.1. For (La, Ce)A12 the accord between experimental  and theoretical values 
of #eff is still better, #eff=(l '25+0"03)#B. The  Curie temperature  is equal to 
(0"40 _+ 0"05) K (Felsch et al. 1975). T h e  inverse low-field susceptibility per mole Ce 

t One can expect similar orders of magnitude of the crystal fields for all cerium 
compounds. 
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Fig. 1.1 
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Inverse impurity susceptibility per mole Ce, 1/) of (La, Ce)B 6 alloys with 0'072 and 0'13 at.% 
Ce as a function of temperature T. The insert shows the behaviour at low temperature 
on an expanded scale. The dashed line is an extrapolation of the Curie-Weiss law fitted 
to the data (after Felsch 1978). 
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Z T versus temperature T for (La, Ce)B 6 alloys. The dashed line is the behaviour of free C e  3 + 

ions. The dotted line is the behaviour of Ce 3 + ions in the cubic crystal field of LaB 6 
(after Felsch 1978). 
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Inverse impurity susceptibility per mole Ce, 1/Z of (La, Ce)A12 alloys with 1'0 and 1"5 at.~o Ce 
as a function of temperature T. The full line is a fit of eqn. (I) to the data (after Felsch et 
al. 1975). 

is plotted in fig. 1.3. At temperatures  sufficiently below the Kondo  tempera ture  in 
(La, Ce)B 6 the leading tempera ture  correction to Z(0) can be considered as quadratic: 

z (T)  = Z(0)(1 - (T/00)2), 

where 0o = (1"20-4-0"08) K. This  can be seen in fig. 1.4, where Z is plotted versus T 2. 
In the case of (La, Ce)AI 2 this simple power  law could not be detected up to 1 a t .~ .  
At this concentration the impur i ty - impur i ty  interaction becomes noticeable at 
0"15 K (Felsch et al. 1975). 

The  influence of the Kondo effect on the magnetic propert ies of (La, Ce)B 6 and 
(La, Ce)A12 is particularly apparent  in the low-temperature  magnetizat ion data. 
Typical  results of the magnetization curves of the alloys are given in figs. 1.5 and 1.6, 
where the magnetization per Ce impuri ty,  M,  is shown as a function of H / T  in a 
logarithmic plot for several constant magnetic fields H (Felsch et al. 1975, Felsch 
1978). As a result of the interaction of the Ce-ion local momen t  with the conduction 
electrons, magnetization is no longer a unique function of HIT.  The  observed 
behaviour reflects the conception that at temperatures  T <  T K spin polarization in an 
external magnetic field is achieved by polarization of the Kondo ground state. The  
impuri ty  magnetization depends on H/TK rather than on H / T  as it would for a free 
spin. 

Figure 1.7 shows the field dependence of magnetization per Ce impur i ty  at 50 mk 
for (La, Ce)B 6 with 0"072 a t .~  Ce (Felsch 1978). Even at 60 kOe the Kondo  effect is 
not suppressed completely: M(H)  still increases with H and does not reach the 
saturation value M=g'S~B = 0.71/~ B of the free ion. 

(c) Specific heat 
T h e  Kondo  anomaly in the specific heat is a broad peak. Thorough  experiments  

for various values of the magnetic field H~< 2 kOe performed by Bader et al. (1975) in 
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Impurity susceptibility per mole Ce, Z of (La, Ce)B 6 with 0"072 and 0"13 at.% Ce as a function 
of T 2 in the low-temperature region (after Felsch 1978). 

'T 

0 

o 
E 

CD 

2.5 x 103 

2 × 103 

1.5 × 103 

1 X l O  5 

0.5 x 103 

O.I 

Fig. 1.5 

I x . x s  x 

I x /  
t f (L"-~a' Co) AI2 / / 

1.5 at % Ce I / x  

- - -  I kOe / ,. 
oou 2 k0e / / / 
ooo 5k0e  /# /x o ~  
* * " tO  kOe / I l l  

I / t  _o.: / / i  o..~'<~ 
/~i ¢r D..u ..°" 

. . . . .  

. . . .  T ] t t I t I I 
0.2 0.5 1 2 5 10 20 50 100200 

H T-1/kOe K -1 

Magnetic moment per Ce impurity, Mi, of (La, Ce)A12 as a function of H~ T for different 
applied magnetic fields H. The dashed line is the free Ce 3 + ion paramagnetism (after 
Felsch et al. 1975). 

(La, Ce)A12 alloys of compos i t ion  0"64 at.% in  the logar i thmic  scale are shown in fig. 
1"8. These  curves cor respond  to the en t ropy  In 2. T h i s  shows u n a m b i g u o u s l y  that  
the Ce g r o u n d  state at T>> TK is indeed  a double t  in accord with the magne t ic  
suscept ib i l i ty  measuremen t s .  At  H <  2 kOe the supe rconduc t iv i ty  t rans i t ion  occurs 
at T ~ I K .  
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T h e  same as fig. 1.5 for (La, Ce)B 6 (after Felsch 1978). 

Fig. 1.7. 
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Magnet ic  momen t  per Ce impuri ty ,  M,  of (La, Ce)B 6 with 0'072 a t .~  Ce at T =  5 0 m K  as a 
function of the external magnetic field H (after Felsch 1978). 

(d) Resistivity 
The  m i n i m u m  tempera ture  dependence of the resistivity, which has been 

experimentally known for 40 years, is the most  easily verified evidence of the Kondo 
effect. Moreover,  as has been already mentioned,  a clear-cut logarithmic behaviour 
at T>> TK is experimental ly noticeable exclusively for the resistivity measurements .  
This  makes the resistivity measurements  a principal test for the presence of a local 
momen t  in the system. 
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Heat capacity per mole Ce of an (La, Ce)AI 2 alloy of composition 0"64at.~o Ce versus 
temperature in various magnetic fields up to 38 kOe. Curves (a)-(c) correspond to an 
entropy of a kBln2 ion, showing that Ce 3+ is Kramer's doublet. The zero field 
superconducting transition temperatures are indicated (after Bader et al. 1975). 

Resistivity and magnetoresistivity measurements on (La, Ce)A12 and (La, Ce)B 6 
were carried out by Winzer (1973, 1975), Felsch and Winzer (1973), Samwer and 
Winzer (1976). The results of Winzer (1973, 1975) are given in figs. 1.9-1.11. The 
clear logarithmic character of the impurity part of the resistivity of both systems at 
T>> T K is evident from figs. 1.10 and 1.11, where the electric resistivity is given in the 
logarithmic scale at two concentrations: 0"78 at.~o and 0"63 at.~o Ce in LaA12 and 
0"61 at.~o and 1-20 at.~o Ce in LaB 6. In fig. 1.12 the normalized resistivity is given as a 
function of T 2 for (La, Ce)B 6 (Winzer 1975). It can be seen from the figure that the 
T 2 dependence is fulfilled up to 0"15 K. For the concentration 1 at.~o the impur i ty-  
impurity interaction becomes notable. 

Samwer and Winzer (1976) measured the magnetoresistivity of (La, Ce)B 6 in the 
temperature range 0-04-20 K in magnetic fields up to 6 T. 

The zero field electric resistivity in a pure LaB 6 sample and in four (La, Ce)B 6 
alloys containing up to 2"9 at.~o Ce is given as a function of the temperature in fig. 
1.13. The alloyg show the Kondo minimum at about 20 K and a strong increase of the 
resistivity with a tendency of saturation below 0"1 K at a temperature decrease. 

For finite magnetic fields the resistivity is given as a function of the temperature 
in fig. 1.14. The  resistivity of the sample is reduced to about 0"12 of the zero field 
resistivity by a magnetic field of 6 T at low temperatures. In the presence of the 
magnetic field several features immediately become apparent. The Kondo effect is 
suppressed by the magnetic field and the resistivity curves flatten out with increasing 
field and a maximum is observed for B >~ 1"2 T. At low temperatures and in a constant 
field, the resistivity saturates at a temperature-independent value, being a function of 
the magnetic field only. A similar behaviour was found for an (La, Ce)A12 (Felsch 
and Winzer 1973) alloy with a concentration of Ce 0"63 at.~o (fig. 1.15). In fig. 1.16 
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Fig. 1.9 
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Electrical resistivity of an (La, Ce)A12 sample with 0-626 at.~o Ce versus temperature (after 
Winzer 1973). 
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Fig. 1.11 
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Normalized temperature-dependent part of the resistivity [p(T)-po]/[p(O)-Po] versus 
temperature of (La, Ce)B 6 (after Winzer 1975). 

Fig. 1.12 
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Normalized resistivity [p(T)--po]/[p(O)--po ] of (La Ce)B 6 as a function of T 2 in the low- 
temperature region (after Winzer 1975). 

the magnetoresistivity, divided by the Ce concentration, is shown as a function of the 
magnetic field at two different temperatures for (La, Ce)A12. The initial field 
dependence of Apm follows the H 2 law for H ~ 4 - 5 k O e  at T = 0 - 0 6 K  and 
for H~<22kOe at T = l ' 3 6 K .  At T = 0 " 0 6 K  Apm appears nearly saturated for 
H =  50 kOe. The  dependence of the impurity part of the resistivity on the magnetic 
field for (La, Ce)B 6 is shown in fig. 1.17. 

For a magnetic field decrease, as for a temperature decrease, the effective 
exchange interaction increases. This results in an increase of the resistivity which 
reaches its unitary limit at T---H= O. Thus,  the magnetic field breaks the Kondo 
state and enhances conductivity. 

(el Lattice pressure effects 
We have mentioned above that the La-based alloys are sensitive to the lattice 

pressure. Below we briefly discuss the recent experiments by Steglich et al. (1977) 
reflecting the effect of the 'chemical pressure' in the (La, Ce)A12 alloy. 
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Fig. 1.13 
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Electrical resistivity of LaB s and four (La, Ce)B 6 samples as a function of temperature  (after 
Samwer  and Winzer  1976). 
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Electrical resistivity of an (La, Ce)B 6 sample with 1"2 a t .~  Ce versus temperature  for various 
magnetic fields (after Samwer  and Winzer  1976). 
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Exact results in the theory of magnetic alloys 

Fig. 1.15 
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Electrical resistivity p of (La, Ce)A12 with 0-63at.~ Ce substitution for La, 
temperature T for various magnetic fields H (after Felsch and Winzer 1973). 
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Magnetic field dependence of the magnetoresistivity divided by the Ce substitution for La, 
Ap,,/c of (La, Ce)AI2 alloys at T =  0-06 K and T =  1'36 K. The lines of slope 2 show the 
initial variation of Apm/c with H 2 for both temperatures (after Winzer 1975). 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

hi
ca

go
 L

ib
ra

ry
] 

at
 1

8:
11

 1
8 

A
ug

us
t 2

01
5 



478 A . M .  Tsvelick and P. B. Wiegmann  

Fig. 1.17 
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Normalized spin-dependent part of the resistivity pm(B)/pm(O) of (La, Ce)B 6 versus norma- 
lized magnetic field B/B k. Bk= 1-1 T (after Samwer and Winzer 1976). 

The  resistivity of homogeneous [(La I -z, Yz)l-xCex]A12 alloys was measured.  In  
fig. 1.18 the resistivity of [(Lal_z, Yz)0,ssCe0,1s]A12 samples at z=O, 0"3, 0"5, 0"75 
and 1 is given as a function of tempera ture  on the logarithmic scale. 

The  resistivity m i n i m u m  shifts to higher temperatures  with the Y-concentrat ion 
increase displaying a marked enhancement  of the Kondo  tempera ture  caused by the 
contraction of the lattice. Whereas TK< 1 K for dilute (La, Ce)A12, TK reaches 

15 K for z = 0"5. The  Y-concentrat ion increase brings about a linear decrease of the 
lattice parameter  of the matrix and an increase of the energy of the atomic level ef. 
Thus  the effect may be at tr ibuted to the initial increase of the Kondo tempera ture  
with a decrease of ef and the subsequent  destruction of the local momen t  when Ef 
passes through the Fermi  level. When  ef passes through the Fermi  level the system 
passes into the mixed-valence regime which is characterized by an essentially non- 
integer occupation num ber  of the 4 f  shell. 

The  behaviour described is also well known for the (La l_z Thz) l -xCex alloys 
(Luengo et al. 1974) and for the LaCe and YCe alloys under  pressure (for a review see 
Maple 1976). 

(f) Kondo effect in superconductors 
We end this section with a mention of the striking manifestations of the Kondo 

effect in the superconducting state for the case when the superconduct ing transition 
temperature  of the matr ix  is Too>> TK. There  is a vast literature concerning the 
Kondo effect in superconductors  (for a review see Maple 1973, 1976). Below we shall 
deal only with the so-called ' re-ent rant '  superconductivi ty phenomenon  which was 
first observed by Riblet and Winzer (1971) for the (La, Ce)A12 system. The  condition 
Tc0>> T~ is satisfied in this system (To0 = 3"3 K) and it exhibits the ' re-entrant '  curve 
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Exact results in the theory of magnetic alloys 

Fig. 1.18 
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Resistivity as a function of temperature for several [(Lal_z, Yz)l_~Cex]Al 2 alloys with 
constant Ce concentration of 15 a/o, but with varying Y concentrations (after Steglich 
1977). 

Tc versus the Ce concentration, i.e. the 'phase boundary 'which  separates the normal  
metal  f rom the superconductor:  within a certain concentration range the super- 
conducting state exists only in the temperature  range Tc~ < T <  Tq and at T <  To2 the 
sample returns to the normal  state. Moreover,  in a narrow concentration range the 
alloy is again back in the superconduct ing state at T <  To3. T h e  results of the recent 
experiments  by Dreyer  et al. (1982) for (La, Y)Ce are given in fig. 1.19. 

We have not a imed at surveying the up- to-date  state of experiments  in the field of 
rare-earth alloys. Such a survey would not be appropriate  since the physics and 
chemistry of rare-earth alloys are fields of immense  activity and our understanding of 
lanthanide systems is far f rom complete.  We have given only certain data 
accumulated for the (La, Ce)B 6 and (La, Ce)A12 systems, which, on the one hand, 
can serve as a reliable test of theories, and, on the other, demonstrate  the many-body  
effects. More  detailed reviews on the Kondo effect with rare-earth ions have been 
given by Maple et al. (1978) and Steglich (1977). 

We believe that the models  for which solutions are derived below have to do with 
the substances and phenomena  discussed in this section. We shall refrain f rom a 
numerical  comparison of theoretical results with experimental  data and confine 
ourselves to the qualitative agreement  of theory and experiment.  
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480 A . M .  Tsvelick and P. B. Wiegmann  

Fig. 1.19 
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Superconducting normal phase boundaries of (La, Y)Ce between 15 and 25 at.~o Y (after 
Dreyer et  al .  1982). 

§2. BASIC MODELS 

The phenomenon associated with local moments in metals may roughly be 
classified as 

(i) one-body local effects, related to the structure of the impurity atomic she]] 
and crystalline surrounding, studied by various kinds of magnetic measure- 
ments, and 

(ii) many-body  effects due to the broad conduction band of a metal. Thermal  and 
transport  propert ies proved a very sensitive source of information on the 
many-body  effects. 

T h e  majority of theoretical investigations concerning dilute magnetic alloys have 
been devoted to many-body  effects and therefore are based on the most  simple 
models: s -d  exchange model  (Kondo model) or non-degenerate  Anderson model.  
The  impuri ty  is supposed to be pointlike and to possess only spin degrees of 
freedom. The  orbital nature of impurit ies (usually rare earth or transition element 
atoms), the non-spherici ty of the crystalline surrounding,  spin-orbi t  and nuclear 
spin effects, are normally ignored. This  makes the theory much  simpler, while 
retaining its basic features and all the important  difficulties. In fact, this simple 
theory has met  with some success in qualitative interpretation of the many-body  
effects. As to the quantitative merging of theory and exper iment  this theory, as noted 
in § 1, provides an appropriate  model for special classes of real alloys. 

There  have been many  at tempts to construct hamiltonians describing real 
impurit ies in real metals t ,  yet this work is far f rom being completed.  Of  many  papers 
on the subject there are very few good ones. Most  extensive t rea tment  was given by 

?The local density type calculations of Zeller and Diedrich (1971) give an interesting 
guide to the occurrence of magnetic moments but yield moments that persist at T=0.  

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

hi
ca

go
 L

ib
ra

ry
] 

at
 1

8:
11

 1
8 

A
ug

us
t 2

01
5 



Exact results in the theory of magnetic alloys 481 

Nozi~res and Blandin (1980), Coqblin and Schrieffer (1969) and Schrieffer (1967). 
We follow these authors in our presentation. 

Though  the detailed analysis of concrete alloys and applications of theoretical 
results to the experimental data is a matter for the future, one may single out a few 
generalized hamiltonians which may be regarded as a starting point on the pathway 
to real substances. 

2.1. The Anderson model 

2.1.1. The general form of the Anderson model 
The experimental evidence is that various impurities in different hosts display 

widely different behaviours. The  magnetic properties of the impurity depend both 
on the host matrix and on the presence of 3d(4f) elements. The behaviour of the 
impurity is basically affected by two interactions: atomic Coulomb and exchange 
forces in a free atom and the admixture of the wavefunctions with the conduction 
electron band of the host (Friede11958). The  development of the theory started with 
two questions: 'Under  what circumstances does a localized moment  exist in a metal?' 
and 'What  are the consequences of the interaction between a localized moment  and 
the conduction electrons? 

The Anderson model (Anderson 1961) can answer both these questions. To be 
definite, consider the impurity transition ion embedded into the metallic matrix. 
The  general form of the metal- impuri ty interaction is 

~'. l~jer@ j ~=l l dgimp(rj) 
a f  = ~'/g0 + Vimp(rj) + + x (Lj 'aj).  (2.1.1) 

j=l 2i . .. j= mcrj dr a 

Here J/~0 is a hamiltonian of electrons placed in the potential of the crystal lattice; 
m, I. and a, N are the mass, orbital moment,  spin and the number  of electrons, 
respectively; and Vimp(r ) is a potential of the impurity stripped of all the electrons of 
the outer shell. With good accuracy one may suppose Vimp(r ) to be spherically 
symmetric. The  third term in (2.1.1) is a Coulomb interaction, whilst the fourth term 
described the spin-orbit  coupling caused by the impurity potential. 

The  crucial observation in deriving the Anderson model is that the l = 2 levels of 
Vim p are very close to the Fermi surface, thus forming the narrow resonance. Its 
small width is due to the difference between the interatomic distance k F i and the 
Bohr radius r B of the d shell: kFr B << 1. This greatly simplifies the hamiltonian (2.1.1). 
Indeed, the wavefunction of electrons with near-to-Fermi-surface energy contains 
both localized and delocalized components. Hence, the eigenfunctions of (2.1.1) can 
be expanded using as a basis the orbital and band wavefunctions. For the latter it is 
convenient to choose a spherical wave with the centre at the impurity site. In the 
second quantization formalism one has 

~P+(r)= ~ ~,m(k, r)a~m~+ ~ ~d(r)d+a, (2.1.2) 
k<rTa 1 m,tr 
/ , m , ~  r 

+ is a creation operator for the spherical wave with the centre at the where aklra a 

impurity point: 

tPu,(k,t)=q(kr ) Y~m(r) .  (2.1.3) 

The  operator d~+~ corresponds to the localized components of the state with l=  2. 
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482 A . M .  Tsvelick and P. B. Wiegmann 

uda(r ) = Rlo(r/rB) Ylo~(r/r), (2.1.4) 

where l 0 = 2 and 3 for the transition and rare-earth impurities, m is a z-component  of 
the angular momentum:  m = - l o , . . . ,  10. 

The set of functions so chosen is not orthogonal. However, in view of greatly 
differing scales r B and k F a the corresponding overlap integral 

~= rlo(kr)Rlo(r/rB)r2dz (2.1.5) 
0 

is small and within this accuracy the non-orthogonali ty can be neglected. An 
estimation for the overlap ~ will be presented at the end of this section. 

When rewritten in terms of a +, a and d +, d the hamiltonian 

2/f=ftP'*(r)( 2/~°(r)+V~mp(r)+ lmcz- dV~ff~(r) L 'a)  tP(r)d3r 

+ [ t P * ( r ) ~ + ( r ' ) ~  W(r')tP(r)d3rd3z ' 
./ I r - - r l  

contains a rather large number  of terms. Let us discuss them in due turn. 
(i) Start with terms containing only a and a +. Put together they form the 

hamiltonian of the host metal. We neglect the many particle corrections to the band 
spectrum. Usually this approximation is good enough for a description of the 
conduction band. We also assume that the spectrum of electrons near the Fermi 
surface is spherically symmetric. Note that the energy of the conduction electrons is 
diagonal in the spherical-wave representation if the impurity point is chosen for the 
centre. 

3¢f0 = ~ e(k)ak+tm~aklm~. (2.1.6) 
k,l,m~a 

(ii) The terms with only d operators represent the hamiltonian of a 3 d(4f) ion in a 
crystal field: 

~ a t o m =  E ~mm'd+adm'a-[- E Vm~31;;,~d~,~ld+.,2~2d . . . .  dm4a4--ALd'Sd" ( 2 . 1 . 7 )  
m,m',a mi,ai 

Here 

em,,, = ~mm, f I RZo(r/rB)( rimp(r) + lo(lo + l )/2mr 2) 

1 Rzo(r/rB)~r 2 (rRlo(r/rB)) r2dr+(crystal field) 2mr 

is the one-electron atomic energy (measured from the Fermi energy which we choose 
as the origin). The second term in (2.1.7) is the non-relativistic part of interaction 
between d(f) electrons. It is invariant under rotations in both real and spin space and 
therefore matrix F obeys the following constraints: 

m I + m 2 = m  3 -I- rrt 4 

0" 1 -[-0" 2 =0":3 @0-4.. 
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Exact results in the theory of magnetic alloys 483 

Thus  matrix F is described by l +  1 Slater coefficients'~. The last term in (2.1.7) 
represents the spin-orbit  coupling: 

I'd= Z d~.lmm,d,.,~ 
m, m', cr 

is the angular momentum of d ( f )  shell and 

m~ if, ty" 

is a total spin of the d ( f )  shell. 

+ 
drna6 ,a,dma, 

(iii) The one-electron mixing interaction is the part of 3ff 0 which is off-diagonal 
in the number  of 3d(4f) electrons 

where 

~ m i x  ~ Z . , l o m  + ~tm" (aglm" *dma + h.c.), (2.1.8) 
l ,m ,  rn',~7 

Zm' (k) = rl(hr) Y ~ '  (~0(r)  + Vimp(r))Rlo(r/rB) Ylom d r. 

One can always neglect the crystal field and spin-orbit  effects while evaluating the 
hybridization matrix element. Therefore, one can retain in (2.1.8) only terms 
invariant under rotation in the coordinate space. Spherical symmetry implies that 
this interaction can involve only conduction electrons in the partial wave l=  l 0 and 
requires it to have the following form, which conserves the angular momentum as 
well as spin (Schrieffer 1967): 

~ m i x =  2 'Uk(a~llo m a d m a  + h ' c ' )  
k,m,a 

lore __ 
V i m ,  - -  Vk~ l lo (~mra , .  

(iv) Finally, there are terms containing both d and a operators: 

(1) a+d+ ad, 

(2) a+ a+dd, d+d+ aa, 

(3) a t a+ad, d+d+da. 

In the following we neglect all these terms. Term (1) describes the contact 
exchange coupling. Usually the sign of this coupling is ferromagnetic and it 
competes with virtual-mixing coupling. For 3d impurities strong Kondo effect 
suggests that the virtual-mixing mechanism is dominant. For 4 f  ions we must 
distinguish between normal ions and ions near a valence instability. It is well known 

t Until recent Nozifires and Blandin (1980) and Mihaly and Zawadowski (1978) papers 
appeared it was customary to use without much ado a truncated F-matrix which contained 
only two interaction parameters, a 'Coulomb energy' U and an 'exchange energy' I: 

I/4)d d d d Ia a d d d~, d,,~ (U/2 + + • + + - -  mo m'a'  m'a '  ma - -  at a'~' ma m'~'  "r' 

(see, for example, Grfiner and Zawadowski 1974). 
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484 A . M .  Tsvelick and P. B. Wiegmann 

that such instabilities occur often for Ce, Srn, Eu, Trn  and Yb (see, for example, 
Varma 1976). The  fact that no Kondo  effect is observed for other 4 f  ions can be 
explained by the ferromagnetic sign of the dominant  contact exchange contribution. 
As a 4 f  ion approaches a valence instability, the vir tual-mixing coupling becomes 
large by virtue of a small energy denominator .  As we are only interested in alloys 
exhibiting the Kondo effect we can neglect the contact exchange coupling. 

Usually the states with (nao q- 2) (corresponding to two additional orbital electrons 
or holes) lie sufficiently high and the processes described by (2) may only be virtual 
and result in renorrnalization of the Coulomb interaction. 

Finally, te rm (3) gives only trivial renormalization of vir tual-mixing coupling 
(Hirst  1978). 

Thus ,  in the spirit of Fermi- l iquid theory, the behaviour of a magnetic impur i ty  
in a metal  may be described by the serniphenornenological Anderson hamiltonian: 

L0 1 
vk(akm~ dm,+ dm~akm,) + J~C~atom, (2.1.9) 

k,a=T,l  m = - l o  k,m,G 

where 3(fatom is given by (2.1.7). Here  we write only conduction electrons in partial 
waves with l = l 0: 

aklom a ~ a k m  a. 

The  essence of (2.1.9) is that it describes the one-dimensional  system. All 
quantities entering (2.1.9) depend only on the modulus  of k: ]k]=k. This  one- 
dimensionality follows f rom the hypothesis about a spherical Fermi  surface and 
impuri ty- ion potential. Obviously, one-dirnensionality is held only until one can 
consider impurities as independent  scatterers. 

Now let us estimate the quanti ty ~ (2.1.5). The  magni tude of ~ for 3d and Ce 
impurities and other 4 f  impurities is quite different. For  4 f  impurit ies it is well 
known (see, for example,  Varrna 1976) that pv2,-~0"02eV. Compar ing  the ex- 
pressions for v (2.1.8) and a (2.1.5) one obtains the estimate v ~ ae F and p(EF)V 2 ~ a2e v. 
Taking E F ~ 5 eV we obtain a4f ~ 0"05. Analogous estimation for Ce and 3d impurit ies 
gives pv2~0"2eV and ~3d,-~0"2t (Croft et al. 1981, Allen et al. 1981, Myers  et al. 
1968). 

2.1.2. The hierarchy of energies in the Anderson model 
Most  interesting cases correspond to distinct energy scales of parameters  of the 

Anderson model (2.13). This  circumstance leads to great simplifications. 
Let  us first discuss the energy scales of atomic harniltonian (2.1.9), ignoring the 

hybridization term. 

Let  n(a °) be the occupation number  in the ground state of ~t°atomic , [n~ °)) being the 
subspace of atomic states with that occupation number .  T h e  hybridization te rm in 
(2.13) couples ]n(a °)) to the subspaces In(a°)+ 1) with occupation numbers  n~°)__ 1. 
Since the conduction band acts as a reservoir, one-electron energies corresponding 
to transitions f rom [n~a °)) to In(a°)+ 1) should be measured f rom the Fermi  level. 
Typical  ionization energy for 3d and Ce ions is ~ 2-3 eV (see Allen et al. 1981, Croft  
et al. 1981, Myers  et al. 1968). Conversely, in some 4 f  compounds,  one of these 

"~We do not compute a straightforwardly from (2.1.5), since, strictly speaking, the 
function Rio is not purely atomic. 
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Exact results in the theory of magnetic alloys 485 

ionization energies may be sufficiently small, while the other is large (for a review see 
Varma 1976). 

Within a given valency subspace, the various terms are split according to H u n d ' s  
rule. T h e  ground state of ~atom is obtained by first maximizing the total spin S, and 
then the total orbital m o m e n t u m  L. Typical  splitting may be of the order of 1 eV. 

I t  is possible that H u n d ' s  ground state is an orbital singlet L = 0 and there is no 
further splitting. This  situation takes place for Mn(n(d °)= 5). The  influence of the 
crystal field is very small ( ~  0"1 K) and spin-orbi t  coupling is negligible. 

I f  H u n d ' s  ground state has non-zero orbital m o m e n t u m  L ¢ 0, then one should 
consider the crystal electric field (CEF) and spin-orbi t  splitting. 

For  3d impurit ies the next step after the H u n d ' s  splitting is CEF-sp l i t t i ng - -  
typically a fraction of an eV% An orbital mult iplet  (L ¢ 0) will split into irreducible 
representations of the impuri ty  point group. The  resulting lowest component  may 
itself be either orbital singlet or multiplet.  I f  the ground state is multiplet,  it will 
eventually be split by the spin-orbi t  coupling. 

For  the rare-earth impur i ty  the order of spin-orbi t  coupling is 0"2 0"3 eV and the 
crystal field energy is ,~ 100 K. Thus ,  the spin-orbi t  splitting occurs first, the (LS) 
mult iplet  is split into states of different total angular m o m e n t u m  J, and then every 
mult iplet  with given J is split by the crystal field. 

In  transition impurit ies all the above-ment ioned energies exceed the possible 
tempera ture  interval. Therefore ,  one should consider in hamiltonian (2.1.9) only 
virtual transitions between the ground state of mult iplet  [n(a °)) and the states of 
multiplets [n{°)± 1). The  typical energy differences corresponding to these tran- 
sitions are denoted as E + .  

The  hybridization mixes the states with different occupation numbers  and may 
break the localized moment .  Resonances with adjacent occupation numbers  acquire 
the width F ~ 1rp(er)v 2. The  real processes with change of occupation number  can be 
neglected provided that  

F 
- - ( < 1 .  (2.1.10) 
E_+ 

Hence, at temperatures  exceeding the Kondo  tempera ture  one may speak about the 
local momen t  state with the magnetic  moment ,  calculated according to Hund ' s  rule 
and crystal field. General ly speaking, in the majori ty of transition ions the inequality 
(2.1.10) is not strong. For  example,  for the A u M n  alloys the corresponding 
ampli tudes are estimated as F ~ 0"5 eV, E+, E_ ~ 2"5 eV. 

For rare-earth alloys the situation may be simplified further. In most  of the rare 
earths the 4f-electron level lies so deep under  the Fermi  level that many-body  effects 
do not play any role and the simple ionic model  holds. Conversely, in Sm, T m  and 
Yb alloys one of the ionization energies may be extremely small (~< 0"1 eV). As this 
energy is much  smaller than all the splittings (except crystal field) the impuri ty  
behaviour is determined only by transitions between the ground state of [n(a °)) 
multiplet split by C E F  and the ground state of one of either [nta °) + 1) or ]n~ ° ) -  1) 
multiplets. In  Sm, Yb and T m  alloys this corresponds to the transitions 
4f  s 6Hs/2+~--4f6 7Fo; 4f  la 2FT/2~4f14 1S o and 4 f  12 aH6~+~-4f13 2F7/2, respectively. 

~f Unfortunately, the ground states of 3d ions dissolved in simple metals are poorly 
investigated. 
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486 A . M .  Tsvelick and P. B. Wiegmann 

T h e  energy gap between these terms (we denote it ~f) is sensitive to pressure and may 
vary in a wide interval. Depending on whether  condition (2.2.1) holds or not the 
system may be either in the local m om en t  regime or in the mixed-valence state. As a 
rule the Sm and Yb compounds  show mixed-valence behaviour (for a review, see 
Varma 1976 and Khomski  1979); however in the dilute (La, Sm)Sn 3 alloy, the Sm 3 + 
ion has a well-established magnetic momen t  and Kondo effect was observed 
(Bakanowski et al. 1977. The  AuYb and MgYb alloys are also excellent examples of 
the Kondo effect (Baberschke and Tsang  1980, Floquet 1978, Tselfes et al. 1980). 

In Sm and Yb alloys the hybridization mixes a magnetic state with a non- 
magnetic one, thus breaking the magnetic momen t  in the mixed-valence state. 
Conversely, in T m  alloys the transition takes place between the magnetic configur- 
ations. In  this interesting case the Kondo  effect is present  alongside the mixed-  
valence state (Berger et al. 1979). 

The  next interesting objects are Ce alloys. They  occupy a place intermediate 
between the transition alloys and the rare-earth alloys with Sm, T m  and Yb. The  
recent experiments  on Ce compounds  have found the sufficiently high one-electron 
energy level corresponding to the transition 4 f  1 2Fs/2~-4f° 1S 0 with large width F. 
For  example, in CeA12 one finds gf-~ -2"5  eV, F-~0"55 eV (Croft et al. 1981, Allen 
et al. 1981). On the other side the ground state of the Ce 3+ ion is formed by sp in-  
orbit  coupling and C E F  which have the same order of magni tude as in the other rare 
earths. According to recent measurements  of susceptibility )~(T) for CeA12, 
per formed up to 1000 K, ){(T) can be fitted well by the J = 5/2 and 7/2 terms of Ce a + 
with multiplet  separation of 2500_  500 K. In  dilute alloy (La, Ce)A12 the cubic 
crystal field splits the te rm 2F5/2 into the doublet  F 7 and quartet  Fs, which is further 
split due to the Jan-Te l le r  effect. The  magnitudes of corresponding splittings are of 
the order of 1 0 0 K  (Loewenhaupt  et al. 1979). 

In the above discussion the hyperfine coupling of the localized impuri ty  momen t  
with the nuclear spin has been neglected. T h e  energy of the hyperfine coupling is of 
the order of 100 m K .  I t  may only be essential for alloys with low Kondo temperature,  
for example, for AuYb alloys (for references see Floquet  1978). 

2.1.3. The Anderson model for  the rare-earth alloys 
In rare-earth alloys showing the valence instability, the energies E+ and F have 

different orders of magnitude.  As we ment ioned in the previous subsection, only 
mixing between the ground states of the In(f )) mult iplet  and one of the [ntf)-t - 1) 
multiplets is essential. In Ce, Sm and Yb ions one of these states is non-magnetic .  We 
denote this state by 10). Due  to the strong spin-orbi tal  coupling, the magnetic state is 
characterized by the value of total angular m o m e n t u m  J and its projection j. The  
hybridization operator conserves the total angular momen tum.  Therefore  it is 
convenient to expand the plane electronic wave using the eigenfunctions of the total 
angular m o m e n t u m  operator (Coqblin and Schrieffer 1969): 

l 1/2 
+ j - 1 / 2  1/2 

J__j) akl,j+ 1 / 2 ,  - 1 / 2  

_J.)akl, j-1/2,1/2}, 
where the brackets are corresponding C lebsch-Gordon  coefficients. 

(2.1.11) 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

hi
ca

go
 L

ib
ra

ry
] 

at
 1

8:
11

 1
8 

A
ug

us
t 2

01
5 



Exact results in the theory of magnetic alloys 487 

As far as the state ]0) is non-magnet ic  (J = 0), the matrix element of hybridization 

(ajlJCmix[O) = v ( j )  

is diagonal with respect to J and j. 
Let us define the operators X0j, X j0 changing the configuration of the impurity 

shell as follows: 

IO) = X @ j )  1 (2.1.12) 

I J )  =Xj0[0).  ] 
T h e  other matrix elements of these operators are set to zero. These  X operators 
satisfy the following parastatistics (Hubbard  1965): 

X j kX vq  = (~kpX jq (2.1.13) 

• ~ t f l  and have matrix representation Xjk = 6~kapj. In terms of X the Anderson hamiltonian 

takes the form: 

J 

~A= ~ e(k)ahaki+ Z Z v(lJl)(ahXoj+ Xjoakj) 
k, j  k j = - J  

J 
+ ~ efXjj+(crystal field). (2.1.14) 

j = - J  
+ 

Hereafter  we omit  the subscript  J in akJj, akj j. Now the total interaction of electrons 
in t h e f  shell is hidden in the X-opera tor  algebra (2.1.13). 

A further simplification takes place for Ce and Yb ions. In Ce 4+ or Yb 2 + ions the 
state [0) corresponds to either the empty  or full shell, respectively. In  these states the 
impuri ty  potential is spherically symmetr ic .  Therefore ,  the hybridization matrix 
element does not depend on the m o m e n t u m  project ionj .  There  is no simplification 
of this kind for Sm ions where the state [ 0 ) -  7F 0 has non-zero orbital m o m e n t u m  
and spin. In  this state, obviously, the impuri ty  potential is not spherically 

symmetric .  
Finally, in Z m  ions the states with non-zero total angular m o m e n t u m  are mixed. 

This  results in the very complex dependence of hybridization amplitudes on initial 
and finite states of the impuri ty  shell and the Anderson hamiltonian cannot be 
writ ten down in such a simple form as (2.1.14). 

T h e  crystal field splits the f -e lect ron level. T h e  crystal field effects are essential in 
mixed-valence state if the magni tude of CEF-spl i t t ing is of the order of the effective 
resonance width (2J + 1)~Zp(eF)V 2 (Barabanov and Tsvelick 1979). Usually the latter 
is much  larger than the crystal field. Thus  CEF-effects  seem to be negligible in the 
mixed-valence region, so that the degeneracy of the f -e lect ron level is essential. In  § 9 
we present the exact solution of the degenerate Anderson model (eqn. (2.2.4)) for Ce 
and Yb impurities. 

2.2. Exchange hamiltonians 

2.2.1. The general form of the exchange hamiltonians 
When we study processes in which the variation of n d is virtual, an exchange 

hamiltonian emerges as a result of projecting the Anderson hamiltonian into a sector 
with a fixed number  of particles n(a °) (Anderson and Clogston 1962, de Gennes 1962, 
Kondo 1962, Schrieffer and Wolf  1966). 
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488 A . M .  Tsvelick and P. B. Wiegmann 

In second-order  per turbat ion theory in v k the effective exchange hamiltonian in 
the most  general form can be writ ten as 

m o 
Jtaex--Jgaatom"[- E Zma, m' a'( k'  t + k )ak,,,ak,,,,,,. (2.2.1) 

k,k' 

Here  0 - d/g'atom is the projection of Jtaatom on to the subspace with a given rid, and matr ix  T 
in the same subspace is writ ten as 

T = VkVk" ( d l + + ek _ ~,aatom ) dm, a, --dmaf.k,__ ~atom din, a, . (2.2.2) 

These  formulae express virtual transitions f rom a sector with n d = n~ °) to a sector with 
n~ °) _ 1, and vice versa. In the process of such transition the m o m e n t u m ,  projection of 
angular m o m e n t u m  and spin of the electronic partial wave (k', m', a') change to 
(k, m, a). 

As the energy splitting of the ionic shell is very large, Jta °to m should be considered 
as the projection operator on the ground state of the impuri ty  atom. Apart  f rom some 
special cases the exchange operator T projected on to this subspace has a rather 
complex structure. 

Until  the spin-orbi t  coupling may be neglected, the form of the exchange 
hamiltonian is restricted only by invariance under  rotations in the spin and 
coordinate spaces and may be writ ten thus: 

1,min (l,L) 
°//aex ---- Z P q + Ivq(Sa~,  ) (LI.+,,,) akm~ak,m,,~, , (2.2.3) 

p,q=O 

where 6 = (a x, a y, a z) are the Pauli matrices, and l is the operator of orbital angular 
m o m e n t u m  of the electronic partial wave that interacts with the impuri ty.  

T o  this hamiltonian we must  add the spin-orbi t  coupling and the crystal field. 
For rare-earth impurit ies the large spin-orbi t  coupling immediately projects the 
hamiltonian (2.2.2) on to the state of the shell with total angular m o m e n t u m  J, which 
is L + S for @0)> 7 and ] L - S ]  for n~ °) ~< 7. In this case the general form of the 
exchange hamiltonian is 

1, min(l, J) + 1 
~'~ex = ~ Ipq(Ja,~,r')P( J q + Imm,) akm~ak,m,~,. (2.2.4) 

p,q=O 

Fur ther  splitting of the mult iplet  is caused by the crystal field. 
The  quantities Ipq in eqns. (2.2.3) and (2.2.4) are the ampli tudes of the exchange 

interaction. To  estimate their values we neglect the energy splitting within one 
valence in comparison with the energies E+ (that estimate is good enough for 
transition and Ce ions). T h e n  the energy denominators  in (2.2.2) do not depend on 
(m, 6) and (m', or'), and matrix T contains only one parameter:  

where 

f v  ~m"'6aa" +Ikk,)d+,~dm,a,, 

ikk,= VkVk, (ek~R+ + 1 

(2.2.5) 
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Exact results in the theory of magnetic alloys 489 

This  formula provides for the upper  estimate of Ipq. I t  is important  that lkk, never 
changes sign and corresponds to antiferromagnetic interaction. Although 
p(CF)lpq<< l ,  in view of the resonance nature of the superexchange it considerably 
exceeds the contact exchange coupling, which is caused by the Coulomb interaction 
of orbital and band electrons, and usually has a sign corresponding to ferromagnetic 
interaction. 

T h e  hamiltonian (2.2.3) and (2.2.4) may  be assumed to be the first terms in a 
series expansion in v 2, which can be obtained f rom (2.1.9) as a result of a canonical 
Schrieffer-Wolf  t ransformation (Schrieffer and Wolf  1966). Higher-order  terms are 
small if 

(n(d °) (2l+ 1)--n(a °) 
P(~)v~ \Z-_ + ~++ / << 1. (2.2.6) 

2.2.2. Two simple exchange hamiltonians 
We shall consider below two simple cases, important  f rom a practical standpoint.  

(i) Impurities with orbital singlet local shell. I f  the atomic shell of the impuri ty  ion 
is half-filled, Hund ' s  rule states that the ion ground state is an orbital singlet with 
spin S = l + 1/2. This  is the case with Mn, which has n(f ) = 5 and whose d shell has the 
configuration 6Ss/2. Here  scattering involves only exchange of spins, while the 
projection of the orbital angular m o m e n t u m  of the electronic wave remains 
unchanged. As a result the exchange hamiltonian simplifies considerably. If, in the 
general formula (2.2.3), we put  L = 0  (Schrieffer 1967) we have 

m~=l a~m'~ak'm'7' 1 ~t°.x = ,,~ (V~,,+ISa~,) 
k,k' 

(2.2.7) 

Since the ground state of the ion is spherically symmetric ,  the influence of the 
crystal field is negligible. I t  manifests itself in the exchange hamiltonian only in 
virtual states with n d = n(f )-4-1, which leads to a weak dependence of I on m. 

An orbital singlet may also appear as the result of the combined action of the 
H u n d  rule and the crystal field. This  is the case with impurit ies of vanadium (n~ °) = 3) 
and cobalt (n~f) = 8) in a cubic crystal field (Nozi~res and Blandin 1980). In  this field 
the five orbital states split into a doublet  (E) and a triplet (T), with the triplet lying 
below the doublet  on the energy scale. Then  at n(a °) = 3 the triplet is half-filled and, 
according to H u n d ' s  rule, an orbital singlet state with spin S = 3 / 2  forms. The  
situation is similar for n~ °) = 8 - - the  triplet is filled completely but  the doublet  is half- 
filled; for this reason L = 0 again, but  S = 1. In these cases the exchange hamiltonian 
again has the form (2.2.7). T h e  plane wave corresponding to the conduction 
electrons mus t  be expanded according to the irreducible representations of the cubic 
symmet ry  point group. The  splitting of atomic levels leads to a situation in which the 
electrons belonging to the doublet  and triplet are scattered by the impuri ty  with 
markedly different amplitudes, e.g. for n~ °)= 3 we have IT>>IE, and the discrepancy 
is greater the higher the strength of the crystal field. 

In studying the renormalization group equations for such a doubly-charged 
model, Nozi~res and Blandin (1980) demonstrated that the ampli tude IE, being bare 
(and therefore small), vanishes completely as the energy decreases. Hence, ignoring 
Ie we return to the hamiltonian (2.2.7) but  with spin S =  3/2 and three values of m 
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490 A . M .  Tsvelick and P. B. Wiegmann 

(n = 3). The case n~ ° ' =  8 is described by the same hamiltonian but with N=  1 and 
n z 2 .  

In previous examples the multiplicity of the impurity appears to be equal to that 
of conduction electrons. This property results in the total compensation of the 
impurity magnetic moment  at low temperatures, so that the impurity ground state is 
orbital and spin singlet. 

At the end of this topic we argue that for alloys with extremely low Kondo 
temperatures the hyperfine coupling is essential and the case n ¢ 2S may be realized. 
The case will be studied below (§§ 5.1 and 6.1) using the exact solution. In this case 
the effective coupling increases with decreasing energy scale, however, the impurity 
ground state is still magnetic with effective spin S - 1 / 2 .  

A very interesting case is that with n > 2S. According to the Nozi~res and Blandin 
(1980) point of view, as well as the numerical study by Cragg and Lloyd (1979), the 
scaling trajectory has a fixed point at finite I = I e. It means that all physical quantities 
have power temperature dependence. 

(ii) Degenerate exchange model. (Impurities with one electron or hole in the local 
shell.) Another simple and important hamiltonian comes into play when there is 
either an electron or a hole in the d o r f  shell. Hund ' s  rule does not work any more in 
this case. Such impurities would be found at the beginning and at the end of a 
transition series, and are Ce and Yb among the rare earths. All other magnetic 
impurities apparently have more than one electron (or hole) in the shell. Unfortu-  
nately, none of the transition metals mentioned so far have been found to be magnetic 
in high dilution (see, for example, the experiments with CuNi alloys (Drew and 
Doezema 1972)). They  become magnetic only at high concentrations. The  only 
impurities in the one-electron (hole) class which show magnetic moments in dilute 
alloys are Ce and Yb. 

Go back to the Anderson hamiltonian in form (2.1.14). After the Schrieffer-Wolf 
transformation the exchange operator takes the form (Coqblin and Schrieffer 1969): 

T j j ,  = V 2 X j o [ ( ( . k  - -  g.f) -[.- E]~,aXoj, 

and according to the algebra (2.1.13) we obtain 

9f  = ~ ekakjakj+ Z + + Iakj Xj,jak,j, + ~ Ej~, Xjj,, 
k , j  j , j"  j , j '  

k,k'  

(2.2.8) 

where Ejj, is the crystal field splitting. 
Often, even in the presence of a crystal field, we can assume that Ijj, is isotropic 

since, as a rule, - Q > > m a x  Ejj,. Then we have 

r 2 
I =  - -  (2.2.9) 

E k - -  ( i f  

and only the last term in (2.2.8) describes the effect of the crystal field. 
At E#, = 0 the hamiltonian (2.2.8) is invariant under transformations of the SU(n) 

group, where n = 2 J +  1. In these conditions we shall speak of an n-fold degenerate 
model. 
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Exact results in the theory of magnetic alloys 491 

The Kondo temperature in such a model depends strongly on the value of n 
(Coqblin and Sehrieffer 1969): 

T K ~ e v exp (-- 1/I,). (2.2.10) 

In alloys with rare-earth impurities the crystal field is comparable to the possible 
temperature interval. Hence, as the temperature rises, more and more degrees of 
freedom may take part in the scattering processes. On the other ~aand, an increase in n 
leads, according to (2.2.10), to an increase in TK, and we may once more have the 
Kondo effect. The region of T ~  T z is well delayed in this case. The possibility of 
such a 'sequence'  of Kondo effects was pointed out by Cornut and Coqblin (1972). 
Indeed, suppose that the crystal field splits the multiplet into no, n 1 , . . .  multiplets 
with energies 0, E l , . . . .  At T<<E 1 the particular alloy is described by the n0-fold 
degenerate model (2.2.8) with a Kondo temperature Tz(n0) given by (2.2.10). Let  us 
assume that TK(no)<< E 1 . Then  the system, after reaching the weak-coupling regime 
at T<< TK(no) with a further increase in temperature reaches the region where T>>E1 
and is again in the strong coupling regime; but now its effective multiplicity is 
n 1 + n  0. As a result TK(n o +hi) may prove to be higher than E a . This process repeats 
as the temperature increases. If  n o = 2, then the traditional s-d exchange model with 
spin S = 1 / 2  (1.1.1) is realized at T<<E 1. This situation is typical for rare-earth 
magnetic alloys. The  Kondo temperature for Ce alloys is found to be of the order of 
one degree. For YbAu and YbMg it is even smaller. The two characteristic examples 
of Ce alloys exhibiting clear Kondo effect have been discussed in § 1.2. 

The exact solution of the degenerate model is expounded in §§4.4 and 7. 

2.2.3. Influence of the hyperfine coupling 
The model with n-¢ 2S does not seem to be only academic. One must look for 

such impurities among the isotopes of heavy metals having a sizeable hyperfine 
coupling of the localized moment  with their nuclear spin: 

Jit~hf = BI :  $, 

where I is nuclear spin. 
At low temperature T<< IBI the local moment is strongly coupled to the nuclear 

spin. If the hyperfine coupling is such that a well-isolated ground state F = I + S can 
be defined, the hamiltonian (2.2.7) can be reduced to 

~'°in t = S ~ O" n" F. 
n 

If  the exchange coupling changes its spin, the Kondo effect disappears. This is 
the case with the antiferromagnetic spin nuclear coupling when S < J  (Benoit and 
Floquet 1976). In the opposite case we arrive at the hamiltonian (2.2.7) in which the 
electron multiplicity n is determined by the structure of the shell, whilst the 
magnitude of S is determined by properties of the nucleus. For the Kondo effect to 
persist under the strong hyperfine interaction the Kondo temperature must be lower 
than the splitting between states with different F: T• << IB]. Influence of the hyperfine 
coupling may be substantial in alloys with Mn such as, for instance, 54Mn, in which 
o,¢=3; S = 5 / 2  and the relative splitting between successive levels for different F 
change from 10 to 35 m K  (for a review, see Floquet 1978). In AuMn and CuMn this 
splitting is comparable owith T~:, though at such a low T~: the impuri ty- impuri ty  
interaction might prove important (Hirshkoff et al. 1971). 
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492 A . M .  Tsvelick and P. B. Wiegmann  

A nice example of the Kondo effect under  the strong hyperfine coupling ]B] >> T K 
is provided by AuYb alloys. T h e  element Yb has a number  of radioisotopes, some of 
which (for instance 174yb) lack a nuclear moment .  The  ground state of the Yb 
impurities dissolved in gold is the F 7 crystal field doublet  which can effectively be 
described as a spin ½ system with g =  10/7 appropriate  for the F 7 ground state. The  
isotopes 173yb and 171yb have nuclear moments  of opposite sign. For 171yb 
B = 1 2 8 m K  and J = l / 2 ,  while for 173yb B = 3 5 m K  and J = 5 / 2 .  

Fur thermore ,  for the 171yb isotope the conditions for electron-nuclear  singlet 
coupling hold, whereas the a73yb electron-nuclear  ground state is an F = 3  
multiplet.  In  the latter case at temperatures  well below the energy splitting between 
the electron-nuclear  ground state F =  3-and the first excited level, which is equal to 
105 m K ,  the Au173yb alloy mus t  be described by hamiltonian (2.2.7) with S =  3. 
The  measurements  of conductivity of Au~74yb and AuX71yb alloys give perfect 
evidence for the role of hyperfine coupling (see, for example,  Floquet 1978). 

The  isotope 174yb with J = 0, dissolved in Au, shows a perfect Kondo behaviour. 
Au 171yb alloy shows the Kondo effect tendency. However,  in the ~ 100 m K  range 
the nuclear and electron shell spins couple and form a singlet, the Kondo  effect 
disappears and below 90 inK the impuri ty  resistance decreases (see fig. 2.1). 
Regretfully, we know of no similar experiments  with a 173yb isotope. 

p-p (4.2K) 
[ n ~ , e m  ] 

1.5 

10 

0.5 

0 
10 

Fig. 2.1 

~ Au 1;1 Yb 

o A u f l 4gb  

I g° \ 

, ,  

50 100 500 1000 5000 

T ( inK)  

The resistivity of Aul71yb and AulV4yb alloys (Hebral et al. 1976) versus log T. The 174yb 
without hyperfine interaction shows up a Kondo behaviour. Increase in resistivity stops 
near 90 K for Au171yb, where the singlet electron-nuclear state becomes isolated from 
the triplet excited level (see ref. in Floquet 1978). 

2.2.4. Perturbation theory 

Just as in the case of the non-degenerate  s-d  exchange model (I),  at low energies 
per turbat ion- theory series in the strength of the exchange interaction leads to 
logarithmic singularities. The  Kondo temperature  is the characteristic that divides 
the regions of weak and strong coupling. I f  the physically possible tempera ture  
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Exact  results in the theory of magnetic alloys 493 

interval is commensurable with the size of the level splitting in the d (or f )  shell (since 
the latter cannot be considered infinite and, therefore, it is impossible to take only the 
ground state of the atom), there will be other characteristic parameters in the system 
besides TK. Practically, this is the case only for rare-earth impurities. Now we shall 
assume, although this is not always true, that there is a temperature region between 
two energy levels of the ion, E~<< T<< E~+ 1, so that inside this region we can ignore all 
transitions to levels higher than E~+ 1 and assume all levels below E~ degenerate. 
Then  in the system there is only one energy scale, E~<< T~c<< E~+ 1, and scaling can be 
employed. 

The condition for renormalization implies that as the ultraviolet cut-off D, equal 
in this case to E~+ 1, changes, accompanied by a respective variation in the coupling 
constants Ipq, physical quantities are multiplied by a constant that is not a function of 
the energy variables e (external frequency, temperature or magnetic field strength). 
This means that any physical quantity, as a function of, say, temperature, is 
expressed as 

Q( T, I, D) = (Q(D, I ) ( (  T/ TK). (2.2.11 ) 

If  we assume, for simplicity, that there is only one interaction amplitude I in the 
system, then mathematically the renormalization condition (2.2.11) can be expressed 
in the following manner. 

Suppose that z is a function of I, D and e that is invariant under transformations 
of the renormalization group and chosen by convenience. Then  another invariant 
quantity, ((e/TK) , is a function of the invariant  charge z: 

dln~ d l n Q  

d i n e  d l n e  
-qJ(z) .  (2.2.12) 

As for z it can be defined as the solution to 

dz 
d In e - fl(z), (2.2.13) 

where ~(z),  fl(z) are some functions. 
To  build a perturbation theory it is expedient to select z in such a way that at e = D 

it coincides with the bare interaction amplitude at I<< 1: 

z o =- z (D)  = I +  O(IZ). (2.2.14) 

Then, knowing the terms in the perturbation theory series for z(e) and Q(e), we can 
easily find the expansions of fl(z) and ~(z)  in powers of z. Suppose that 

z ( e ) = I + c I 2 + d I 3 + a I 2 1 n ( e / D ) - a 2 1 3 1 n 2 ( e / D ) + . . . + b I 3 1 n ( e / D ) +  . . . .  (2.2.15) 

Then  if we find the derivative of (2.2.15) with respect to In (e/D) and put e = D ,  
according to (2.2.14) we have 

fl(z) = az  2 + bz 3 + O(z  4). (2.2.16) 
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494 A . M .  Tsvelick and P. B. Wiegmann 

Equation (2.2.13) defining the invariant charge z can be rewritten thus: 

ql(z) = In (g/TK) 
with 

(2.2.17) 

¢ ( z ) =  f z  dz' _ 1 b 
In lzl +~ + O(z), (2.2.18) 

J /~(Z') az a 2 

where ~ = const and the Kondo temperature defined as 

T K = D exp [¢5(I)] = const DI b/a2 exp ( -- 1/aI)(1 + 0(I)). (2.2.19) 

The  choice of the invariant charge is not unique. More than that, if we do choose 
the regularization of the theory at small distances and times, the functions W(z) and 
fl(a) may still change and, therefore, are not universal. 

The pre-exponential dependence of T K in the constant I is also non-universal. 
But the simultaneous solution of eqns. (2.2.12) and (2.2.13) leads to a universal 
dependence of all physical quantities on the ratios 5/TK, T/T K and H~ TK: 

Q = Q 0  ( f ;  (~/TI~' ~P(z')~ ' \  exp dz ) ,  (2.2.20) 

where Q0 is the value of Q at ~ = D, 
From the point of view of perturbation theory the most convenient form of the 

function ~(z) is 

1 b 8 
dP(z) = in [z[ = I n - - .  (2.2.21) 

a,~ a 2 T K 

(We retained the term in [z] in the definition of qb(z) so that all physical quantities at 
0<z< < l ,  i.e. 5>> TK, could be expanded in a power series in z.) We note that eqn. 
(2.4.21) is valid only if the cut-off D can be considered infinite when compared with 
TK, while the separation between the atomic levels ~ and ~ + 1 is infinite as compared 
with D: 

E= << TK, T<<D<<E=+ 1 . 

In what follows we give the results obtained via perturbation theory for the 
impurity parts of the thermodynamic functions in the s-d exchange model discussed 
in detail in §§ 5 and 6. 

The G e l l - M a n n - L o w  equation (2.2.21) in this case takes the form 

1 1 
In  z(8) = i n - -  (2.2.22) 

z(e) 2 T K 

and does not depend on the impurity spin S. 
At H = 0  the magnetic susceptibility as a function of temperature T>>T K is 

expressed thus (Abrikosov and Migdal 1970, Fowler and Zawadowski 1971): 

S ( S + I )  1 - z  + O ( z  2) (2.2.23) Hi(T) = (gL#B) 2 3 T 

or, if we do not employ (2.2.21) 

, , 2 S ( S + 1 ) (  l lnlnT/TK ) 
zi( T)=~gLpB) ~ -  1 in TIT K 21n 2 TIT K + . . . .  (2.2.24) 
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Exact results in the theory of magnetic alloys 495 

The impurity magnetic moment  at T = 0  and H>> T K is (Abrikosov and Migdal 
1979): 

M i ( H ) = S ( 1 - 1 z ( ~ ) + O ( z 2 ) ) .  (2.2.25) 

Finally, the heat capacity at H = 0 and T>> T K is (Kondo 1969, Fateev and Wiegmann 
1981 a) 

Ci(T ) -- S(Sq- 1)n2z4(T/TK) +. . .  (2.2.26) 

Here we also give the G e l l - M a n n - L o w  equations for the hamiltonians (2.2.7) and 
(2.2.8). In the first instance 

while in the second 

-- nln[z] (2.2.27) in TK z 

-- in Iz[. (2.2.28) In TK nz 

We note that the perturbation theory series (2.2.23)-(2.2.26) are asymptotic. 
Therefore, even a large number  of terms can hardly help in studying the low energy 
properties of a system. 

In the following sections we shall derive the exact solution for the s d exchange 
model with an arbitrary impurity spin (the hamiltonian (2.2.7) with n = 1) and for the 
n-fold degenerate exchange model (2.2.8). On the basis of these solutions we shall 
establish the general nature of the ground state of the impurity and find the 
thermodyriamical functions at finite temperatures and magnetic fields. At present 
there is no solution for the interesting and important, from the practical standpoint, 
problem (2.2.7) for arbitrary n and S (see Note added in proof). 

§ 3. RECENT THEORETICAL DEVELOPMENTS 

In this section we describe some interesting theoretical approaches which enable 
us to understand the behaviour of the s-d exchange and Anderson models. We think 
that the results derived by these approaches are a remarkable supplement to the exact 
solution. 

3.1. The Kondo model 

3.1.1. The Coulomb gas and the resonant-level model 
Despite considerable efforts the low-temperature behaviour of the s-d model was 

unknown until Anderson et al. (1970a, b) obtained a qualltative solution of the 
problem. The  mathematical technique which has been developed in these papers 
(Anderson and Yuva11969, Yuval and Anderson 1970, Anderson 1970), as well as in 
the paper by Schotte (1970), proved very powerful and has had a great impact on the 
physics of one-dimensional systems. 

In the first paper Anderson and Yuval (1969) demonstrated that the thermo- 
dynamics of a magnetic impurity can be reformulated as classical statistics of the gas 
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496 A . M .  Tsvelick and P. B. Wiegmann 

of alternating charged particles with the logarithmic interaction. I t  is convenient to 
attack the problem starting with the s-d  model with the anisotropic exchange: 

1 z z 1 I x x y y 

~r, ~ '  

(3.1.1) 

The  point is that at I x = 0 the hamiltonian (3.1.1) is diagonal, hence the per turbat ion 
expansion in I x can be developed at arbitrary Irl. T h e  s-d  model  parti t ion function is 
equal to 

Z = Z o Z , ,  (3.1.2) 

where Z 0 is a partition function at / 2 = 0  which is free of singularities due to the 
Kondo effect. The  latter quanti ty 

Z 1 = 2  ~ , ( I .  c o s 2 6 ) 2 " F - ~  I ~2-' 
d ' c 2 n .  . . d % P e , ( % ,  . . . z2,), (3.1.3) 

,=0 2z / o0  o0 

where 

P e n = e x p  2 1-- 2 (-1) ~+v'ln[sin(~r(T~-%'))] ~>~' L ~ J (3.1.4) 

describes the grand parti t ion function of the so-called 'Coulomb gas'. The  cut-off  z 
regularized the theory at short times: z-*  is of the order of the Fermi  energy. T h e  
quantities ( I  x cos 2 6/2~) and x/2(1 - 26/~) may be taken for the fugacity and charge of 
classical particles, c~(I)=zcIii/8 + O ( I  2) is a scattering phase for the potential Iir/4. 
The  function 6( I )  is non-universal  and, apart  f rom the linear te rm Ill , depends on the 
regularization procedure,  therefore we do not write it down in a complete form. The  
formulae hold only provided that only the near-Fermi-surface  states-contribute, so 
that the spect rum can be considered linear. Hence  the s-d  mode l -Cou lomb-gas  
equivalence only holds in the ' long- t ime '  approximation.  

The  next paper  of Anderson et al. (1970) consists of two parts. In  the first part  the 
renormalization of the Coulomb-gas  problem has been performed:  enlarge the 
interparticle distance f rom z to z + d r  and integrate over the degrees of f reedom 
corresponding to the scales f rom z to z + d z .  T h e  resulting dependence of the 
chemical potential and charge on the scale takes in terms in Iii and I x of the form 
(valid at I<< 1): 

d i l l / d i n  r = I . / 2~ ,  1 
(3. 1 

d I . / d  In z = I x l i i / 2~  

(we put  p(eF) = 1/2=). 
The  corresponding solutions, known as a 'poor  man '  scaling, are shown in fig. 5.4 

alongside the exact solution trajectories (see below, § 5.2). The  arrows are directed 
towards rising z. In the F M  sector the interaction vanishes as z increases, hence at 
low energies and/or temperatures  the impuri ty  is almost free. 

Nothing of the sort is observed in sectors A F M  and AN. Irrespective of the 
strength of the initial interaction it blows up at large t ime scales. Once the couplings 
are large eqn. (3.1.5) no longer holds. Anderson (1970) conjectured that this growth 
is bounded only by unitarity. 
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Exact results in the theory of magnetic alloys 497 

An implicit assumption was that in one-dimensional systems there may be no 
singularity at finite couplings. Now we know of a few cases of one-dimensional 
systems with a fixed point at finite couplings (Nozi6res and Blandin 1980, Cragg et al. 
1980), still for the s-d model Anderson's conjecture proved correct. This  is made 
evident by an extensive numerical study of Wilson (1974, 1975) and was confirmed 
by the exact solution. In the second part of their paper the authors have shown that at 
a certain value of Ill = IT, such that 2(1 --2b(Iz)/n) 2 = 1 (the so-called Toulouse limit), 
the sum (3.1.3) is equivalent to the one for a certain simple quadratic model and can 
easily be calculated. The  hamilton±an of this model has the form 

~ T  = ~ SkC~ Ck- ~- V ~  (d+ ck + c~ d). (3.1.6) 
k k 

Here Ck, d are the operators of spinless fermions. 
One can easily check that the partition function of the model (3.1.6) is exactly 

equal to Z1 in (3.1.2) for the case of classical charges -4-1 (Toulouse 1969). In this case 
V ~  I x z -  1 and the role of the magnetic field is played by the resonant level energy. 
Th e  width F = n g2p@F) of the level determines the specific heat and susceptibility of 

the impuri ty at T ~ 0 :  
c i ~ T / F  ' Zi~ 1/F. (3.1.7) 

Thus,  at least for IlL = /± ,  the magnetic susceptibility proved finite at T=O. 
Anderson et al. (1970) assumed that the effective coupling l(z) rises from the 

initial small value as long as at a certain z = z T it becomes equal to IT, SO that the low- 
temperature behaviour of the s-d model at small I is identical to that of model (3.1.6) 
with F substituted by TK. This  resulted in the correct answer: 

Zi~ I/TK. (3.1.8) 

However,  the line of reasoning which led to (3.1.8) lacks rigour. First, the 
renormalized hamilton±an (3.1.1) does not retain its form; new vertices, which also 
rise as Z~ZT, are generated (Nozi~res 1975). Second, as the exact solution 
demonstrated, I(z) reaches the Toulouse limit only at the fixed point I(o0). As seen in 
fig. 5.4 the Toulouse limit trajectory 6(IT)= n / 2 ( 1 -  1/~/2) intercepts other trajec- 
tories only in the strong coupling limit, when the unitarity limit is saturated. 

Another approach consists of using (3.1.6) as a zeroth-order approximation of an 
infrared-finite perturbation theory. To  realize this approach Schlottmann (1978 a, b, 
1981) and Wiegmann and Finkelstein (1978) proposed the so-called resonance-level 
model, generalizing ~fT (RL model): 

U + + + 
JfRL=J/gT+ ~ k~ (Ck Ck,--Ck,Ck )(d d - 1 / 2 ) .  (3.1.9) 

Th e  RL model is equivalent to the s-d exchange model at an arbitrary/l l ,  provided 

2 2 
- - 7  )2 76( i i1 ) )  ' (3.1.10) ( 1  26 (U)  = 2 ( 1  - 

where 6(U) is the scattering phase for the potential U/4. 
This  equivalence holds in the so-called long-time approximation and the two 

models have common features at large time scales t>>z. Despite criticisms (Wilson 
1975) this approximation is not so bad: the universal characteristics of both models 
coincide. 
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498 A . M .  Tsvelick and P. B. Wiegmann 

The  hamiltonian (3.1.9) can be easily diagonalized at both V =  0 and U =  0. The  
per turbat ion expansion in V, like the similar expansion in I l in the s-d  model,  does 
not enable us to study the low-temperature  propert ies of the system: the zeroth- 
order ground state is orthogonal to that of the exact solution. Hence,  the relevant 
divergences are but an artefact of the bad approximation.  Rather,  one should expand 
in U. In this case all the per turbat ion theory expansion terms are finite at T =  0, since 
there is a finite scale-- the  level wid th - -which  is renormalized only by the 
interaction. Though  small I ' s  correspond to large U, such a per turbat ion theory is 
more convenient. 

The  Cou lomb-gas - to -RL-mode l  equivalence can be checked by a straight- 
forward order -by-order  comparison of the relevant per turbat ion expansions. Below, 
we prove this equivalence using the bosonic representat ion of fermionic operators 
(Schotte 1970). As a by-produc t  one gets the spin- and charge-density waves which 
will be extensively exploited below. 

As is well known, the currents of one-dimensional  fermions 

1 + 
bk+. = -k v~> ° £k + p, trCpa (3.1.11) 

are bosonic operators such that 
+ [bk,, bk, ~,] = k6kk,~5~,~,. (3.1.12) 

In  the long-time approximation the inverse formulae read (Schotte 1969, 1970): 

I t  is important  to note that the s -d  model  hamiltonian can be rewrit ten in terms of 
b, b +. Int roduce the spin and charge current  operators 

b k a  - -  b k ,  - ~r b k a  + b k ,  - 
{rk = ,/2 ' Pk= , /2  (3.1.14) 

Then:  

¢h = ~ k2p+ pk ' 
k 

+ I x e v [ S + e x p ( - - ` / 2 ~ k  l ( a : + a k ) ) + h . c .  ] .  

(3.1.15) 

A corollary is that the spin- and charge-density waves do not interact. Moreover,  
the charge excitations are free particles. No wonder,  the parti t ion function of the s -d  
model is a simple product  (3.1.2) of the parti t ion functions Z 0 and Z 1 of the two 
hamiltonians. 
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Exact results in the theory of magnetic alloys 499 

This will show up again in the exact solution. However, one has to bear in mind 
that this non-interaction of the charge and spin excitations takes place only in the 
linear spectrum approximation. 

One can apply to the hamiltonian ~ s p  one more canonical transformation such 
that the coefficient x/2 in front of a k becomes 1. The new electron operators will 
describe spinless particles. This tr.ansformation simply shifts equilibrium positions 
of the harmonic oscillators a and a+: 

TWT + = ~k2a[ak+ US~k(a~ + ak) 
k k 

exp ~(o" k + ak))  + h.c. 11~_%, 

where 

(3.1.16) 

T=exp[(x/2--1)~szl(a~--ak)] (3.1.17) 

and U is related to I via (3.1.10). Introduce now spinless fermions according to 

~C:=61F/2exp[ - ~ ( a : - a k ) k  k>O ] (3.1.18) 

replace the S =  1/2 operators by the spinless localized fermion operators: 

S + = d  +, S- =d, SZ=d+d-1/2 
and we get the RL model. 

The RL model has been used to prove the relationship between the impurity 
specific heat and the magnetic susceptibility in the limit T ~ 0  (Wiegmann and 
Finkelstein 1978): 

Ci/TZi = 27r2/3. (3.1.19) 

Let us outline this proof. In the linear spectrum approximation the charge 
excitations do not contribute to the considered specific heat. Hence the specific heats 
of the RL model and s-d model coincide. To find the magnetic susceptibility add to 
the relevant hamiltonians the Zeeman terms: 

and 

-H( SZ+ E lazc~Ck~ "] 
] 

-2h{~(C~Ck-1/2)-(d+d-1/2) } 

for the s-d and RL model, respectively. The two Zeeman hamiltonians coincide if 
h =x/2H.  Hence Zsd= 1/2ZR L. 

A further analysis of the perturbation theory in U (Schlottmann 1978a, b, 
Wiegmann and Finkelstein 1978), shows that 

C~RL/T~(RL = n2/3. 
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500 A . M .  Tsvelick and P. B. Wiegmann 

These results in (3.1.19) were first found numerically by Wilson (1975), and then 
proved analytically by Nozi+res (1975). 

The  analysis of the Coulomb gas statistics has led to a first numerical  s tudy of s -d  
model thermodynamics .  Schotte and Schotte (1971) used the Monte-Car lo  method 
to compute  the temperature  dependence of the magnetic susceptibility. They  found 
it to be finite at T =  0 and very close to the one given by the Curie-Weiss  law. 

Recently Oliveira and Wilkins (1981) studied the R L  model numerically using 
the Wilson renormalization group approach. The  results for the heat capacity and 
the magnetic susceptibility of the R L  model  are shown in fig. 3.1. I t  has been shown 
that the mapping  between the R L  model and Kondo  model  does exist. I t  has been 
found numerically by means of the Wilson (1975) numerical  solution of the Kondo  
model (see § 3.1.2). The  R L  model  is found to be more  convenient for a numerical  
investigation. As for the Kondo  hamiltonian, a calculation utilizing the R L  
hamiltonian brings about a hundred-fold  reduction in computat ion t ime (Oliveira 
and Wilkins 1981). Note  that the specific heat and magnetic susceptibility curves are 
in excellent agreement  with the Toulouse limit (see fig. 3.1). This  phenomenon  also 
takes place for the straight calculations of the heat capacity for the Kondo  model  
(Melnicov 1982, Rajan et al. 1982, Desgranges and Schotte 1982) and accounts for 
the success of the at tempts by Schotte and Schotte (1975). T h e y  have used the 
generalized Toulouse  hamiltonian for interpretation of some Kondo  experiments.  

The  RL model was the first problem associated with magnetic impurit ies in a 
metal  to which the Bethe Ansatz was applied (Filyov and Wiegmann  1980). T h e  
Bethe Ansatz used in this case is the most  simple. The  diagonalization procedure of 
the RL-mode l  hamiltonian is discussed in the supplement  section. 

Fig. 3.1 

0.2 

C~p j-A / ~  kaTXi~p0.~ (g~B)2 
kB 0.I ~- ./ j 

I ,¢ .----- 

C i m'---'~'P ~ kaT%imP 
(g kB 0'00 ] T/T K 2 0.0 

S ,o ~,~ o f 

o '~0, / ° /  

( / ~ o/° } \Z - - -  

./,, , / / '  ',5:, 
o/;" / ' /  "~\ 

0.0 "~'r"~ °"~ I I I ~'°"~-n ' 0.0 
1 1 10 100 T/T K 

02 

- 0 . 1  

The universal curves for the impurity specific heat C i and the susceptibility Zi for the resonant- 
level model. The dashed lines are the Toulouse limit specific heat and susceptibility for 
a resonance width chosen to make the zero-temperature Kondo Toulouse limit 
susceptibilities equal. The inset shows the same plots on a linear temperature scale (after 
Oliveira and Wilkins 1981) 
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Exact results in the theory of magnetic alloys 501 

3.1.2. Numerical renormalization group approach to the Kondo problem 
Wilson (1974, 1975) developed a new formulation of the renormalization group 

theory which is not based on per turbat ion theory but  requires a computer .  Using the 
modern  numerical  renormalization approach he treated numerically the crossover 
between the h igh- tempera ture  and low-temperature  regions. His method has been 
applied recently to the numerical  investigation of other models: 

T h e  Anderson model (Kr i sna -Mur thy  et al. 1975, 1980a, b). 
The  orbital degenerative exchange hamiltonian (Cragg et al. 1980, Cragg and 

Lloyd 1979). 
The  resonance-level model  (Oliveira and Wilkins 1981). 
Two- impur i t y  p rob lem (Jayaprakash et al. 1981). 

Without  going into details of the computat ion and accuracy, we confine ourselves 
only to the conclusions of Wilson. 

The  reader is referred to the original papers (Wilson 1975), Kr i shna-Mur thy  
1980 a, b) for a complete account of the theory. Interest ing discussion of Wilson's  
t reatment  can be found in Nozi&es (1975). 

(i) The  renormalized spectrum calculated by the renormalization procedure was 
compared with one corresponding to a similar hamiltonian but  without the impuri ty  
and a particle in the impur i ty  site. I t  turns out that  these two spectra coincide with 
great accuracy for the lowest states. This  result can be interpreted as follows: the 
impuri ty  and electron on the impuri ty  site are glued together with the infinite 
c o u p l i n g / e f t :  0(7) to form a singlet. T h e  other electrons behave like a free gas. Thus  
we have made sure that the s trong-coupling limit I =  o0 is indeed a fixed point of the 
Kondo hamiltonian. Having used the numerical  procedure Wilson showed that for 
temperatures  much  lower than the band edge, and for small antiferromagnetic 
exchange coupling / t h e  functional dependence of the magnetic susceptibility zi(T) 
on the tempera ture  and on I can be expressed (see eqn. 2.4.18) as the G e l l - M a n n -  

Low equation 

0(4  Tzi(T) --1) = In (T/Tw(I) ) ,  (3.1.20) 

where O(y) is the universal function of its a rgument  y (i.e. its functional form is 
independent  of I ,  band-edge effects, etc.). The  Kondo  temperature  T w is defined in 
terms of the same universal function by 

Tw(I  ) = D(I) exp ( - O(I)) ,  (3.1.21) 

where D ( I )  is an effective band width D(I)=Evconst(1 +0(I) )  and has a non- 
universal power-series expansion in I.  For the small values of argument ,  @(y) can be 
obtained f rom the per turbat ion theory and is given by 

~(y)  = y -  1 _ 1 In ]Y[ + 1"58 y + O(y2). (3.1.22) 
2 

The  first two terms in that formula  were known (Abrikosov and Migdal  1970, Fowler 
and Zawadowski 1971), the last te rm was computed  numerically by Wilson. 

(ii) The  magnetic  susceptibility has been obtained f rom rather accurate 
numerical  calculation and is represented in figs. 3.2-3.4. (The  full curve in fig. 3.3. is 
the numerical  result obtained by Melnicov (1982a) f rom the exact solution (see 

§6.1.11). 
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A. M.  T s v e l i c k  a n d  P. B. W i e g m a n n  

Fig. 3.2 

20- 
1 

kTwX" 

I0- . _ ~ _ _  _tf-T=O Limit 

502 

T 

Universal  inverse magnetic susceptibili ty Z ( I ( T )  versus T plot f rom Wilson 's  (1975) 
computer  calculations. 

Fig. 3.3 

7] 
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7 / '  
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× / ~ , -  / 
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Universal  inverse magnetic susceptibility ( g # B ) 2 * X i  - X(T) versus T plot at T~< T K. Crosses 
correspond to the Wilson (1975) renormalizat ion group results; the full curve is the 
numerical  result obtained on the basis of the exact solution; dashed curves are the 
asymptotic behaviour  of the susceptibility at (see eqn. (6.1.115) or the footnote on 
p. 503) and the Curie V~eiss interpolation at 0"3TK<T<IOT K (see eqn. (3.1.23)) 
(after Melnicov 1982 a). 
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Exact results in the theory of magnetic alloys 503 

Fig. 3.4 
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Universal k B TZi (T)/(gktB) 2 versus In T~ T w plot from Wilson's (1975) computer calculations. 
At T =  Tw, TX=0"701. The same plot also served as a graph of the universal function 
q~(y) (see eqn. (3.1.20)) (after Krishna-Murthy et al. 1980 a). 

(iii) W h e n  T~> 16 T w the funct ion  ~(y)  may  be de te rmined  f rom its asymptot ics  
(2.2.3). For  0'5 T w <  T <  16 T w the universal  curve fits the Cur ie -Weiss  law 

z i (T)  = 0 .17 (T+  x/2 Tw) -  t (3.1.23) 

Meln icov  (1982 a) noted the fact tha t  in the original paper  this fo rmula  is wri t ten with 
an error  (Wilson 1975), eqn. IX.99);  there is a factor  2 in f ront  of  T w. Th i s  error  has 
been repeated in all the papers  known  to the authors  conta in ing the formula  (3.1.23). 
App ly ing  a ruler to fig. 3.2 one immedia te ly  makes sure that  the factor  in f ront  of  T w 
m u s t  be equal to 1"46. Fol lowing the Py thagorean  spirit  of  Wi l son ' s  paper  we write 

down ~/2 instead of  1"46 in (3.1.23). 

(iv) T h e  susceptibil i ty for T <  T w approaches  a constantS" 

0-1032 
zi(T = 0) = - -  (3.1.24) 

Tw 

(v) T h e  ratio of  the coefficients of  the linear terms in the specific heat and of  the 

susceptibil i ty can be very  well fitted by 

3 lira Ci(T~)) =0"5. (3.1.25) 
4re 2 T~O Tzi(T)  

T h e  renormal iza t ion g roup  calculation of  the impur i ty  specific heat for the entire 
t empera tu re  range took a considerably  longer  computa t iona l  t ime than that  for the 
susceptibili ty.  Therefore ,  to calculate the specific heat of  the K o n d o  model  Oliveira 

t It is worth showing that the coefficient at T 2 in the temperature dependence of magnetic 
susceptibility computed by Melnicov (1982 a) on the basis of the exact solution is: 

0.1032(1 T a 
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504 A . M .  Tsvelick and P. B. Wiegmann 

and Wilkins (1981) employed the renormalization group approach in the resonant-  
level model (3.1.9) whose parti t ion function maps  on to the parti t ion function for the 
Kondo hamiltonian. 

The  specific heat shown in fig. 3.1 is a universal function of T / T  w where T w 
depends on V and U parameters  of the R L  model.  T h e  specific heat is peaked at 
T - 0 " 6  T w. 

The  numerical  procedure relating the R L  parameters  to the isotropic Kondo-  
model parameter  I used by Oliveira and Wilkins consists of mapping  the magnetic  
Kondo susceptibility on the charge R L  susceptibility. The i r  results are in a good 
agreement  with the straightforward numerical  calculations based on the exact 
solution (Desgranges and Schotte 1982, Melnicov 1982a, Rajan et al. 1982, see 
§ 6.1.11 for a review). 

3.1.3. Nozi~res' Fermi-liquid theory 
Using the fact that a singlet ground state is formed and in the low-temperature  

limit the s-d  exchange hamiltonian evolves towards a fixed point in which the 
effective exchange coupling of the impuri ty  and conduction electrons is infinitely 
strong, Nozi~res (1974, 1975) proposed an elegant phenomenological  theory in the 
same spirit as the Landau  theory of Fermi  liquids. On the basis of this theory the 
low-temperature  propert ies of the specific heat, spin susceptibility and resistivity are 
derived in a simple way. Having been constructed for the s -d  exchange model  this 
theory proved to be very powerful. Later  it was generalized for degenerate exchange 
models with hamiltonians (2.4.7) and (2.4.8) (Nozi6res and Blandin 1980, Mihaly 
and Zawadowski 1978). 

As we discussed in § 3.1.2, Wilson's  results may be interpreted in such a way that 
in the low-energy limit the interaction tends to infinity and therefore an electron is 
frozen near the impuri ty  forming a singlet ground state. Other  N -  1 electrons scatter 
on this composite and polarize it in a virtual way. This  polarization leads to the local 
interaction between t rapped electrons. 

When  T<< T~: the probabil i ty of breaking the singlet is very small and one has the 
Fermi  liquid with interaction concentrated in a point. 

In the spirit of the ordinary Landau  theory of Fermi  liquids one may suppose that 
the spect rum of the system for the low-temperature  region differs slightly f rom the 
spectrum of the non-interact ing system so that there is a simple correspondence 
between the eigenstates of the hamiltonian in the fixed point ( I*  = or) and near it. 

The  most  fundamental  quanti ty of Nozi~res'  theory is an elastic-scattering 
phase. As there is the fixed marked point in the system so the quasiparticles may be 
characterized by an energy and phase shift t/~. This  quanti ty depends on the energy 
of quasiparticle z and the distribution of quasiparticles with a given spin: 

~ = ~ ( z ,  n~,).  

Assuming that a spin polarization is along the ~ axis, one may write the phase shift 
as an expansion: 

~ ( z ,  an~,) = ~o -- ~z + O~6n_ ~, (3.1.26) 

(where 6n~ is the departure f rom the ground-state  distribution and z is measured 
f rom the Fermi  level in zero magnetic field). T h e  te rm with cSn~ in the expansion 
(3.1.26) is absent due to the Pauli exclusion principle. F rom t/, one infers the 
scattering-state energy, hence the specific heat and the spin susceptibility. 
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Exact  results in the theory of  magnetic alloys 505 

Moreover,  t/ yields the resistivity right away. Low- tempera ture  physics thus 
depends on three parameters  only: t/0 , ce and q~. 

These  parameters  are not independent.  Primari ly the well-known Friedel sum 
rule says that a scattering phase depends on an impuri ty  spin: 

tla(z = ~H) = n/2 -- a~rMa (3.1.27) 

(we shall derive this formula rigorously in the next section). 
I t  follows f rom (3.1.27) that if the ground state is a singlet ( M i ( H =  0 ) =  0) the 

phase shift achieves the unitary limit. 
Using (3.1.27) one can derive the Fermi-l iquid relation between the phase shift t/ff 

and the magnetic  and charge susceptibilities: 

1 
zisp - ~ ~ h / ( ~ , - ~ ) ,  (3.1.28) 

1 
Z~h- 7r ~-# (r/r +r / , ) ,  (3.1.29) 

where # is a chemical potential. Compar ing  formulae (3.1.26-3.1.29) we obtain 

1 
xisp = - (e + pqb), (3.1.30) 

7~ 

1 
i __ Xch- - ( e - P ~ ) ,  (3.1.31) 

7g 

where p is the density of state. 
When  TK<<EF the Kondo  resonance is attached to the Fermi  level # and must  

move rigidly with #. Put  another way, if one moves # and the energy z by the same 
amount  the phase shift mus t  be invariant and therefore we obtain 

z~h=0.  

Tha t  gives 

c~ =pq~. (3.1.32) 

Substi tut ing (3.1.32) into the expression for magnetic susceptibility we obtain 

i h Z~p/Zsp = 2~/xp. (3.1.33) 

For  the specific heat C, the change of occupation 3nff due to a temperature  
increase is zero: the increment  due to the impuri ty  is given by 

CI/C h = c~/np. (3.1.34) 

On combining (3.1.33) and (3.1.34) we finally obtain Wilson's  result (3.1.25). 
Except  for this simple result the phenomenological  theory predicts the low- 

tempera ture  behaviour of resistivity (Nozi~res 1974): 

R ( T )  =R0(1 - -  (0~Tz T )  2 + O(T4)), (3.1.35) 

where Ro=3/rcp2v2e 2 is the unitary limit. We do not consider this remarkable 
derivation as it does not yet have an analogy in the exact solution framework.  

The  Fermi-l iquid theory has been successfully applied to systems described by 
hamiltonians (2.2.7) and (2.2.8). We first consider hamiltonian (2.2.8) in the absence 
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506 A . M .  Tsvelick and P. B. Wiegmann 

of crystal field effects. The  phase shift must  be invariant under  rotations of the total 
angular m o m e n t u m  (3.1.21) and is thus replaced by 

tlj(z)=qo--O~z+aP ~ 6nj,. (3.1.36) 
j '~j 

In  order to dispose of the parameters  ~ and (I), we make use of our universality 
requirement.  Universali ty requires that q be invariant if the energy z and all chemical 
potentials move by the same amount.  T h a t  condition yields 

~ - ( n - -  1)paP=0, (3.1.37) 

where p is the density of states per channel. The  impuri ty  part  of the heat capacity is 

c i / c  h = O~/7~p. (3.1.38) 

In  order to calculate the magnetic  susceptibility we again use the Friedel sum rule 

qj(z  = j H )  = xnj, (3.1.39) 

where nj is the number  of particles with j th  projection of the total angular 
m o m e n t u m .  

I f  the impuri ty  magnet i sm vanishes eqn. (3.1.39) yields 

n~ = 1/n; ~1o = x/n (3.1.40) 

and 

Now the Wilson ratio is 

n 
zi/;~h- n n -  1 " (3.1.41) 

( C i / C  h) n -  1 
- -  - ( 3 . 1 . 4 2 )  

(Nozi&res and Blandin 1980). We obtain this relation using the exact solution 
(see § 7). 

Hamil tonian (2.2.7) is a more  complex case. I t  is invariant under  spin and orbital 
rotation. I f  the spin distribution is polarized in the ~ direction the most  general form 
of the scattering phase is 

~ma ('Z)~-~O-O~''~- 2 {((#+~l)~rlm'a+(q~--~)3nm',--a}+((P--3~l)~nm,--a" (3.1.43) 
m' ¢m 

T h e  terms containing (~nm, ~ a r e  absent as before. 
Weak universality requires that t / be  invariant if the energy z and all chemical 

potentials move by the same amount.  Tha t  condition yields 

c~ + p(41~p + ~p -- 3 ~p) = 0. (3.1.44) 

Since scattering never changes m, strong universality also holds: t/m . must  be 
unchanged if the Fermi  level of another channel is moved.  Thus  

9 = 0  

and therefore 

~ = 3 ~ p .  (3.1.45) 
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Exact results in the theory of magnetic alloys 507 

The  Friedel sum rule defines the value of the phase shift on the Fermi  level: 

r /m~(z  = a l l )  = 

and the magnetic susceptibility 

2(21+t)  
- c ~ H +  (4l+ 3)HpO (3.1.46) 

Z i ~ 2(2l+ 3) 
(3.1.47) 

Z h ~p 3 

The  heat capacity is still equal to 

C i oc 

C h ~p 

(Ci/C h) 3 

(zi/g h) 2(2•+ 3) 

The  Wilson ratio is 

(3.1.48) 

(Yoshimori 1976, Mihaly and Zawadowski 1978, Nozi~res and Blandin 1980). 
Unfortunately,  the Fermi-l iquid analogy is restricted by a low-temperature  

limit. For  example,  it is impossible to evaluate in such a way the (T/TK) 2 or (T/TK) 3 
,terms in the expansions of the magnetic susceptibility or specific heat. 

3.2. The Anderson model 

3.2.1. Introduction 
In  the next subsections we shall discuss recent developments in the Anderson 

model.  There  exists a vast literature on the model,  which is the generally adopted 
model for description of different phenomena  in dilute magnetic alloys. For the early 
literature on the model we refer the reader to available review articles (Grfiner and 
Zawadowski 1974, 1978, Blandin 1973, Mills et al. 1973). In this section we first 
consider some approaches developed recently: the Fermi-l iquid approach b,~sed on 
the per turbat ion theory with respect to U (Yamada 1975, Yosida and Yamada 1970, 
1975), and the numerical  renormalization group approach (Kr i shna-Mur thy  et al. 
1975, 1980 a) to the symmetr ic  Anderson model.  

In the past few years many  efforts have been made to study rare-earth 
intermetallics. Th is  interest has been caused by the intermediate valence phenomena 
(for a review, see Varma 1976, Khomski  1979). Famous  examples of systems with 
intermediate valence are traditional concentrated Sm systems (SINS, SmSe and 
StaTe) .  Meanwhile,  the valence instability phenomena may also be observed in 
dilute rare-earth alloys. The  modern  theory of valence instability in concentrated 
compounds  cannot reveal the relative role of single-ion effects against the interaction 
between impuri ty  centres. 

In such a situation microscopic investigations of the single-ion behaviour of a 
mixed-valence impuri ty  were highly desirable both  theoretically and exper iment-  
ally. The  valence instability phenomena  in dilute rare-earth systems is convention- 
ally described by the asymmetr ic  Anderson model. This  model has been intensively 
studied f rom the middle of the 1970s. The  distinctive features of the asymmetr ic  
limit of the Anderson model have been found (Varma and Yafet 1976, Barabanov 
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508 A . M .  Tsvelick and P. B. Wiegmann 

et al. 1974, Haldane 1978 a). We shall discuss the main propert ies of the asymmetr ic  
Anderson model below. 

The  non-degenerate  Anderson hamiltonian has the form 

Ogfa= ~ekC~Ck~+ V~  (c~j~+d+Ck~)+ea(nt +n,)+ Un,ns, (3.2.1) 
k,a k ,a  

where n~ = d~d~ is the particle number  operator.  
We start with a brief  summary  of various results that have so far been obtained for 

the Anderson model. There  are five different regimes for different relations between 
temperature,  F and the energies E÷ = e a + U and E_ = --ea: 

(A) Free-atom regime 
E+,E_>>F>> T. 

All four states with na = 0, T, ~, 2 are almost independent  and the dominant  part  of the 
impuri ty  susceptibility is given by 

1 
Zi = ~ (2 + exp (Ea/T) + exp (-- (ea + U)/T))- 1. 

( B )  Local-moment regime 

(UF)l /Zexp nEd(~.+~ U) --=min(~/(2UF),  ~dU 

In this regime only two states with na= T, ~, are available and the Kondo screening 
phenomenon is depressed by a sufficiently high temperature.  T h e  magnetic 
susceptibility is )~i = 1/4T. 

(C) Strong-coupling regime 

( ned(ed+ U) ) 
E + , E _  >>F, T<<(UF)l/2exp 2 U F  " 

In this region the Kondo  phenomenon  takes place. T h e  
predominant ly  constant, which in this case has the value 

1 [ ~Ed(Edq-U)] 
Zi = 2(2UF)1/2 exp 2 U F  " 

susceptibility is 

(D) The non-magnetic regime 

T<< T0, F>>U. 

T h e  interaction is small and the impuri ty  behaves as the resonance level with 
width F. The  magnetic  susceptibility is 

2 F 
; ~ i -  n e 2 + F 2 " 

The  various regimes for the symmetr ic  Anderson model are illustrated in fig. 3.5. 
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Exact results in the theory of magnetic alloys 

Fig. 3.5 

kBT/(LIF) 1/2 

509 

v2 

Free atom regime 

Non-magnetic 
regime 

(2UF)1/2 /4F2--U2X 
: Tk= ~ exp/ 8--UF ) 

Localized moment 
Strong ' ~ ~  
coupling 
regime 

~" U/2F 

Schematic sketch of the various regimes for the symmetric Anderson model. The separations 
between the various regimes, in contrast to the drawing, are actually quite fuzzy. The 
dashed line corresponds to the temperature at which the Anderson (1961) Har t ree-Fock 
approach to the formation of a localized moment is qualitatively valid. 

Al l  these  reg imes  are typ ica l  for the  s y m m e t r i c  (Q~-- -- U/2) as wel l  as for the  
asymmetric models .  In  the  la t te r  case the re  is, add i t iona l ly ,  

(E) Valence-fluctuating regime 

F ~ kdl, T<< U. 

I n  this  case the  s tates  wi th  d i f ferent  occupa t i on  n d = 0 and  n d = 1 are s t rong ly  mixed ,  
the  state r id=2  be ing  v i r tua l .  F o r  T>>F we ob t a in  Zi = 1/6T and  for T<<F 

Zi ~ F / { m a x  (IQ[, r ) }  2. 

W e  discuss  all e n u m e r a t e d  r eg imes  in de ta i l  be low (§ 8). 

3.2.2. The Symmetric Anderson model 
W e  star t  wi th  the  magne t i c  r eg ime  U>>F, when  there  are  no real  t r ans i t ions  into 

states wi th  nd=  0; 2 and a magne t ic  m o m e n t  arises. Th i s  magne t i c  m o m e n t  in teracts  
wi th  c o n d u c t i o n  e lec t rons  t h r o u g h  the  v i r tua l  t r ans i t ions  in to  exc i ted  states wi th  
n a = 0; 2. T h e  in te rac t ion  is desc r ibed  by  exchange  hami l ton ian  (I) wi th  the  coupl ing  

cons t an t  

p(Ev)_/= --  8F/I~U 

( A n d e r s o n  and  C logs ton  1962, Schr ie f fe r  and  W o l f  1966) and  leads  to the  K o n d o  
effect. C o n s e q u e n t l y  the  i m p u r i t y  m a g n e t i s m  and TZ, where  Z, the  m a g n e t i c  
suscep t ib i l i ty ,  decrease  and van i sh  as T--*0. I f  U<<eF the s tates  n a = 0  and n d = 2  
decoup le  f rom the  l o c a l - m o m e n t  for  energies  la rger  than  U and,  therefore ,  one 
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510 A . M .  Tsvelick and P. B. Wiegmann 

should consider the amplitude U as a cut offfor the low-energy processes. According 
to (2.4.19) and (2.4.22) one has the expression for the Kondo temperature 

T K ~ U(pI )1 /2  exp ( -  1/pI) ~ (F U )  1/2 exp ( - r t  U/8F). 

The mapping between the symmetric Anderson model and the Kondo model has 
been illustrated by means of Wilson's numerical renormalization group approach to 
the impurity susceptibility. It was applied by Kr ishna-Murthy  et al. (1980 a) to the 
calculation of the magnetic susceptibility in various regimes in the Anderson model. 
Their  numerical results are depicted in fig. 3.6. 

Fig. 3.6 

m 

0 . 2 5  

O. 20 

0 . 1 5  

0 . 1 0  

0 . 0 5  

0 . 0 0  

I I I 1 ¢  I I I [ I 
O I O I O I O I I  o 

i l i l i  o • 

/ ~ , o "  ":"'5~.1o. ~,~ pIsw = - 0.064 ,,,,, - .  

,~' B/~ 
,# ,,"p I sw = - 0 . 8 0 0  

¢• 
J i J L , 14.  " f ; ' -  , ,  , , 

10-12 i0-11 i0-1010- 9 v 10_ 5 10_ 4 i0_ 5 10_ 2 

kBT/D 

Plots TZi versus In T/D on the symmetric Anderson model with parameters p I =  0"064 (A), 
0"800 (B), U/e F ~- 10- 3, U/nF = 12"66 (A), 1'013 (B). The dashed curves are the universal 
Kondo susceptibility curves. The Kondo temperature is marked by an arrow on the 
abscissa. For U>>F (A) there is a well-developed local-moment regime (Tx~-I/4) 
between the free-orbital regime ( T Z --- 1/8) and the strong-coupling regime (Z = const.), 
whereas for U ~ F (B) there is a direct transition from the free-orbital to strong-coupling 
regime (after Krishna-Murthy et al. 1980a). 

The numerical correspondence between the Anderson and Kondo models gives 
the Kondo temperatures T K ( U  , F) for the relevant U and F. These temperatures are 
indicated by the arrows in fig. 3.6. Having compared them the pre-exponential factor 
in the expression for Kondo temperature was obtained (Haldane 1978b)t:  

Tw= O ' 1 8 2 U ( p I )  1/2 exp (-- 1 / p I ) ,  (3.2.2) 

(remember that the definition of T w differs from that taken in the present review: 
Tw=0"1032x2nTK).  As the temperature increases above T o the states with 
n a = 0"2 decouple. In a symmetric case this occurs at T o ~ (UF) a/2 (Wiegmann et al. 

1982); above this temperature the impurity is in the free-atom regime. 
At U>> F and T>> T K there is a wide region where a local-moment regime takes 

place: Tzi-~l /4 at TK<<T<<(UF)  1/2. At T>> U the impurity passes into the free- 
orbital regime where all impurity configurations are equally populated and the 
couplings between them are irrelevant. The transition from local-moment regime 
into a free-orbital one in which TZi~-1/8 is illustrated by fig. 3.6. 

t The amplitude U is customarily believed to be an energy cut-off. 
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Exact results in the theory of magnetic alloys 511 

At U ~  F the local-moment  region vanishes (see fig. 3.5) and on being heated the 
system passes continuously f rom the strong-coupling regime to the free-orbital one. 
Finally, at U < F  the non-magnet ic  regime with Zi~ 1/F takes place. 

The  transition f rom the non-magnet ic  to the local-moment  regime was first 
predicted by Anderson in his classical work in 1961 on the basis of the Har t r ee -Fock  
approximation.  This  theory qualitatively describes the situation only at high 
temperatures  T K < T~< (UF)  1/2. 

We shall come back to this discussion in § 8 where the dependence of magnetic 
susceptibility on U/F and magnetic field derived f rom the exact solution will be 
discussed. 

3.2.3. The Fermi-liquid approach, based on the perturbation theory in the Anderson 
model 

Besides the Nozi+res theory ,  another  powerful  approach based on the Fermi-  
liquid theory has been developed by Yosida and Yamada (Yosida and Yamada 1970, 
1975) and Yamada (1975). I t  is based upon using the Fermi- l iquid identities for 
analysis of per turbat ion series with respect to U in the Anderson model and is a 
remarkable illustration of Nozi~res'  phenomenological  picture. The  Anderson 
model has proved to be convenient due to the fact that the behaviour of all quantities 
is Fermi-l iquid-l ike to all orders of the per turbat ion theory with respect to U. The  
first papers by Yamada and Yosida were devoted to the symmetr ic  non-degenerate  
Anderson model. Subsequently their method has been extended to t reatment  of the 
impuri ty  orbital shell by Yoshimori  (1976) and Yoshimori  and Zawadowski (1982). 
At low temperatures  and frequencies the basic physical quantities may, in the spirit 
of the Fermi-l iquid theory, be expressed through the self-energy part  of d electrons. 
T h e  Four ier - t ransform of the d-electron Green function is defined in a standard 
way: 

G~(m,)=-fl/rdz(Td,(r)d~+(O))exp(iog,r) 

and may be written as follows 

G~(e),) = ( i¢%- Ea + o ' H +  iF sign o)~-  Z~(¢0~))- 1, 

where F = 7 c p ( E F ) r  2 is the width of the virtual impuri ty  level, c% = (2n + 1)~T. 
Using G(¢o,) one can express the impuri ty  part  of free energy as 

Fi=T~exp(iog,e)lnG~(c%) e--* +0 .  (3.2.3) 
n 

Expanding the function in G~(og,) near the singular point 09, = 0 one obtains the 
formula for the impuri ty  heat capacity at T ~ 0 :  

Ci T 2~c 3 ( ~ E , ~ ( i c o ) ~ ,  - ~ I m  G , , (+ i0 )  1 - -  (3.2.4)  
~ico [~=+0 /  

where Z (io9) is an analytical continuation of the function E (c%). 
Another  relation which relates the magnetic susceptibility to the self-energy Z is 

based on the Friedel sum-rule  

1 
n~--- - I m  In G~(+i0).  (3.2.5) 

7~ 
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512 A . M .  Tsvelick and P. B. Wiegmann 

Thus,  the impurity magnetic and charge susceptibilities have the form: 

1 ~ a i m G ~ ( + i O ) a Z ~ ( + i O )  (3.2.6) 
Zsp -- 2n OH 

1 ~ i m G ~ ( + i O ) ~ Z ~ ( + i O )  (3.2.7) X~h = - ~ ,~ &a 

Relations analogous to (3.2.4) and (3.2.6) takes place in the ordinary Fermi- 
liquid theory (see, for example, Abrikosov et al. 1965). They  follow from only the 
energy conservation law and, therefore, are still valid for nonhomogeneous systems. 

The scattering T matrix and, therefore, the electrical resistivity can easily be 
connected with the same function G(ico). Indeed, the conduction electron Green 
function has the form 

(o) i~ V2G(k°)(ico)G(ico)G(kg)(ico ). Gkk'(i~o)=~kk'Gk ( )+ 

Therefore, T~(co)= V2G,~(ico) and using (3.2.5) one obtains 

1 - 2niT~(o~) = (1 + 4 Im ]E~ (ico)/F) I/2 exp ( - 2ni~/~(co)), (3.2.8) 

where r/~(co) is a phase shift introduced in the usual way 

I1~(co) = n/2--  t an-  1 (Y,~(ico)/F) 

(see, for example, Langreth 1966). Using eqn. (3.2.5) one gets the Friedel sum rule: 

1 
na. = (ddd~)  = - q~(0). (3.2.9) 

7~ 

The conductivity a(T)  of the system is given by the following well-known 
expression 

a ( T ) = a  o &oz(m)/2coshco/T.  (3.2.10) 
- - o 0  

z - l ( e ) )=  --2 Im T((o) (ao is the value of o-(T)). In the saturated unitarity limit the 
formula for the magneto-resistance at T = 0  according to (3.2.8)-(3.2.10) has the 
form (Sakurai and Yosida 1979): 

R ( H )  = --R° (c°s nna--c°s 2nMi)2 (3.2.11) 
2 1 - c o s  nnd cos 2nMi ' 

where na= E,  nd~ is the average number  of localized electrons. This formula 
generalizes the well-known formula (Ishii 1970): 

R ( H )  = R o cos 2 7zMi, (3.2.12) 

which we have in the symmetric Anderson model (n a = 1). 
Using the general properties of perturbation series it is easy to prove that 

Re Z (Ro) is an odd function of ~o, T and Im Z(Ro) is an even function, Im E(0) being 
equal to zero. 

To find the term of order of T 2 in the expansion of conductivity it is sufficient to 
keep the terms of order of co 2 and T 2 in the expression for Im T(og, T). Since 
Re ]E (leo) ~ co, Im Z (1'6o) ,-~ 6o 2, T 2 eqn. (3.2.8) is written down for low frequencies and 
low temperatures as 

1 -- 2niT(co) = - (1 + 2 Im Z (Ro)/F) exp (2i(~o - Re Z (i~o)). 
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Exact results in the theory of magnetic alloys 513 

The imaginary part of the phase shift Im E/F represents contributions from inelastic 
channels. 

The electrical resistivity has the following form: 

R(T) - Im G ( O ~  ~ -  Im G(O) 1 - k \ vz~o / 

a2Z 2 ~2~ __ 7 tO=0 + + ~ ~T~- / (3.2.13) 

The formulae (3.2.4)-(3.2.6) and (3.2.13) are valid for the symmetric Anderson 
model in the presence of the magnetic field. Yamada calculated many quantities up to 
the fourth order of perturbation theory expansion in powers of U/F in the symmetric 
Anderson model (see Yamada 1975). We list here several terms of the perturbation 
expansion for magnetic susceptibility: 

Z~p=2~ ~ 1 + ~ +  3-- ~ +0"0553 

U 3 
+ . . . + 3  ( 5 - ~ ) ( 7 ~ ) + . . . ] .  (3.2.14) 

By investigating the general terms in the perturbation expansions of thermo- 
dynamical quantities, some important relations among the magnetic and charge 
susceptibilities and self-energy part E (i~0) of the thermal Green function have been 
found by Yosida and Yamada (1970, 1975) and by Yamada (1975). These relations 
are simple consequences of the Ward indentities for the expansion of the self-energy 
and can be written in the following compact form: 

E(ico)=--(o • .. . .  - 1  - T Z o d ~ y j \ ~ T + ~ T - ] ,  (3.2.15) 

where ~ . . . .  (U/F) and )7odd(U/I') are the even and odd parts of the normalized 
susceptibility at T=0,  respectively. They are related to the magnetic and charge 
susceptibilities: 

1 
Zsp = 2 ~  (2 . . . .  + Zodd), 

1 
zch = 2 ~ r  0~ . . . .  - -Ldd)-  

In other words, the quantities ~ . . . .  and Zodd are the sums of diagrams of either even or 
odd order with respect to U. Thus the self-energy shows features characteristic of 
the Fermi-liquid theory. Using the eqns. (3.2.4), (3.2.6), (3.2.7) and (3.2.15) we 
obtain the well-known Fermi-liquid-like relationship between the low-temperature 
specific heat and magnetic and charge susceptibilities 

lim Ci 2~2 
T~O T -  3 (Zsp+Zch). 

Or, constructing the ratio: 

3 lim Ci _ 1  (l+ZCh ~ (3.2.16) 
4~Z 2 T~O TZ= p 2 \ /" 
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514 A.M.  Tsvelick and P. B. Wiegmann 

Comparing eqns. (3.2.13) and (3.2.15) one obtains the expression for resistivity 
(Yamada 1975, Yosida and Yarnada 1975): 

7~ 2 

where R 0 is the unitary limit. 
These relationships should be complemented by the Korringa relation for the 

impurity-nuclear spin-lattice relaxation at low temperature and magnetic field 
which is equivalent to 

l i m ~ l  ] Z2p(O) --Imzsp((-o+i0) = - -  (3.2.18) 
~,~o L oJ n ' 

where Zsp(CO) is the frequency-dependent impurity magnetic susceptibility (Shiba 
1975). When U ~ 0  Zoad vanishes (Zch=Z~p) and the ratio (3.2.16) coincides with the 
Fermi-liquid value. The following simple and elegant speculation (Yamada (1975)) 
enables us to derive the ratio Ci/TZ~ p for U/F, (c a + U ) / F ~  or. In this region there is a 
localized moment and therefore the charge fluctuations vanish: 

lira Zch(U, Ed) = O. 
U, Ed+U~oo 

Thus the ratio Ci/TZs p differs from that of the Fermi-liquid theory by a factor of 2 
(Wilson 1975, Nozibres 1975). In a quite analogous way we obtain the result for the 
electrical resistivity which coincides with that of Nozi~res' theory (Yosida and 
Yamada 1975, Yamada 1975): 

R = R0(1 - (n TZsp)2). (3.2.19) 

To illustrate this phenomenon as well as the transition from the non-magnetic to the 
strong-coupling regime we exhibit the exact expressions for the charge and magnetic 
susceptibilities and impurity part of the ground-state energy: 

2(2UF) 1/21 f + ~  Z c h - -  _ e x p ( - - n k z / 2 u F ) A ( k ) d k ,  (3.2.20) 

(Kawakami and Okiji 1982 c); 

1 F f ] Zsp- 2(2~fF)l/zLexp k ~ + -~exp(-nk2/2UF)A(ik)dk , 

(Wiegmann et al. 1982, Kawakami and Okfji 1982c); 

i -- exp (icok2/2 UF) A(k) dk, 
_~oi~+0 1 +exp([co[) -oo 

(Kawakami and Okiji 1982a). 

1 F 
A(k) = - 

n (k+U/2) 2+F  2" 

The integrals in (3.2.20) are bounded functions of U/nF and determine the terms 
of perturbation expansion with respect to U. It is easy to check that they coincide 
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Exact results in the theory of magnetic alloys 515 

with four first terms (3.2.13) calculated by Yamada (1975). At U--* oo both integrals 
vanish and we have 

Zoh=O, I.sp=I/2~TK, (3.2.21) 

where in the symmetrical case the Kondo temperature is 

(2UF) 1/2 
TK --  e x p  ( - -  ~ U / 8 F )  ( 3 . 2 . 2 2 )  

7~ 

and coincides with the numerical expression (3.2.2). 
The magnetic and charge susceptibilities, heat capacity, the ratio Tzsp/Ci and the 

ground-state energy as function of U/F are represented in figs. 3.7 and 3.8. 
The Yamada Yosida theory has been generalized for the orbital degenerate case. 

In the limit of the half-filled shell for the exchange hamiltonian (2.4.7) the relation 
(3.1.48) and the coefficient of T 2 terms in the electrical resistivity has first been 
obtained in (Yoshimori 1976) 

[ 1  2 // 8 n + l  
n = 2 1 + l  

(see also the proof of the Korringa relation (Yoshimori and Zawadowski 1982)). 
Unfortunately, one cannot go further either in this elegant framework or in that 

of Nozi~res' theory. For instance, the coefficient of the T 2 term in the magnetic 
susceptibility expansion is apparently not obtainable using this method. This is 
obvious as the Fermi-liquid analogy holds only at T--*0. 

3.2.4. Properties of the asymmetric Anderson model 
In the asymmetric limit F, [6al << U all transitions into the state with n a = 2 are 

suppressed. Therefore, only states with ha= 0 and n a = 1 are mixed. In this limit 

Fig. 3.7 

0 

- 0 . 5  

E1 
F~ 

- I . 0  

I I I 
1.0 2.0 3.0 

U/Tr~ 

Plots of the ground-state energy (E(°)(U) - Et°)(0))/F versus U/F for the symmetric Anderson 
model. The dashed line represents the perturbation-theory result up to the fourth order 
in U/F (after Kawakami and Okiji 1982a). 
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516 A . M .  Tsvelick and P. B. Wiegmann 

Fig. 3.8 

5.0 

3 0  

2.010 ~ ( 2 )  u / 2 r  

0 2.0 4 .0  6.0 
U/2F 

Plots of the magnetic Fnzs/(g#B) 2 and charge nFzc (3) susceptibilities, the specific heat 
nFCi/kBT (2), and the ratio zskBT/CI(g#B) 2 (4) for the symmetric Anderson model 
(expressions (3.2.20)). The dotted line represents the second-term of expression 
(3.2.20b) (after Kawakami and Okiji 1982 c). 

Anderson 's  hamiltonian can be studied using the per turbat ion theory with respect to 
F. I t  is convenient to choose another basis of states in which the hamil tonian 

H 
~atom= Z Edna+ Untn + + ~(na~--na+) (3.2.23) 

a=t,¢ 
is diagonal. 

Stas/ik and Slobodyan (1974), Zaitsev (1976, 1977) and Haldane (1978b) 
constructed the special diagram techniques which use the Green functions of the 
atomic hamiltonian (3.2.23). This  technique greatly simplifies when U ~ .  T h e  
following results have been obtained using the per turbat ion procedure mentioned.  

Straightforward calculations yield the following expression for the magnetic 
susceptibility: 

Z=Zo 
F F in max (]ea]; T) 1 + - - + 2  + . . .  

ned \ ~zea / T 

- -  In + in max kdl) ~E~ + &e n max(T, lE~l) 2 &~ ( T ,  + - -  " " '  

where 

X0 = (2 T(exp (ed/T) + 2))-  1; K =  (1 + exp ( - ed/T)/(1 + 2 exp (--  ed/T); 

Therefore  at sufficiently small F<<max(T,[ea]) the corrections of the order of 
(F /max(T ,  [ea]) ln(max(T , ]ea[))/U may be large and one should sum the leading 
logarithmic terms as well as the Kondo  effect. Hence,  a new feature characteristic of 
the asymmetr ic  case: the position E a of the level is replaced by an effective 
tempera ture-dependent  impuri ty  orbital energy 

F U 
Ed(T) = ed + - -  In (3.2.24) 

n max (ed, T)  

(Barabanov et al. 1974, Haldane 1978 a, Tsvelick and Barabanov 1978). 
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Exact results in the theory of magnetic alloys 517 

The ~implest way to be convinced of this is to consider corrections to the 
impurity ground-state energy. The first-order perturbation theory diagrams of 
fig. (3.9 a, b) give 

Ed(T)=ed-- V 2 (  ~>Ok ('k n(Ek~))- ea --'2 k~ 1 --n(ek) ) <  0 ek -- ea 

F U 
-----Ea+ - - ln  . (3.2.25) 

n max (T, ca) 

The  summation through k should be performed in the region of energies smaller 
than U if U<<D (D is the bandwidth). At such energies the state with na=2  
decouples. Further,  we shall assume U<<D. However, if D<< U a cut-off should be 
chosen equal to the bandwidth. 

The cause of the above strong renormalization is that the state n a = 0 can mix with 
two states na=~, ~, while the state na= 1 only hybridizes with nd=0 (because it 
decouples). That  is the source of the factor '2' in eqn. (3.2.25). 

At U ~ o 0  in the asymmetric Anderson model there is one dimensionless 
parameter F/Ea, U being a high-energy cut-off. The  symmetric Anderson model is 
logarithmically renormalized. 

The summation of leading logarithms in the ground-state energy expansion 
corresponds to taking into account the diagram depicted in fig. 3.9 (c). The  diagram 
fig. 3.9. (d) is less dominant?. 

The most economical way to study the universal properties of the model is a 
scaling approach. This approach was employed in an elegant form by Haldane 

(1978 a). 

Fig. 3.9 

/ \ 
. l  h.  

(a) (b) 

(c) (d) 

Diagrams for the perturbation series, in F, of the ground-state energy for the asymmetric 
Anderson model. The time direction is fixed, and the dashed line represents the a- 
electron line. The solid lines represent a conduction electron line to the right and a hole 
line to the left, and the dots represent the mixing V. The Pauli principle and the fact that 
U--* ~ prevent two dotted lines from running at the same time. (a and b) The second- 
order diagrams in V. (c) The leading log's contribution (eqn. (3.2.26)) comes only from 
the diagrams without any crossings of electron and/or hole lines. (d) The simplet 
diagram with a crossing of the electron lines. 

Another approach to the calculation of Ea(T) can be found in Tsvelick and Barabanov 
(1978), and Barabanov and Tsvelick (1979). 
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518 A . M .  Tsvelick and P. B. Wiegmann 

In the leading-logarithmic approximation the scaling transformation leads to the 
renormalization group equation for an effective energy E a as a function of cut-off w: 

dE a F 
(3.2.26) 

d ln w 7r 

The boundary condition in eqn. (3.2.26) is Ea(U)=E a at w =  U. At smaller w the 
scaling trajectory is 

F w 
Ea(w) =c a -  ~ - l n ~ .  (3.2.27) 

One should rewrite eqn. (3.2.27) in terms of scale-independent quantities. Such a 
quantity is Ea(F ) - E* 

Ea(w) =E*--  F I n F .  (3.2.28) 

Now the scaling trajectory does not depend on the 'bare '  initial values of c a and U. 
The scaling law (3.2.28) holds at max(Ea,  T)<..w<..U. If  either w<~T or 

w<~lEa(w)] scaling stops and there is no renormalization of E a. 

First let us discuss the local-moment regime, where -Ea* >> F. Then  scaling stops 
at an energy where the state na= 0 becomes decoupled. It occurs at w ~ - - E a ( w  ). 
Denoting this energy -~**  we have 

E ~ * = e ~ + ~ m  f , (3.2.29) 

where e is a constant. 
The  constant ~ should be fixed in such a way that all physical quantities do 

expand in power series in F/e~*e(F<<-E~). For  example, the first terms of the 
expansion of the occupation number  n a are (Tsvelick and Barabanov 1978, Haldane 
1978 b) 

n a-- 1 + F/Tre** + O(F2/E~#:t#2). (3.2.30) 

In the § 8.2.2 we derive the exact value of ~: 

~=rce. (3.2.31) 

For T <  - e * *  charge fluctuations are frozen and the Schrieffer-Wolf transform- 
ation is valid. The  Kondo hamiltonian describes a scattering of conduction electrons 
on the localized moment  with 1/2 spin. The effective coupling constant is 

I** = - 2F/TrG** (3.2.32) 

and the cut-off is -E**. According to eqns. (2.4.19) and (2.4.22) the interaction 
(3.2.32) defines the Kondo temperature 

T K = const IE~**[(I**) 1/2 exp ( -  1/I**) (3.2.33) 

Being rewritten in terms of the 'bare'  quantities the Kondo temperature (3.2.33) 
gives the same pre-exponential factor as in the symmetric case (Haldane 1978 a, b, 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

hi
ca

go
 L

ib
ra

ry
] 

at
 1

8:
11

 1
8 

A
ug

us
t 2

01
5 



Exact results in the theory of magnetic alloys 519 

Krishna-Murthy et al. 1980b (eqn. (3.2.21)). We shall show below (§8) that these 
pre-exponential factors coincide modulo the numerical factor: 

( 2 U F )  1/2 / gEd(Ed'q- U) T~- exp~ 2--~ ) (3.2.34) 

F i g u r e  3.10 represen ts  the results  of  the numer i ca l  r enormal i za t ion  g roup  

approach  by K r i s h n a - M u r t h y  et al. (1980b)  for the magne t i c  suscept ib i l i ty  of  the 

s y m m e t r i c  A n d e r s o n  model .  In  the s t rong -coup l ing  and l o c a l - m o m e n t  reg imes  the 

curves  for var ious  E d and F coinc ide  wi th  the universa l  curve  calculated by Wi l son  

Fig. 3.10 

0"25 / 

0'20 I 

0-15 F I~;BT X 
(g./j.B) 2 I 

°1°  i 

° °5  I 

o /  
10- m 

(a) 

i i i i i | 

I 
A o,~ l "=" .,; l 6B=, ~, 

f ~" /C 
~ J K 

p,P ,/' / 
/P ' / /  / 

] 
t - - l o  1 0 -  ; z ~ ~ I 10-11 10 -9 10- 8 iO -r 10-6 

ksr/o 

0:25 

0 .20  

0 .15  

k,BT, X 
(oH.s) z 

0 , 1 0  

0.05 m 
¢ 

IO- = 

(b) 

A 

u/o "~d'Q 2r/~D 
io-3' =0-s io-6 
to-= =o-5 Io- 6 
=o-= io -4 =o-~, 

t t I 
to-S =O-4 10-3 

kBT/O 

.EC/o 
7.6 x 10 -6 
6.3 x 10 -6 
7.6 x ~0 "5 

l A , , ,  
jO-2 ~-~ IO o 

Plots of kBTZi(T)(g#R) z versus lnkBT/D which illustrate the parameter dependence of 
transitions between the various regimes. (a) Transition from the strong-coupling 
regime to the local-moment one ( TXi = 1/4) occurs at a temperature of order T K which is 
indicated by arrows. All three curves lie along the universal Kondo-susceptibility curve 
indicated by the dashed curves. (b) Transition from the local-moment regime to the 
mixed-values one (Tzi= 1/6) occurs at T - - E * .  As the temperature increases further 
transition to the free-orbital regime (Tzi = 1/8 occurs at T ~ - U. (after Krishna-Murthy 
et al. 1980b). 
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520 A . M .  Tsvelick and P. B. Wiegmann 

(1975) for the s-d exchange model fig. 3.10(a). The local-moment regime holds 
up to T~- --6~. At T>> -6~  the mixed-valence regime appears which extends up to 
T,-~ U ( TXi = 1/6 for [6~*[ << T<< U) see fig. 3.10 (b)). 

Now let us consider the mixed-valence region where Iq*l "" F. In this region there is 
no perturbation theory, so that Wilson's numerical technique (1974) and the exact 
solution come into their own. Somewhat  forestalling events, we quote below an exact 
result (Wiegmann and Tsvelick 1982) for the magnetic susceptibility and occupation 
number  (figs. 3.11 and 3.12) 

i I + ~ de) exp(-[c0[- icoq*/2F) 
n a = l  X/~-Tt j _ oo co~-i0 G(_)(CO ) , (3.2.35) 

(2ge) 1/2 l- 
X i  = ~ -  [ exp (--nea~/2F) 

2~(~e) f +~ de) exp(- lcol- ico6*/2F)  1 
+ -~oi~+co ~-_) -~)  j ,  (3.2.36) 

F rceU 
6~ = 6a + -- In 

4 F '  

where 

G(-)(CO) = x/(2~)(\2rcejico+0 ~i,o/2= / /F  ( 1  + ~ )  , i c °  

postponing their derivation for §8. The analytic properties of these integrands 
change when e~ changes signt. The  perturbation-theory expansions in F/q** come 

Fig. 3.11 

lid 

).8 

),7 

).6 

0.2 

0.1 

-3 -2  _~ 0 I ~ 3 2r 
, , , , , • 

Universal plot of the occupation number n a versus (6~)/2F for the asymmetric Anderson 
model (eqn. (3.2.25)) (after Melnicov 1982 b). 

"~ Haldane (1978) noted that the criterion for the mixed valence is ]E~]~<F rather than 
lea[ ~< F. Actually, 6~ may be arbitrarily large compared to E a. 
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Exact results in the theory of magnetic alloys 

Fig. 3.12 

521 

X(E >0) 

1 

0.5 

I I I 
0 25 0 5 0.75 

X(E <0) 

-2.5 

I, 12F 

Universal plot of the magnetic susceptibility z/(g/IH) 2 versus ~e~/2F for the asymmetric 
Anderson model (eqn. (3.2.36)) (after Melnicov 1982b). 

out of (3.2.35) and (3.2.36) as follows. In the  integrands of (3.2.35) and (3.2.36) 
introduce a new integration variable t = c0E**/2F (Ea** is defined by (3.2.29)). When  
e* < 0  we bend the integration contour  in (3.2.35) into the upper  half-plane and get 

1 ~'~ tan(t(F/E**)) t - r z / ~ ]  * 

n a = l + ~  ~o t F(1/2--Ft/ne**) 

x exp ( -  t) dt + O(exp (rcc,/2F)). (3.2.37) 

When  Ftle*l << 1 integral (3.2.37) can be expanded in powers of F/E**. So we obtain 
(3.2.30). I f  E , > 0 ,  one can bend the contour into the lower half-plane and get: 

na(E,/F ) = 2F/roE** + O((F/c**) 2) (3.2.38) 

(Tsvelick and Barabanov 1978, Haldane 1978b). 
At e,  < 0  corrections of the order of F/E~ .2 to the magnetic susceptibility are 

much  smaller than T~ 1. When  E~ > 0 the situation is quite opposite: one can neglect 
exponential terms and expand (3.2.36) as follows (Haldane 1978b): 

Zi(E*/I') = I'/~L* .2 + . . . .  (3.2.39) 
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522 A . M .  Tsve l i ck  and P. B. W i e g m a n n  

I t  is in t e res t ing  to no te  tha t  for e~--*0 the in tegra ls  ((3.2.35), (3.2.36)) can be  
ca lcu la ted  expl ic i t ly :  

rid(O) = 2 -- X/2; )~i(0) = ~ /4x /2F.  (3.2.40) 

T h e  equa l i ty  Zi(0)F ~ 1 was p r e d i c t e d  b y  V a r m a  and  Yafet  (1976). T h e  case --Q* ~ F 
is of  mos t  in teres t .  T h e  s ta tes  n~ = ~, ~ get  s t rong ly  m i x e d  wi th  the  s tates  nn = 0. T h e  
l o c a l - m o m e n t  reg ime  and  va l ence - f luc tua t ion  r eg ime  are  no longer  s epa ra t ed  by  a 
finite range  of  t e m p e r a t u r e s  ( T  K ~ F).  As a resu l t  TZi makes  a d i rec t  t r ans i t i on  f rom 
the  s t r o n g - c o u p l i n g  r eg ime  to the  va l ence - f luc tua t ion  r eg ime  at a t r ans i t i on  
t e m p e r a t u r e  of  the  o r d e r  of  F .  No te  tha t  this  is a case even for  --E d>>F as far as 
- - ed~<Fln  U/F. T h e  n u m e r i c a l  r e n o r m a l i z a t i o n  g r o u p  resul t s  for  th is  case are  
p r e sen t ed  in fig. 3.13. A t  a low t e m p e r a t u r e  the  sys t em is in the  s t r o n g - c o u p l i n g  
reg ime and there  are no dev ia t ions  f rom the un ive rsa l  K o n d o  suscep t ib i l i t y  (dashed  
curve  (fig. 3.14). T h e  magne t i c  suscep t ib i l i t y  has a b r o a d  m a x i m u m  at T ~ F  
(fig. 3.14) after  which  it t ends  to the  l imi t ing  curve  TZi = 1/6. 

At  Q ~ F  as Q increases  fu r the r  even at a low t e m p e r a t u r e  T ~  F the m a g n e t i c  
suscep t ib i l i t y  curves  canno t  be m a p p e d  on to the  un ive rsa l  K o n d o  suscep t ib i l i t y  
curve  (fig. 3.14). T h e  m a g n e t i c  suscep t ib i l i t y  has a b r o a d  m a x i m u m  at T ~ F  (fig. 
3.14) af ter  wh ich  it t ends  to the  l imi t ing  curve  T)~i= 1/6. 

W e  nex t  d i scuss  wha t  h a p p e n s  if  e~>>F. T h e  sca l ing  f o r m u l a  (3.2.28) ho lds  at 
energ ies  up  to w~ea(w ) at wh ich  the  s tates  rid= ~, ~ b e c o m e  d e c o u p l e d  f rom low-  
ene rgy  processes .  T h i s  d e c o u p l i n g  ene rgy  is st i l l  g iven  b y  (3.2.29), whe re  now 
e ~ * > 0 .  At  T<<E~ ~ charge  f luc tua t ions  are  f rozen  out ,  and  phys i ca l  quan t i t i e s  are 
g iven  b y  p e r t u r b a t i o n  theory .  A p a r t  f rom cor rec t ions  to (3.2.38) and  (3.2.39) of  the  
o r d e r  of  F / Q  e* there  are also co r rec t ions  of  the  o r d e r  of  e x p ( - - c ~ e / T ) .  I f  we 
subs t i t u t e  Ed(T ) i n s t ead  of  e d in to  the  f o r m u l a  for  the  t h e r m o d y n a m i c  po ten t i a l  at 
F = 0  

,N~= - T l n  (1 + 2 c o s h H / 2 T e x p ( - E d ( T ) / T ) )  (3.2.41) 

this  f o rmu la  will  be val id  even at T < c ~ * .  

Fig. 3.13 

0 2 5  I i I i i 1 

kBTX 
(g/xB)2 

0 . 2 0  

O: 15 

O. I0 

0 .05  

h . o Q ° ° O O O o o o  
',o ° ° o  

/ / ,e 
o/ / 
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• e'° l  I I t I I I 
10-8 10-7 10-6 10-5 10-4 10-5 10-2 i0-1 

kBT/D 

0 0 0 0 0 0 0  

Plot of kB Tzi/(gffB) 2 versus In h~ T/D with parameters Q, F, U =  10- 2D such that - E~* ~> F. 
The dashed curve is the universal Kondo susceptibility. Here 2F /~D=10-5 ;  
ed/D=--05 x 10-4; e~/D= --1"855 x 10-5; TK/D=4.2 x 10 -7. 
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Exact  results in the theory of magnetic alloys 523 
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Fig. 3.14 
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~> (a) Plots of kBTz/(g#B) 2 versus In (kBT/D) for led[ ~ F and Ed ~ F. Deviation from the universal 
shape, indicated by the dashed line, reveals the non-magnetic character of the impurity. 
(b) Plots of Dz/(g#B) 2 versus In k B T/D for the same parameters as (a). Deviations from 
universality correspond to the broad maxima in the magnetic susceptibilities curves 
(after Krishna-Murthy et al. 1980). 

§4. BETHE METHOD 

In  this section we apply the Bethe-Ansa tz  approach  to the solution of: 

(i) T h e  s -d  exchange model  §4.2. 
(ii) T h e  anisotropic  s -d  exchange mode l  (§ 4.3). 

(iii) T h e  degenerate  exchange mode l  (§4.4). 
(iv) T h e  Ander son  model  (§4.5). 
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524 A . M .  Tsve l i ckand  P. B. Wiegmann 

A solution of the resonance-level model  is given in the Supplement  section. 
Presentation is organized as follows. T h e  fundamentals  of the Bethe-Ansatz 

approach are presented in § 4.1. All other sections are intended for readers who are 
already acquainted either with Bethe's  method or with §4.2. 

4.1. General 

In 1931 only 5 years after SchrSdinger 's  work, Hans  Bethe constructed the exact 
wave function of a chain of 1/2-spins with a nearest-neighbour interaction. Thi r ty  
years passed and his work has initiated the development  of a new interesting domain 
of mathematical  physics, namely, the theory of quan tum integrable systems. 

The  subject of the present  review is the application of this theory to dilute 
magnetic alloys. However,  the mathematical  apparatus which we shall use for 
diagonalization and study of the integrable hamiltonians is to a certain extent 
common for different models of one-dimensional  quantum-field theory and two- 
dimensional lattice statistics. The  Bethe-Ansatz technique to be discussed below 
may equally well be applied to all integrable models.  Therefore  it is worth  
ment ioning some general ideas related to the Bethe Ansatz. 

Bethe studied a one-dimensional  version of the model which had been suggested 
by Haisenberg (1926) for the description of ferromagnetism: 

N 

~ = I  ~ ¢rn'crn+ 1 (4.1.1) 
n = l  

( t r , = ( ~ , o ' ,  y,o-~) are Pauli matrices). He  proved that the eigenstates of this 
hamiltonian 

IV> = Y q'(xl, . , ' % , ) < 1 , - -  + " . .  . ,  % . f o > ,  
xi 

(x i= l, . . . , N )  

are given by a function of a special form, which has been christened the Bethe Ansatz: 

q?(xl . . . .  , x M ) = ~ e x p  i ~ kp, x j+ i  ~ sign(xi-xj)O(kpi,  kp, ) , (4.1.2) 
j = l  / > j = l  

where P = { p l , . . . , p M }  is a permuta t ion  of the integers { 1 , . . . , M } ,  10) is the state 
with all spins down, xj are coordinates on the lattice, kj are quas imomenta  of 
magnons,  and 

tb(k, p) = 2 cot - 1 
s n(V) 

(4.• .3) 

is a two-particle scattering phase. The  spin and energy of this state are equal to: 

M 

S Z = N / 2 - - M ,  E = I  ~ coskj. 
j = l  

I t  is convenient to use such parametrizat ion for k(2), p(2') in which the scattering 
phase (4.1.3) depends on only the difference between the corresponding arguments  2 
and 2'. 
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Exact results in the theory of magnetic alloys 525 

The possibility of this parametrization is due to the presence of a special group of 
mutual rotations of a one-dimensional lattice and time. For the Haisenberg model 
this parametrization has the following form (Hulten 1938): 

k(2) = 2 tan-  1 ~, ] 

q)(k(2),p(2')) = 2 tan-  1 

The analytical properties of the scattering phase as a function of 2 have a fairly simple 
form. By analogy with relativistic kinematics a quantity 2 will be called 'rapidity'.  

The wavefunction (4.1.3) describes the so-called factorized scattering. We see 
from (4.1.3) that when a particle passes from one region XQ= {Xql < . . .  <xq~} to 
another region XQ,, which differs from the first one by a permutation of some pair 
(Xp, xq), only two-particle processes occur. Furthermore,  any N-particle scattering 
processes is expressed standardly in terms of the product of N(N--  1 )/2 two-particles 
processes (fig. 4.1). The absence of multiparticle processes is the Bethe hypothesis. 

The two-particle processes in 1 +1 space-time conserve a set {hi,h2} of 
momenta. Therefore, a set of momenta {k l , . . .  ,kM} in (4.1.3) is the same in all 
regions XQ. In other words, there are no multiple production processes. Such 
dynamic systems are characterized by the existence of an infinite series of 
independent integrals of motion, which may be considered as a necessary condition 
of factorizabilityt. 

Fig. 4.1 

5 / #~ 

3 / 

i t 

The graphical representation of the particle factorized S matrix. 

t Apparently, this relation was first pointed out by Polyakov (unpublished). 
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526 A . M .  Tsvelick and P. B. Wiegmann 

As we mentioned above, the factorizability enables one to express the amplitude 
of any multiparticle process in terms of two-particle amplitudes. Obviously, one may 
bring particles from a region XQ to another region XQ, in several ways, i.e. 
decompose the permutation connecting XQ with X O, into the product  of two-particle 
permutations also in several ways. For  the self-consistency of the Bethe hypothesis it 
is necessary that these ways lead to the same result. 

The  excitations in the Haisenberg model (4.1.1) have no internal degrees of 
freedom and a scattering process reduces only to a phase shift. Therefore,  all possible 
transitions from the ]in) to lout) states through the two-particle permutations 
automatically lead to the same result and the Bethe hypothesis is valid provided that 
the N-particle scattering phase has the following form: 

N 

@(kl . . . .  ,kN)= ~ ~(kj, hi), (4.1.5) 
i > j = l  

The  situation is more complicated in theories with certain internal symmetry 
(spectrum degeneracy). If a state of the particle is characterized by not only its 
mome turn but  also by some index (colour) the colliding particles may exchange 
their colours. Factorized S matrices still contain only purely elastic scatterings. 
Nevertheless, they are now far from trivial and are not, in general, diagonal. Non-  
diagonal processes are permissible in theories with spectrum degeneracy; they are 
responsible for the redistribution of momenta  among particles of different types. 
The  S-matrices form a finite-dimensional non-commutat ive space. The  require- 
ment of independence of the final result of pair collisions of their ordering imposes 
certain constraints on the two-particle S-matr ix  (in addition to the usual require- 
ments of analyticity and unitarity), namely, the factorization equations. 

However,  before considering the integrable models with the internal symmetry 
we enumerate the main known models with diagonal S matrices. 

All these models are described by the Bethe-Ansatz wave function (4.1.2) with a 
special two-particle scattering phase. 

(i) The  spin 1/2 anisotropic Haisenberg ring (so-called XXZ-chain) (Orbach 1958) 

N 

JZf=I  ~ [(o-~a~+ 1 + a,an y y+ t) +cos#o'~a~+l]. (4.1.6) 
n = l  

k(2) = 2 tan-  1 (cot #/2 tanh #2), 1 

q~(2) = 2 tan-  1 (cot # tanh #2), ] (4.1.7) 

M 

E = I ~ cos k(;~). 
e = l  

(ii) The  interacting Bose-gas (Lieb and Liniger 1963, Lieb 1963) 

cp is a Bose field 

-- ¢p* ~ -  ~0 +g(~0tp*) 2 ] dx; 

O(k)E= ~ k].=2Ntan-l(k/g)' } 
~t= l  

(4.1.8) 

(4.1.9) 
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Exact results in the theory of magnetic alloys 527 

(iii) The massive Thirring model (Berezin and Suschko 1965, Bergnoff and 
Thacker  1979) 

= f (~i~£~ - m~O + gjuj ~) dx; (4.1.10) 

here Ju = ~ ? ~ ,  ~ = (~*, ~2) is a spinor, • = • +70 and ?u are two-dimensional Dirac 
matrices 

This  model is equivalent to the Sine-Gordon model which was directly solved by 
Sklyanin et al. (1979). 

k(2) = m sinh 2, 

O(2) = 2 tan-  1 (tan g tanh 2/2), (4.1.12) 

M 

E =  m ~ cosh 2~, 

where m=Mo/2A (A is an ultraviolet cutoff), and 

f12 =4r~+ 8g at Ig]<<l. 

(iv) Th e  resonance-level model (Filyov and Wiegmann 1980) 

2/f = --ic+(X)~xC(X)+ VS(x)(c+(x)d+d+ c(x)) 

+ Ua(x)c + (x)c(x)d + d ; dx, 
) 

(4.1.13) 

k(2) = Vexp (2), 

O(2) = 2 t an-  1 (tan Utanh  2/2), (4.1.14) 

N 
E= ~ tan-t(VZ/k(2=)). 

(v) The  generalization of the Haisenberg model for an arbitrary spin S 
(Zamolodchicov and Fateev 1980, Tahktadjan '1982, Babujan 1982, Kulish and 
Sklyanin 1981) 

N 
~ =  E ~ ( S n ' S n + l ) ;  (4.1.15) 

n=l 

here ~(x)  is a polynomial of the order 2S of a special form, 

k(2) = 2 tan-  1 21S, t 
(I)(2) = 2 tan - 1 2, (4.1.16) 

M 
E= y, cosk(&). 

~=1 
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528 A . M .  Tsvelick and P. B. Wiegmann 

All the above models are interrelated. For  example, it is known that magnetics (v) 
for large S-~o0 are equivalent to the interacting bosons (ii). This  follows f rom 
(4.1.16). 

Until  the early 1960s, as one may judge by the literature, Bethe's work had no 
considerable impact  on either physicists or mathematicians.  But there was a 
particular exception: work by Hul ten  (1938), in which the ground-state  energy of the 
antiferromagnetic spin chain was calculated, stood by itself. 

In  1963 Lieb and Liniger breathed a new life into the Bethe method,  by solving 
the problem of the interacting Bose gas. The  complete symmetrical  many-body  
wavefunction for a problem with the g-function interaction was independently 
derived by McGui re  (1964) and Berezin et al. (1964). A major  breakthrough in the 
technology of the Bethe Ansatz has been a generalization of the L ieb-Lin iger  
solution for a many-body  problem without  constraining the symmet ry  of the 
wavefunction. The  solution of this p rob lem required great effort (Flicker and Lieb 
1967, McGui re  1966) and was carried out almost simultaneously by Gaudin (1967)~ 
and Yang (1967). In the course of this solution the general special function relations 
between two-particle scattering ampli tudes were derived. These  relations are 
necessary and sufficient conditions for the validity of the Bethe Ansatz. These  
relations constitute the foundations of the theory of integrable two-dimensional  
statistical models (Baxter 1972) and of the theory of factorized scattering 
(Zamolodchicov and Zamolodchicov 1979, Zamolodchicov 1980, Karowski et al. 
1977). T h e y  are well known as triangle (orfactorization) equations (Zamolodchikov 
and Zamolodchicov 1979))~. Often they are called the Yang-Baxter  equations. In the 
general case of the one-dimensional  quantum theory of particles with n different 
colours these equations have the following form: 

S a 2 a ~ ( k l ,  Sa~a~,'(k2, k3) 
_ a2a~ -Sa3a~(k2, k 3 ) S ~ , ( k x , k 3 ) S ~ ' , ( k x , k 2 ) ;  (4.1.17) 

here alal Sa2a~(kl, k2) is the two-particle scattering matrix (fig. 4.2). 
The  subscripts (al,  a2) and (a], a~) correspond to particle colours in the [in) and 

lout) states with momenta  kl, k 2. In (4.1.17) summat ion  over repeated indices is 
meant.  The  factorization equations imply that all the possible decomposit ions of the 
N-part ic le  S matrix as a product  of two-particles S matrices give the same result. 

Let  us consider a three-particle scattering matrix. The  corresponding two- 
particle collisions may be ordered in two different ways as presented in fig. 4.3. 

Let  the particles in the ]in) state be ordered in such a way that x 1 < x2 < x3, whilst 
after the collision the ordering is x 3 <x2 <Xx. T h e  pair collisions may  occur in two 
different ways: 

X 1 ~ X 2 ~ X 3 "--+X 1 ~ X 3 ~ X 2 "--*X 3 ~ X 1 ~ X 2 ----~.X 3 ~ X 2 ~ X 1 

X 1 ~ X  2 ~ X  3 - - + x  2 ~ X 1 ~ X  3 - ' ~ X  2 ~ X  3 ~ X  1 - - + x  3 ~ X  2 ~ X 1. 

Thei r  equivalence is an expression of the factorization condition (4.1.17). The  
validity of this condition for three particles leads to the validity of it for any N-  

1" Unfortunately, Gaudin has published only a brief list of his results. His work has not 
been published completely yet, not to mention his Thesis which is not available. 

~Note that the factorization conditions sprang out earlier (McGuire 1966) in the 
connection with the many-body fermion problem. 
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Exact results in the theory of magnetic alloys 529 

Fig. 4.2 

o~ 

k 1 

a 1 a I 

k 2 

alal 
Saaa ~ (kl, k z) 

The graphical representation of a two-particle S matrix. 

Fig. 4.3 

3 I' 2tt ,/o+ y 

a2  
2 

a~ ~ a, _ /  a I' 
1 :"  ~ 1" /% , 

5 

The equivalence of three-particle diagrams (the factorization equation). 

particle process (fig. 4.1). As has been ment ioned above for (i)-(v) without an internal 
symmet ry  the condition (4.1.17) is fulfilled trivially by virtue of the commutat ivi ty  of 
S matrices. 

For systems possessing an internal symmet ry  the Bethe Ansatz has the following 
form. Let  Q = { q l , . . . , q N }  and P = { P a , - - . , P N }  be permutat ions of the integers 
{ 1 , . . . ,  N}. Then  in the region XQ = {Xql < xq2 < . . .  < XqN } the wavefunction is 

} lY~(XQ) ~- ~p A . . . . . .  ~(P[Q) exp .= k p j x j  . (4.1.18) 

The  summat ion  is carried out over all the permutations.  A(P]Q) in the given region 
does not depend on coordinates. A(PIQ)s from different regions are connected with 
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530 A . M .  Tsvelick and P. B. Wiegmann 

each other by S-matr ix  elements. For example, if the regions XQ and XQ<~> differ 
from each other by the permutation of i and j particles then 

A...kl...(p[Q) = ki Stj A...~j... ( PIQ <zj> ). (4.1.19) 

Qnce the two-particle S matrix is shown all A(P[Q)s can be expressed in terms of 
A(PII ) ( I =  { 1 , . . . ,  N}) with N-particle S matrices given by the product  of two- 
particle matrices. 

The  factorizability conditions are very strict constraints on the scattering 
kinematics. Rewriting them in components it is easy to make sure that the number  of 
equations considerably exceeds the number  of unknown quantities. Nevertheless, 
today a considerable number  of non-trivial solutions of the factorization equations is 
known. These solutions correspond to different models of the 1 + 1-dimensional 
quantum-field theory. Among them we should point to the following: 

(i) Many-body problem with the b-function interaction: 

(4.1.20) 

where n is the number  of colours. 
This  hamiltonian with n = 2 was diagonalized by Yang (1967). Generalization to 

an arbitrary n was done by Sutherland (1968). 
Th e  two-particle S matrix of this model is 

°,a~ _ k - - p + i g P ~ t ~  
Sa2a~(k,p ) -- k - p + i g  ' (4.1.21) 

a l a ~  where Paza~ =ba~baza~ is a permutat ion operator. 
N 

The  energy of the system is E =  ~ k 2. 
j=l 

(ii) Hubbard model (Lieb and Wu 1968): 

~ = t ~  + + + + • (c,~c,+ 1~ + c,+ 1~c,~) + U ~  c,,c.~c,$c,t, 
n,  t7 R 

(4.1.22) 

~ , ~ i  _ t ( s i n  k - -  s i n p )  + zUP.2~" ~'~ 
S~2~i(k,P)- 

t ( s ink - s inp )+iU ' (4.• .23) 

where c~. is the creation operator of an electron with a spin at the nth s~ite of a one- 
dimensional lattice. 

The  energy of the system is 

N 

E = t  ~ coskj. (4.1.24) 
j = l  

( i i i )  Generalization of the massive Thirring model (Lipatov and Buhvostov 1980): 

5fl= f l a : ~  ~a(iOuyU-m)~a-g(~lTu~l)(~27U~z) ldx .  (4.1.25) 
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Exact results in the theory of magnetic alloys 531 

aza~ 1 
8~.;(2)  = 6.~a~G2a~6 .... +~E~1o2c~o~ 

1 
×sinh(~ ) / s inh (~ )+~( tTx )a ,a2 (6x )a la~  

x c o s h ( ~ )  / c o s h ( 2 + i g )  ; (4.1.26) 

N 

E=m ~ cosh2~. (4.1.27) 
a = l  

(iv) The s-d exchange model with an arbitrary impurity spin S: 

~=~fdx(-ic+.(X)~xC.(X)+ 1 + ~ Ic~ (x)a~¢G,(x)S6(x) j ,  (4.1.28) 

where a = _ 1, a = (a~, ay, rr~) are the conventional Pauli matrixes and S = (S~, Sy, N~) 
are the spin operators of the impurity. 

N 

S(2)=(2+iI~'S)/(2+iI); E= ~, kj. (4.1.29) 
d = l  

The hamiltonian was diagonalized by Andrei (1980) and Wiegmann (1980 a, 1981) 
for S =  1/2 and by Fateev and Wiegmann 1981 a) for arbitrary S. 

(v) The chiral invariant Gross-Neveu model (SU(n) isospin Thirring model): 

~Cp : f dx { a~= l i~a~uTV Oa __ g [ ( a~__ l ~oOa __ ( a~_ l ~a,50 a "~ff2 ] }  . (4.1.30) 

This model was solved by Belavin (1979) and Andrei and Lowenstein (1979) for 
n = 2. The solution describing n arbitrarily was found by Andrei and Lowenstein 
(1980), Kulish and Reshetikhin (1981) and Arinstein (1980): 

• ala~ 
z-- z' + zgP~2a~ (4.1.31) ala~ t 

S a 2 a 2 ( ' ~ ' T ' ) - -  r--z'+ig ' 

z = + 1 is a particle chirality. 
Nz 

~=±i i=l 

where AT, and k,i are the number and momenta of particles with the given chirality z. 

(vi) The Anderson model (Wiegmann 1980 c): 

+d: G(x))J +Ed(d?dT Ud?d,d d, (4.1.32) 

where C+(x) is a creation operator of a conduction electron with the spin a and d + is a 
creation operator of an electron from the impurity orbital. 
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532 A . M .  Tsvelick and P. B. Wiegmann  

~ g(k ) - -g (p)  " ~ 
S~=~ (k ,p)  = g(k ) - -g (p)  + i  ' 

g ( k ) = ( k - q -  U/2)E/2UF,  F =  V2/2, (4.1.33) 

N 

u =  £ kj. 
j=l  

(vii) The generalized Haisenberg chain (Sutherland 1975, Kulish and Reshetikhin 
1981): N 

~a=I ~ Pn,n+l, 
n = l  

ala~ 
S,,2. i (2) = (2 + iP~'2~)/()~ + i), 

M 

E = I  ~ cosk(2~); k ( 2 ) = 2 t a n - 1 2 2 .  
g = l  

(viii) The O(n)- invariant  magnetic chain (Reshetikhin 1983): 

N 

~ = I  ~ [(n-2)P,~,m+~-2Km, m+d. 
m = l  

There  Pro,m+ 1 is a permutat ion operator,  K~"'2~ ~ -  6 . . . .  CSai.~ 

S =  2 I + i P - - i  2 + i ( n _ 2 ) / 2  K (~+i ) ,  

M 

E = I ~ cos k(2=), k(2) = 2 t an -  i 22. 
g = l  

(4.1.34) 

(4.1.35) 

(4.1.36) 

(4.1.37) 

Let  us come back to the general propert ies of the Bethe Ansatz. The  parameters  
{k j} of the wavefunction (4.1.18) are so far arbitrary quantities. In order to find the 
spect rum of the system we impose some boundary  conditions. T h e  limit of a large 
number  of particles does not depend on the form of the boundary  conditions. I t  is 
most  convenient to choose them as periodic conditions (PBC)'~. Let  us put  the 
system into a box with length L and demand that 

~ / ( X  1 . . . .  , x j , . . . ,  xN) = ~b(xl . . . . .  x j  + L , .  . . , XN) (4.1.38) 

for a n y j = l , . . . , N .  
The  resulting equations for the coefficients A(PIQ) lead to the following 

eigenvalue problem (Yang 1967, Gaudin  1967): 

exp ( i k jL){  = T j{, (4.1.39) 

where ~ = A(I/I) ,  

Tj = Sjj+ 1. . .  SjNSjl . . .  Sjj_ 1, 

and Sjk means the operator matrix Sjk(2 j -  2k). 

(4.1.40) 

"~ Other kinds of boundary conditions were considered by Gaudin (1967). 
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Exact results in the theory of magnetic alloys 533 

For models without an internal symmet ry  the S matrix is not an operator but a C 
number  and (eqn (4.1.39) leads straight to the algebraic equation for k(2~) (Bethe 
1931): 

M 

exp (ik(,~)L) = H exp (iqb(5~--5~)). (4.1.41) 

f l= l  

Equation (4.1.41) describes the whole spectrum of the system. 
The  most  useful form of PBCs is found by taking the logarithm of (4.1.41), for 

which one must  choose a branch of the function O(2). The  log of (4.1.41) is written as 

M 
k(~)L=2z~N~+ ~ ~(5~-2a) ,  (4.1.42) 

where N~=in tege r  are the quan tum numbers  of the system. The  transcendental 
equation (4.1.42) was first found by Bethe (1931) for a 1/2-spin chain. We shall call 
them the Bethe-Ansatz equations below. For  systems possessing an internal 
symmet ry  PBCs lead to the prob lem of simultaneously diagonalizing N operators. 
Using the triangle equations it is easy to show that all operators Tj commute  with 
each other so that the problem of simultaneous diagonalization may indeed be 
solved. T h e  most  remarkable aspect of Yang's  and Gaudin ' s  approaches is the 
t reatment  of the matrices Ti. T h e y  have shown that the  eigenvalue problem for the 
system with two kinds of coloured particles can be solved by a twofold application of 
the Bethe Ansatz. Sutherland (1968) has extended their method to include a 
t reatment  of an arbitrary num ber  of colours, using a hierarchy of Ansatzes. The  
problem of diagonalization of similar sets of operators has arisen in different aspects 
of the application of the Bethe Ansatz. We mean the classical two-dimensional  
statistical lattice models. 

T h e  ideas of Kramers  and Wannier  (1941) and Onsager (1944) concerning the 
transfer matr ix  were developed further  by Lieb (1967 a, b, c, d) who used the Bethe 
Ansatz to diagonalize the transfer matrices of the ' ice'  and 'ferroelectric '  models 
which are special cases of the six-vertex model. The  two-dimensional  Ising model 
(more precisely, two decoupled Ising models) is also a special case of these models 
(for a review see Lieb and Wu 1972). The  various developments  in solvable lattice 
models were unified and extended in the remarkable works of Baxter (1972 a-e). 
Baxter constructed the solution of the eight-vertex model including all the previously 
solved models as special cases, and put  forward the method which became the 
ground of the modern  development  of the Bethe Ansatz. 

There  is a close relationship between exactly solvable models of lattice statistics, 
1 + 1 quantum-field theory and factorized scattering theory (Zamolodchikov 1980). 
We consider this relationship in the f ramework of Baxter 's  scheme. 

In particular, Baxter (1972b) and Sutherland (1970) showed that the hamil- 
tonian of a general anisotropic X Y Z  Haisenberg spin chain 

~ r x v  = E [ ] x ~ n C V n +  1 X Y z z .~ x x + I y ~ n C r n + X + I z c r n ~ X n + l  ] (4.1.43) 
n 

could be obtained as a logarithmic derivative of the eight-vertex model transfer- 
matrix. 

Let  us give the general definition of a vertex model. Consider a square lattice. 
The  fluctuating variables a =  1 , 2 , . . . ,  n ( 'spins '  or 'colours ')  are attached to each 
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534 A . M .  Tsvelick and P. B. Wiegmann 

bond connecting the nearest-neighbour lattice site. T h e  ver tex Bohzmann  weight 
a 2 a ~  Sa~al (see fig. 4.4) corresponds to each colour configuration around any lattice site. By 

definition, the parti t ion function is the sum over all colour configurations of all the 
lattice bonds, each configuration being taken with the statistical weight equal to the 
product  of vertex weights over all lattice vertices. T h e  transfer matrix of a vertex 
model  is the operator connecting the configurations on the vertical bonds placed 
between the rows n "  1, n({i 1 . . . .  , iN}) and n, n +  l ( { j t , . . .  ,JN}). T h e  transfer matr ix  
is of the form 

N 
= i l . . . i N  _ _  T - - T j  .... jN-- Z H ~'~PkPk+likJk " (4.1.44) 

p l = P N + l  k=l {pk} 

The  parti t ion function for a lattice with N '  rows is given by 

Z =  T r  {TN'}. 

The  problem is thus reduced to that of diagonalizing the transfer matrix (4.1.44). 
Baxter (1978) has shown that the remarkable propert ies  of the solvable vertex model  
become more t ransparent  if one puts it on a general non-regular  lattice, consisting of 
a large number  of arbitrarily directed straight lines (lattice axes), T h e  model on the 
non-regular  lattice remains exactly solvable, subject to the dependence of the vertex 
weight S(a) on the intersection angle ~ of two straight lines in the given vertex of a 
special kind (fig. 4.5). 

Fig. 4.4 

al .q°2°~ 
--01 a~ 

0 2 a~ 

a 1 

a 2 a ~  The matrix of the Bohzmann weights (vertex) Sala; in the vertex models. 

Fig. 4.5 

~ iK 

PK PK + 1 

S~P ~÷' (a) 
JKIK 

The graphical representation of the vertex weights of the vertex model on a non-regul~ir 
lattice. 
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Exact results in the theory of magnetic alloys 535 

This angular dependence is a consequence of the remarkable symmetry of the 
Baxter models on the non-regular lattice (so-called Z invariance). The partition 
function of the model is invariant under arbitrary parallel shifts of any lattice axes 
(note that such shifts can lead to a change in the coordinate structure of the lattice). It 
is easy to see that the Z invariance is realized if the vertex weights a2~i S~.~(c~) do satisfy 
the triangle equations (4.1.17): 

S12(~1 -- ~2)S13(~1 - ~3)S23(~2 - ~3) = S23(~2 - ~3)S13(~i - ~3)S12(~1 - ~2)- 

Let us consider the so-called monodromy matrix (fig. 4.6): 

L [ , C ~ = L { i l . . . i N } ,  i r,.,,. . . .  O~N) \~, ,]  - -  { j l . . . j N } , j k ~ ,  O~l ,  , 

- -  JPl P iP2  ,~P.N. j , i  
- -  S i l J l ( O ~ l  - ( ~ ) S i 2 J 2  (~2 -0~) . . . .  Z N J N  , (4.1.45) 

an important object which we shall often use. The  trace of the monodromy matrix on 
the non-regular lattice defines the transfer matrix of the vertex-lattice model: 

T(~) = T r  L(~) = VL~a'"i~,ir,',. ,aN). (4.1.46) / , { j l . . . j n } , i k  ~ ,  ~ 1 ,  " " " 
i 

Hereafter ~ is called a spectral parameter. 
The most important property of the parametric set of transfer matrices (4.1.46) is 

their commutativity at different values of the spectral parameter (Baxter 1972 a) 

[T(e), T(fl)] = 0. (4.1.47) 

This is the consequence of the triangle equations and is the necessary condition for 
exact diagonalizability. 

In the Baxter eight-vertex model the number  of colours is equal to two and the 
colour of the bond is represented by the arrows. Each vertex has an even number  of 
arrows entering and leaving it. The  vertex in the eight-vertex model can be written as 

3 
a 2 a ~  Sa,a ~ ~' i i (4.1.48) = W i ( T a l a ~ C T a 2 a ~  , 

i = O  

where a i, ( i= 1,2, 3) are Pauli matrices and a ° =  1. Baxter (1972a) showed that the 
vertex weight (4.1.48) lies on the curve S~"~a}(~) determined by the triangle equation. 

j. 

Fig. 4.6 

J' A A J " /  

"' / ~ 4 -  i~1 ¢ / . . . . . .  

4 4 4 
The graphical representation of the monodromy matrix. 
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536 A . M .  Tsvelick and P. B. Wiegmann 

The  following parametrizat ion for wi exists: 

cn(a, l) . dn(a,  l) . sn(a, l) 
wl : w2 : w3 :w° = cn(~, l) " dn(~, l) " sn(~, l) ' (4.1.49) 

where I is the modulus  of the elliptic functions and ~ is an arbitrary parameter.  As has 
been ment ioned above, the eight-vertex model  is related to the sp in- l /2  anisotropic 
Haisenberg ring (4.1.43). T h e  following relation is valid for the hamiltonian of the 
spin ring: 

W x y =  _ ( T _  t(c~ ) dT(~) "~ (4.1.50) 
\ 1 =0 

(Sutherland 1970, Baxter 1972b). 
Due  to the commutat iv i ty  of the transfer matrices with different parameters,  the 

model has a series of mot ion integrals 

[Wxyz, T(a)] = 0  (4.1.51) 

and is completely integrable on the quan tum level. Using (4.1.51) one can construct  
the set of the local mot ion integrals O,: 

d n 
0n - da n In T ( ~ ) I ~  = 0.  (4.1.52) 

The  Qn operators are represented as the sum of terms containing only the products  of 
spin-operators  placed in the finite (n) number  of the nearest sites of the chain. 

T h e  common lore is that the existence of a large class of exactly solvable two- 
dimensional system and/or one-dimensional  quantum-field theories is due to the 
existence of the non-trivial  solutions of the triangle equations (Zamolodchicov 
1980). 

These  celebrated equations appeared later when the 1 + 1-dimensional relativ- 
istic factorized S matrices were studied (Zamolodchicov 1980). The  factorization 
conditions impose non-trivial constraints on the two-part icle amplitudes. Assuming 
certain symmet ry  propert ies  of the S matr ix  and using these relations as equations 
one can solve them together with the unitary and analyticity equations. The  
relativistic invariance, crossing symmet ry  and some quasiclassical results are often 
sufficient to derive the explicit formulae for the S matrix elements. This  is the way by 
which the S matrices of many  quantum-field theories have first been obtained (for a 
review see Zamolodchicov and Zamolodchicov 1979). We already know a consider- 
able number  of solutions of the triangle equations corresponding to different 
' isotopic'  symmetries.  The  general solution with the two-dimensional  represen- 
tation possessing Z 2 x Z 2 symmet ry  was obtained by Baxter (1972) (4.1.48). For 
an arbitrary dimension of isotopic space the solutions with O(n)  symmetry ,  
(Zamolodchicov and Zamolodchicov 1978) and U(n/2)  symmetry  (for even n) (Berg 
et al. 1978) are known. Some of these solutions have been generalized to 
supersymmetr ic  models (Schankar and Witten 1978). One can find other known 
solutions of the triangle equations in the review of Kulish and Sklyanin (1981). 

A method also exists which allows us to construct  the solution for arbitrary finite- 
dimensional irreducible representations of the given symmet ry  group starting f rom 
the solution for the fundamental  representation of this group (Kulish and Sklyanin 
1981, Kulish and Reshetikhin 1980, Kulish et al. 1981, Fateev 1980). 
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Exact results in the theory of magnetic alloys 537 

One important  proper ty  of the triangle equations was discovered by Belavin 
(1980): triangle equations possess symmet ry  under  the action of the discrete 
subgroup of the Lorentz  group, acting independently on particles with different 
momenta .  I t  has been shown that this symmet ry  may be applied to the determination 
of all the elements of the S-mat r ix  satisfying the triangle equations. In  particular, 
Belavin constructed the solution with Z N x Z N symmetry  generalizing Baxter 's  
Z 2 x Z 2 matrix. 

The  operators Tj born  by the Bethe method appeared to be related with the trace 
of the m o n o d r o m y  matrix ((4.1.45), (4.1.46)). The  latter is the central object of the 
modern  theory of integrable systems. This  relation was first noticed by Belavin 
(1979). Namely,  

Tj = T(~, ~1  . . . .  , (ZN)Ict =~j .  (4.1.53) 

In view of (4.1.47) it follows f rom (4.1.53) that the operators Tj  are commutat ive.  We 
prove that below. 

A deep relation between the well-known ' inverse scattering method '  applicable 
to the classical non-linear equations (for a review, see Zakharov et al. 1980), on the 
one hand, and the Bethe method in Baxter 's  version, on the other hand, has been 
elucidated recently. This  relation has been realized by Faddeev, $klyanin and 
Takhta jan  and brought  these authors to the remarkable method known as the 
quantum inverse-scattering method. I t  combines the main ideas and methods  of both 
the quantum and classical theory of integrable systems (Faddeev and Sklyanin 1978, 
Sklyanin 1978, Faddeev 1980, Sklyanin et al. 1979, Kulish and Sklyanin 1979, 
Thacker  and Wilkinson 1979, Hone rkamp  et al. 1979). Today,  almost all the results 
obtained earlier by means of the Bethe Ansatz have been rederived in the f ramework 
of the quantum inverse-scattering method.  This  method enables one to derive the 
equations determining all eigenvalues of the trace of the m o n o d r o m y  matrix (4.1.45) 
within the f ramework of the general algebraic scheme, without writing down the 
eigenvectors in an explicit form. Thus ,  this procedure may  be considered as the 
algebraization of the Bethe Ansatz (for a review see Sklyanin 1980, Takhta jan  1981). 
I t  is most  convenient  to use this method for diagonalization of the trace of the 
m o n o d r o m y  matrix T(~) and we shall follow it below. 

The  triangle equations are an essential ingredient of the algebraic method.  They  
mus t  be satisfied by the matrix determining the commuta t ion  relations between the 
elements of the m o n o d r o m y  matrix. I t  is the quan tum analogue of the L-opera tor  of 
the classical inverse scattering method.  

Namely,  

qq '  / l ' l '  - -  k" q" / k ' l "  p 
S k k , ( O ~ - - ( Z  )Lq,(a )Lk(~ ) - -L  k (cQLq (c~)Sq,1 (~--~)  (4.1.54) 

(for brevity we omit  the operator indices) (Baxter 1972 a, Sklyanin et al. 1979). This  
relation is illustrated in fig. (4.7). By virtue of (4.1.54) it follows that the operators 
T(a) are commutat ive  (4.1.47). In the next section we prove this important  relation. 

The  quan tum inverse scattering method,  first applied to the S matrix with a 
dimension n = 2 (Sklyanin 1978, Takhta jan  and Faddeev 1979), was generalized to an 
arbitrary representation of O(3) (Fateev (1980) and to the S U(n) symmetr ic  S matrix 
(4.1.37) (Kulish and Reshetihin 1981, Arinstein 1980). 

In conclusion let us mention another powerful approach to the eigenvalue 
problem for the T-matr ix .  I t  may be shown that for N ~ o 0  each member  of the 
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538 A . M .  Tsvelick and P. B. Wiegmann 

K 

J 
J 

Fig. 4.7 

b j 

i--J.. 
The graphical representation of L-matrix commutation rules. 

parametric  set of T(~) corresponds to another m e m b e r  of the same set T(qb(~)) 
satisfying the following relation 

lim T(c0T(q5(~)) = Iq JN(00 ,  (4.1.55) 
N--* o9 

where I i s a  unit matrix, and q)(c~) and qJ(~) are the known functions depending on the 
explicit form of the T-matr ix .  F rom (4.1.55) it follows that in the thermodynamic  
limit N ~  oo the eigenvalues of the T matr ix  satisfy the functional equation: 

t(~)t(qb(~)) = qJ(~) (4.1.56) 

(Stroganov 1979, Zamolodchicov 1979, Baxter 1980). 
I t  may easily be shown that the m a x i m u m  eigenvalue of the transfer matr ix  T(c0, 

i.e. the partition function of a lattice model,  is an analytical function of c~. T h e  
condition of analyticity enables us to solve eqn. (4.1.56) unambiguously.  Other  
solutions of eqn. (4.1.56) correspond to the excited states of the 1 + 1 dimensional 
quantum-field theory. In  particular, this method permits  us to reproduce the 
excitation spectrum of the X Y Z  chain (Tete lman 1981). 

Developing this approach, Reshetikhin (1983) and Baxter and Pearce (1982), 
obtained the functional equations for eigenvalues of T(c 0 for a finite N. With  the use 
of Some additional symmet ry  and analyticity propert ies  he derived the Bethe-Ansatz 
equations for some models for a case of finite N (the so-called analytical Bethe 
Ansatz). T h e  methods reviewed above reduce the problem of the spect rum of the 
many-body  system to the solution of the transcendental  Bethe-Ansatz equation. The  
simplest case corresponds to the system of eqns. (4.1.41); in more  complicated cases 
one has a Bethe-Ansatz hierarchy. 

Another  branch of the theory of exactly integrable systems consists of the 
development  of a mathematical  technique for the investigation of equations of this 
kind i.n the continuous limit ( N ~  o0) and obtaining physical results. This  branch of 
theory is relatively independent  of the methods discussed above and has its own 
history originating f rom the earlier Bethe work (1931). Let  us consider the essential 
stages of its history. 
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Exact results in the theory of magnetic alloys 539 

Bethe constructed the wavefunction of the ground state of the antiferromagnetic 
spin ring, which contains M =  N/2 parameters - - rapid i t ies  of the up spin waves. So 
the ground state is described by the system of N/2 equations (4.1.41). 

The  precise form of these equations in the thermodynamic  limit (N--*oo) was 
adequately discussed by Hul ten  (1938). In the thermodynamic  limit the state of the 
system can conveniently be described not by a discrete set of rapidities {2~} but by 
the rapidity distribution function: 

1 
p ( 2 ) =  l i m  . ( 4 . 1 . 5 7 )  

N-~ ~o N ( 2 ~  + 1 --/~) 

The  ground-state  distribution is obtained f rom (4.1.42) and the integers N~ are 
chosen as closely spaced as possible: N~+ 1 = N~ + 1 (the proof  was given by Yang and 
Yang 1966 a). By subtracting Bethe-Ansatz equations (4.1.42) for adjacent k~'s and 
replacing the sum in (4.1.42) by an integral one, the Fredholm integral equation with 
the symmetrical  kernel is obtained: 

[~  O'()o-2')p(2')d2. (4.1.58) 2np(2)=dk(2)/d,~- 
ri- B 

T h e  subsidiary condition determining the number  of particles is 

M f [  p(2)d2. (4.1.59) 
N B 

While the ground-state  energy is given by 

- -  = cos k(2)p(2)d2 (4.1.60) 
N -B 

(Hulten 1938, Lieb and Liniger 1963). 
For  the ground state of the Haisenberg chain one has M =  N/2, S z = 0 and B = oo 

(for ]cos Pl < 1 or B = ~z(cos p < - 1)). The  ground-state  energy was found by Orbach 
(1958) and Walker (1959) and by Baxter (1972 b) for the X Y Z  chain. Griffith (1964) 
suggested the method for obtaining the low field magnetic  susceptibility of the 
Haisenberg chain (i.e. the method for the investigation of eqn. (4.1.58) in the limit of 
B>> 1). His method was developed by Yang and Yang (1966 b) and applied to the 
anisotropic Haisenberg chain. 

T h e  magnetic susceptibility and the ground-state  energy as a function of 
the density of particles for the H u b b a r d  model were investigated by Takahashi  
(1970 a, b) and Krivnov and Ovchinnicov (1974). Recently, the magnetic propert ies 
of interacting one-dimensional  fermions were studied in an interesting paper  of 
Japaridze and Nersisyan (1981). The  isotopic Thi r r ing  model  with the U(1) isospin 
symmet ry  was considered in Japaridze et al. (1983). 

T h e  other line of investigation of Bethe-Ansatz equations is an analysis of the 
excitation spectrum. Bethe (1931) found that the solutions of (4.1.46) lie in the 
general case in the complex plane. In the thermodynamic  limit, the roots of the 
Bethe-Ansatz equations are grouped in 'str ings'  characterized by a common  real 
abscissa and an order n. A string of the order n for the isotropic Haisenberg chain 
consists of the set 

2~'J)=;t~+i(n+l--2j); j = l , . . . , n .  (4.1.61) 
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540 A .M.  Tsvelick and P. B. Wiegmann 

These states describe the excitations of the antiferromagnetic spin-l/2 chain 
(note that the ground state of the S-spin chain is formed by strings of the order 2S:) 
and play an important role for the elementary excitation classification and for the 
construction of equilibrium thermodynamics. A considerable part of the literature 
dealing with the Bethe method is devoted to the derivation of the excitation spectrum 
(see, for example, Des Cloizeaux and Pearson 1962, Des Cloiseaux and Gaudin 1966, 
Ovchinnicov 1969, Johnson et al. 1973). However, total clarity in this question has 
been attained only recently by Takhtajan and Faddeev (1981) and Faddeev and 
Takhtajan (1981). 

The rich excitation spectrum of the Sine-Gordon model (or the equivalent 
massive Thirring model) was investigated by Bergnoff and Thacker (1979), Korepin 
(1979), and Japaridse et al. (1982) and by Andrei and Lowenstein (1980) for the 
chiral Gross-Neveu model. The spectrum of the one-dimensional Hubbard chain 
was studied in the original work of Lieb and Wu (1968) and also by Ovchinnicov 
(1969), Krivnov and Ovchinnikov (1974), Filyov (1977) and Woynarovich (1982). 
One can also easily calculate the elements of the scattering matrix. The method based 
on the Bethe-Ansatz equations was suggested by Korepin (1979). 

An important step in the investigation of the integrable quantum model was 
made in the remarkable paper of Yang and Yang (1969). In this paper the method for 
evaluating the equilibrium thermodynamical properties of the system described the 
Bethe-Ansatz equation was suggested. Yang and Yang showed that in contrast to 
linear integral equations for T=0 ,  the equilibrium thermodynamics at finite 
temperatures must be derived from the solution of the non-linear integral equations. 
A large system with all states being macroscopically populated is naturally described 
by density distributions of  particles p.().) and holes fi(2). These functions are related to 
each other by the Bethe-Ansatz equations and determine a contribution to the whole 
entropy of the state. At temperature T we should maximize the contribution to the 
partition function from the states described by p and ft. Thus, we get the non-linear 
integral equation for the function ~(~)= Tln~(2) /p (~) .  The determination of this 
basic function first introduced by Yang and Yang (1969) allows us to calculate all 
thermodynamic properties. 

The method of Yang and Yang is the most natural and consistent approach to the 
investigation of Bethe-Ansatz equations with a large number of particles, even for 
the zero-temperature case. The main point is that the function e(J.) is the energy of 
elementary excitations (Yang and Yang 1969). For another derivation of this relation 
see Japaridse et al. (1982). Thus, the method of Yang and Yang allows us to evaluate 
low-lying excitations and equilibrium thermodynamics within a general framework. 
By means of this approach the spectrum of the elementary excitations of the 
anisotropic Haisenberg spin chain (Johnson 1974, Puga 1980, and the Sine-Gordon 
model (Japaridze et al. 1982) have been investigated. The original paper of Yang and 
Yang is devoted to a one-dimensional system of bosons with a repulsive delta- 
function interaction. 

The reformulation of the Yang and Yang method for the thermodynamics of the 
one-dimensional Haisenberg chain was performed by Gaudin (1971 a) and Johnson 
and McCoy (1972) and in the interesting series of papers by Takahashi (1971 a, 1973) 
and Takahashi and Suzuki (1972). 

Today, the thermodynamics for a number of one-dimensional many-body 
problems have been investigated on the basis of the exact solution. Namely, a one- 
dimensional system of fermions with repulsive delta-function interaction was 
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Exact results in the theory of magnetic alloys 541 

studied by Takahashi (1971 b), the Hubbard  model by Takahashi (1972, 1974 a), the 
SU(2) Thirr ing model by Japaridze and Nersisyan (1981), the Sine-Gordon model 
by Fowler and Zotos (1982) and the arbitrary spin Haisenberg chain by Babujan 
(1982). 

The authors attach great importance to the Yang-Yang method. In the present 
review we consider this method in detail in the sections devoted to the exchange and 
Anderson models. We have enumerated the main applications of the quantum theory 
of integrable systems. Of course, our list (and references) does not pretend to be 
complete and is oriented primarily to the theory of magnetic alloys. So far there is 
only one review concerning exact integrability in one-dimensional quantum-field 
theory and two-dimensional lattice statistics (Thacker 1981). 

4.2. The Bethe Ansatz for the s-d exchange model 

4.2.1. The effective hamiltonian 
As we saw in § 2.1, the problem of scattering by a single impurity is, in essence, 

one-dimensional. Here we shall show this once more by starting directly from the 
s-d exchange model (I) 

1 + 
Jf,-a= ~ ekC~Ck~+ ~ I  y, ck,~a~,,,ck,,,,S. (4.2.1) 

k k,k" 
a = T, .. ~,a" 

We expand the plane electronic wave in spherical waves about the impurity 

' ( )  Y k <o= 2 ,re=E-, (4.2.2) 
Writing the hamiltonian (4.2.1) in terms of c~,,~, we have 

1 
~ s - - d =  E ekCk+lmaCklmaql- V I 2 e f f o o a ~ a a ' C k ' O O a ' S '  (4.2.3) 

k , l , m ,  tr z. k ,k" 

where only the s wave interacts with the impurity. 
Next, we assume that the interaction amplitude is small, so that TK<<e v. Whence, 

at H, T<<e F we can ignore the electronic states that lie far from the Fermi surface and 
consider a linear section of the spectrum near k = k F 

~,(k) = £F q- VF(k -- hF)" (4.2.4) 

In what follows we take v F equal to unity. Reckoning the momentum from kF, we 
arrive at the effective hamiltonian for the s-d model'~ 

+ 1 - -  + 
~ s  a = ~ pcv~cp~+--I ~ cp~a~,cv,~,S. (4.2.5) 

- v , , = , , ,  2 v ,v ,  
~, ¢7' 

+ and cp, are the creation and annihilation operators for an electron in an s Here cpa 
state with the momentum p + kF. 

The condition that (4.2.1) be integrable imposes stringent restrictions on the 
two-particle scattering amplitudes and, therefore, on the hamiltonian. For this 

t The emerging problem could be called a one-half-dimensional, since the particles have 
only one Fermi point instead of two as is customary. 
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542 A . M .  Tsvelick and P. B. Wiegmann 

reason even small variations in the hamiltonian at small distances, which, practically, 
do not affect the properties of the system, almost always destroy the integrability. 
Below we shall show that the hamiltonian (4.2.5) is completely integrable. 

4.2.2. The coordinate Bethe Ansatz 
Here we formulate and prove Bethe's hypothesis for the exchange model. First, 

we shift the hamiltonian (4.2.5) to the coordinate representation. Suppose that x is a 
coordinate on a straight line passing through the impurity and 

= f e x p  (ipx)c~(p)dp. (4.2.6) Co(X) 

Then the hamiltonian (4.2.4) for the s-d model is 

Jt~s_d dx - - i ~ c ,  (x)~-c,~(x)+ ZI6(x) ~ c,, 

We consider the eigenstate of (4.2.5) in which there are electrons with spin 
components e l , . . . ,  o" N and a localized moment  with the component  o = - S , . . . ,  S: 

f o+SN irE)= qs . . . . . . . . .  (Xl,...,xu)c~+(xl)..'c+~,(XN)(S+) H dxjlO), (4.2.8) 
j = l  

where 10) is the state without particles and with a component  of the impurity 
moment  equal to - S .  

The wave function qJ~l .... ~.~ satisfies SchrSdinger's equation 

--i j=12 ~xj - -E  ud,, . . . .  ,N ~+ 2 lj=12 6(xJ)a,:*jS**'ud, l .... J .... ~,,~,=0. (4.2.9) 

Bethe's method provides the means for finding every solution of this equation for an 
arbitrary number  of particles. 

Suppose that Q = {q0, • • •, qN} is a permutation of the numbers {0, 1 , . . . ,  N} while 
Q ' =  {q' l , . . - ,  q~} and P =  {Pl , - - .  ,PN} are permutations of the numbers {1 , . . . ,  N}. 
with Q' coinciding with Q from which qi=O is excluded, then in the region 
XQ = {xqo <xql < . . .  <xq~} the wavefunction is Bethe Ansatz: 

. . . . . . . . .  ( x I , . . . , x N ) =  ~ A ~ I  .... N,~(Q;Q'IP)exp i kpix i , (4.2.10) 
p i= 

where the first sum is over all permutations P, {k j} is a sequence of different values of 
k i and x 0 = 0. The state (4.2.8) is the eigenstate of the hamiltonian (4.2.5) with the 

energy 

N 
E =  2 kj. (4.2.11) 

j=l 

The factors A** ..... ,,~, o are, obviously, not independent. First we must require that qa 
be antisymmetric under permutations in the pairs (xi, cri). As a result 

A . . . . . . . . . . .  (O; Q'[P)=A~q ...... q .... (O; O'P) ( -1 )  e, (4.2.12) 

where Q'P is the product of the permutations and ( - 1 )  e is the parity of the 
permutation P. 
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Exact results in the theory of magnetic alloys 543 

The  factors A for different regions are linked through the Schr6dinger equation 
(4.2.9). As ment ioned above, the hypothesis that the wavefunction consists of a finite 
number  of waves implies that the S matr ix  is two-part icle factorized. In  other words, 
the interrelation between the A ' s  in two neighbouring regions is determined by the 
characteristics of only two particles or a particle and an impuri ty  on the boundary.  
Suppose that the boundary  between the regions X 0 and X 0 is the plane Xj  = 0, i.e. Q 
and Q differ in the permuta t ion  of the j th  particle and the impuri ty,  then 

. . . . .  -Roo,  A .. . .  ~...;o,(Q), (4.2.13) 

where the matr ix  

o-jo-j R~o, - R 0 j = e x  p (zI(Tj" S/2). (4.2.•4) 

Indeed, let us take the case of one particle scattered by an impuri ty.  T h e n  

d 1 
-i~xq2~,,~(x)+ ~I6(x)a~,,," S~,~g~,,o,(x)= EqJ~,~(x). (4.2.15) 

This  equation is poorly defined. T o  redefine it, we substitute a smooth potential 
V~(x) for the delta-function in (4.2.14) such that lim V~(x)=l/216(x). Then  the 
solution of eqn. (4.2.15) has the form ~-~0 

qs ,  ~(x) = exp (ikx)A~,,o (x), (4.2.16) 

where the dependence of the matr ix  A on the coordinate x is determined thus: 

A~,o(x)=exp ( i~,,,,, " $~, f [ g~(x')dx~ ) A,,,,~,(y). (4.2.17) 

Tending  8 to zero, we find that 

-R~ ,A~,  ,,(x>O), (4.2.18) A ~ , f i x < 0 ) -  °~' 

where the matrix R is given by (4.2.14). 
Now let us assume that the plane x i = xj is the boundary  between XQ and X 0. In  

this case the factors A(Q) and A((Q) are connected via the permutat ion operator: 

A ~, . ~ . . . ( 0 )  . . . .  . . . . .  -P#s,,j A .... ,~ .... j...(Q) 

= A  . . . .  s .... ,...(Q), (4.2.19) 

where 

p~,~ = 1 (1 .1  + ~ , ~  • o~s~ j) = 6~ , ~s~  ~ 
~s~J 2 "- 

is the permuta t ion  operator.  This  fact requires some explaining. 
Let  us take two particles far f rom the impuri ty,  say xt,  x 2 <0 .  T h e  particles are 

free: 

--i(3/~x 1 + a/Oxz)qJ(xx, x2) = EqI(xl, x2). (4.2.20) 

T h e  usual solution of this equation providing the first per turbat ion- theory 

approximat ion is 

W . . . . .  (xl, x2) = exp (iklx I + ik2xa)A~w2 - exp (ik2xx + iklxz)A~2~ ,, (4.2.21) 

where the factors A¢1¢2 do not depend on the position of the particles. What  will 
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544 A . M .  Tsvelick and P. B. Wiegmann 

happen with the wave (4.2.21) after the particles scatter on the impurity? We can 
readily see that in the region x l , x 2 > O  the wavefunction is not given by (4.2.21). 
Indeed, in transferring from the region xl ,  x2 < 0 first to the region xl < 0 < x 2 and 
then to the region 0 < x l < x 2  the factor A,I,z;~ , according to (4.2.13), becomes 
R10R2oA. Another sequence of events (say, the first particle is scattered by the 
impurity and then the second) leads to quite a different state. Suppose that the 
electrons, the first having spin 'up '  and'the second spin 'down' ,  are scattered with a 
spin flip on the impurity having spin 'up' .  The first electron cannot change the 
direction of the impurity spin, but  the second flips this spin over. If  the sequence is 
reversed, then the impurity spin flips twice and its direction as a result does not 
change. In other words, the matrices R10 and R20 do not commute: 

RloR2o -¢: R2oRlo. (4.2.22) 

These arguments vividly demonstrate that particles cannot be considered 
individually in the presence of the impurity. The  fact that the impurity has a degree 
of freedom is sufficient to make the problem a many-particle one. 

To  write the correct scattering wavefunction in the region xt ,  x a >0 ,  we point 
once more to the peculiar feature of the hamiltonian (4.2.7). All particles move in one 
direction with the same velocity. Therefore, if ~ (x  t, x e) is a solution of eqn. (4.2.20), 
thenf(xl  - -x2)~(Xx,  Xe) is also a solution (heref(x) is an arbitrary function that may 
have, for example, a discontinuity at x = 0). This property enables us easily to find the 
wavefunction in the region xl ,  x 2 > 0. The wavcfunction is again given by (4.2.21), 
but the factors have a discontinuity on the line xl =x2: 

~t/(Xl, X2) = [R20RzoO(x 1 --x2) + RloR200(x2 --xl)] 

x (exp (iklX 1 + ik2x2) - P 1 2  exp ( ik lx  2 + ik2xl ) )A.  (4.2.23) 

Obviously, in this case the discontinuity in the wavefunction at x 1 = x  2 does not mean 
that there is an interaction far from the impurity. However, the scattering 
wavefunction does depend on the order of events in the scattering of particles, and 
the 'memory '  of this is not lost, as the particles move away from the impurity. 

The approach we have just studied is not very well suited for deriving a 
wavefunction of a system of N particles that satisfies the given boundary conditions. 
The correct way to do this is to 'order '  the spins of the incoming particles in the 
region xl, x 2 < 0  so that the impurity 'knows'  which particle it will encounter first. 
This is another solution of the Schr6dinger equation (4.2.20): 

qJ(xl, x2) = (exp ( ik lx  1 + ik2xz) - exp ( ik lx  2 + ik2xl)  

× [0(x 1 - x 2 ) + P l 2 0 ( x 2 - x l ) ] A .  (4..2.24) 

Unlike solution (4.2.21), this function changes when both the spins of the 
particles and their momenta k 1 and k2 are interchanged and corresponds to the 
particles being 'ordered' on the straight line that passes through the impurity. Strictly 
speaking k 1 and k 2 are not the momenta of free particles. Indeed, ufl, l,2(xl, xz) is not 
an eigenfunction of the operators i~/Ox 1 and i~/Ox 2 separately. Rather, k 1 and k 2 are 
the momenta of charge density waves, whose generation does not lead to a local 
change in a spin. They  resemble momenta  of spinless fermions: the wavefunction 
(4.2124) vanishes at k 1 = k  2 irrespective of the total spin of the system. We see, 
therefore, that free particles with a linear spectrum are described equally well by 
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Exact  results in the theory of magnetic alloys 545 

functions (4.2.21) and (4.2.24). The first function corresponds to a unit scattering 
matrix: S~2~-  I~2~ = 6~6~2~  , while the second corresponds to an S matrix that is 
the permutation operator 

ax~ trial S ,2 ,  ~ = P~2,~ = 6 , ~ 6 ~ , ~ .  (4.2.25) 

We return to the case of two particles scattered by an impurity. As usual, there are 
two ways in which we can go from the region x 1 < x 2 < 0 to, say, the region x 1 > x2 > 0. 
The first path, i.e. 

X 1 < X2 ( 0 - " + X  1 "~ 0 < X2---~0 < X  1 < X2---¢0 < X2 < X 1 

transforms A into P12RloR20 A. The  other path, namely 

Xl ( X 2  ~ 0--*X2 ( X l  ~ 0--~X2 ( 0 ~ Xl -~0  ( X 2  -~ Xl, 

brings us to another transformation matrix: 

A~R2oRaoP12A. 

But now the result in both cases must be the same, since 

R20R10P12 = P12R10R20 (4.2.26) 

(see fig. 4.8). 
We have, therefore, proved the Bethe hypothesis: the general solution of the 

Schrgdinger equation (4.2.9) is given by formula (4.2.10) together with conditions 
(4.2.12), (4.2.13) and (4.2.19) (Andrei 1980, Wiegmann 1980a, 1981). 

Applying these conditions, we can express A(Q;  Q'IP) in terms of A(I;  I']P), with 
l =  ~1 . . . .  , N} being a unit permutation. To do it we must take Q as one of the 
possible products of pair transpositions and to each cofactor assign either operator 
Pij or operator Rj0 , 'depending on whether this transposition changes the position of 
particles i andj  or of particlej and the impurity. Condition (4.2.26), together with the 
unitary conditions 

PjiPij = I, RjoRoj = I, (4.2.27) 

guarantees that all ways of factorizing Q into products of pair transpositions lead to 
the same results. 

Fig. 4.8 

]! 

y / t r 

, = / 
/ / 

/ 

The triangle equation for the s-d exchange model. The moving particle corresponds to the 
solid line and the impurity to the dashed line. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

hi
ca

go
 L

ib
ra

ry
] 

at
 1

8:
11

 1
8 

A
ug

us
t 2

01
5 



546 A . M .  Tsvelick and P. B. Wiegmann  

In conclusion of this section we make the following remark.  T h e  factorization 
conditions, in which one S matrix does not depend on a spectral parameter  and is 
equal to the permutat ion operator,  are satisfied for an arbitrary form of the S matrix. 
I t  becomes obvious if one rewrites eqn. (4.2.26) as 

P12R1 oR20P21 = R20R10" 

Thus  the coordinate Bethe Ansatz (4.2.10) holds irrespective of the matrix structure 
of the interaction of Dirac 's  particles. We shall see it is not yet the integrability 
below. 

Due to this fact Hewson (1982) gave an alternative approach which does not use 
the coordinate Bethe Ansatz and derived the coordinate wavefunction (4.2.10) as a 
general solution of the Schr6dinger equation (4.2.15). Proof  of the completeness of 
the states (4.2.10) was made by Schulz (1982). 

4.2.3. P e r i o d i c  b o u n d a r y  c o n d i t i o n s  

Let us place our one-dimensional  system on the ring with length L and require 
that the u? function satisfy the periodic boundary  conditions (PBC): 

t P ( x l ,  . . . , x j . . . . .  xN) = ~ ( x l , . . . ,  x j  + L ,  . . . , xN).  (4.2.28) 

The  conditions (4.2.28) may be rewritten as the constraints on the coefficients 
A ( Q ;  Q ' P )  in formula (4.2.10). See, for example,  the coefficient A ( I ;  I ' )  = 4. To  arrive 
f rom x j  to x j + L  one should successfully transpose j th  particle with j + l ,  
j +  2 , . . .  particles, the impurity and 1 ,2 , . . .  , j J -  1 particles passing through a whole 
ring. On transposing with a particle the pre-exponent  factor A(I;  I ' )  t ransforms by 
the permuta t ion  operator Pj i  (4.2.19) and on transposing with the impuri ty  
t ransforms by the operator Rio (4.2.13). Between collisions the wavefunction 
acquires the phase shift k j L .  Thus  PBCs lead us to the prob lem of simultaneous 
diagonalization of the operators 

T j  = P#+ 1 - - -  P j N R j o P j l  . .  • P j j -  1, (4.2.29) 

namely, 

exp ( i k j L )  ~ = Tj~. (4.2.30) 

Due to the factorization conditions (4.2.26) and (4.2.27) the operators Tj commute  
with each other. I t  guarantees the existence of a common  set of the eigenvectors of 
operators Tj. I t  is easy to make sure that here Tj 's  do not only commute  but  are 
simply equal to each other: 

T ~.~ ... .  ~;~' = ~  ~ 6 R ~'  (4.2.31) JO"l . . . O ~ N ; O  V a l O ' ~  v~r~O" 2 - . . a N 1 0 " ~  O'NO" 1 " 

This  does not, however, make the problem of diagonalization simpler. For  this 
reason we shall follow the general scheme. Namely,  we start by building a parametr ic  
set of commut ing  operators T(g), the Tj being member s  of this set. Next,  we employ 
the method of the quantum inverse-scattering problem. 

T h e  analogous eigenproblem may be formulated for any coefficient A(Q; Q ' P ) .  

Then  the other operators T j  a p p e a r  but  they have the same eigenvalues as operators 
(4.2.29). This  s tatement will be proved in the process of diagonalization of the T(g) 
matrix. 
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Exact  results in the theory of  magnetic alloys 547 

4.2.4. The set of  commuting operators 
We have already noticed in §4.2.3 that the validity of conditions (4.2.26) and, 

hence,, of the coordinate Bethe Ansatz (4.2.10), is not yet sufficient for the 
integrability. The  integrability requires that the impuri ty-part ic le  scattering matrix 
R j0 belongs to the parametr ic  set of matrices satisfying the functional factorization 
equations (4.1.17). 

For  an arbi trary impuri ty  spin the factorization equations include matrices of 
different rank. For  this reason it is expedient to separate the matrices that refer only 
to the particles, ~1~I r~2~(e)(a = 1,2) (the particle is depicted by the solid line in fig. 4.8), 
f rom those that refer to a particle and an impuri ty,  ~ '  .. R~o, (~) (6= -- S, . , + S ) ( t h e  
impuri ty  corresponds to the dashed line in fig. 4.8). Equations (4.1.17) in these 
notations are 

rij(cORio(C~ + ct')Rjo(Ct') = Rjo(~')Rio(Ct + c~')rij (a), (4.2.32 a) 

r i j ( o : ) r i k  (0~ + ~ ' ) r j k ( ~ ' ) r  = r jk(OC)rik(O~ + ~ ' ) r i j ( ~ ) ,  (4.2.32 b) 

with the condition that at some ~0: 

Rj0(e0) exp (iI6" 8/2).  (4.2.33) 

Equation (4.2.32) is represented in fig. 4.8. T h e  condition (4.2.33) is a sufficient 
one as the permuta t ion  operator  belongs automatically to the set rij(e). Indeed,  
putt ing ~ = 0  in eqn. (4.2.32) we obtain: 

rij (0)Mij (a') = Mji  (~')rij (0), (4.2.34) 

where Mij(a)=Rio(oORjo(OO or rij(~)rjk(O O. Therefore,  we have that within an 
arbitrary factor 

r U (0) = Pij. (4.2.35) 

Then ,  let us subordinate matrices r and R to the functional unitarity conditions 

rlJ(OOrJi(--~)=I' } (4.2.36) 

R0j (~)Rj0 ( -- ~) = I, 

which generalize the conditions (4.2.27). 
In  the next section we derive the solution of eqn. (4.2.32). Now let us assume that 

the conditions (4.2.32) and (4.2.33) are satisfied and construct  the commutat ive  set of 
operators T(ct). All following statements do not depend on an explicit form of r,  R 
matrices and hold for all integrabte models. 

Let  us consider the m o n o d r o m y  matrix 

L !h . . . Jx + l} ,k  {,v. ~ kkl  
~ i l . . . i N + l } , l  ~,~" u~ l '  " " " ' O ~ N + I )  = r [ l j l ( ( X 1  - - ~ )  

x ~,kik2((Z __O~ ) ~ k ~ v - l k N { t v  N~l~k~vl ( N  1 --~), (4.2.37) 
" i2 j2  \ ~ - " " " ' i l v j N  k ~ N - - ~ " , ' ~ t i N + l , j N + l k ~ N +  

which is graphically represented in fig. 4.6. Omit t ing the operator and matrix indices 
rewrite (4.2.37) as 

L(c~; ~ 1 . . . . .  C~N+I)=r,I(~I--CO.. .rON(~N--~)R.o(~N+I--CQ, (4.2.38) 

where * corresponds to indices of the particle depicted in fig. 4.9 as the horizontal 
line. The  matrix indices k and 1 correspond to the ends of this line 'rail '  and the 
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548 A. M+ Tsve l ick  and P. B. W i e g m a n n  

Fig. 4.9 

( j - l ) '  ~ i I j '  

2 _ _ _  ++ = • " • ~ ~ x ~ j ,  J,a 

/ l j - l)  / ' , , , , ,  
1 '~  j, a j : a  ' ~  

( --+ .__+_--lj+,l, 

i lj+,, ) 
/ (N +1) N 

/N+;r 

N' 

+ JJ' 

J 

The graphical demonstration of the proof of eqn. (4.2.45). 

opera to r  indices {i} = { i l , . . .  , iN+ 1} and {j} = { J r , . . .  ,JN+ 1} co r re spond  to the ends  of  
the cross ing lines ' s leepers ' .  T h e  dashed  line co r re sponds  to the impur i ty .  

T h e  trace of  the m o n o d r o m y  ma t r ix  is the t ransfer  ma t r ix  T(c0: 

2 
= T{j}(a)= y '  (4.2.39) x-" { j } , k  t ~ ) .  

k = l  

W e  shall show tha t  a consequence  of the factor ized equa t ion  (4.2.32) is tha t  the 
opera tors  T(~) are c o m m u t a t i v e  at different  values  of  ~. T o  do this,  we use the 
graphic  represen ta t ion  of  the opera to r  r ( e - - a ' ) L ( a ' ) L ( a )  of  fig. 4.7. Us ing  the 
condi t ion (4.2.32) let us t ranslate  the ' s leepers '  over  po in t  A. T h u s  we obta in  (see fig. 
4.7) (Baxter1972a,  Sklyanin  et al. 1979, Faddeev  1980): 

r~,~i(~_a')L~'(a,)Lk,'(~)_ k q ' q ' t  ' --Lk,(~)Lq,(~ )rk, r ( ~ - - ~  ). (4.2.40) 

Mul t ip ly ing  bo th  sides of  eqn.  (4.2.40) by  r ( ~ ' - c  0 and taking eqn. (4.2.27) into 
account ,  we obtain  the s imilar i ty  relationship'~: 

q ' l  t LT(c()L ~" (c0 = "mk,~"q tN '_  c0Lk,(~)Lqq (~ ') x r k , r ( ~ -  ~ ) (4.2.41) 

(we omi t  the opera to r  indices of  the ma t r ix  L~'). S u m m i n g  over  the  index pairs  n, l and 
m, l' and once again using (4.2.36) we obtain:  

T(~)T(~')  = T(~')T(~).  (4.2.42) 

t The proof was borrowed from Zamolodchicov (1980). 
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Exact results in the theory of magnetic alloys 549 

Now let us prove the relationship (4.1.43) connecting the operators Tj with T(c0 
(Belavin 1979). Rewrit ing the operator (4.2.29) as 

Tj = rjj + 1 (0 ) . . .  r~ °) Rj0(%)rji (0 ) . . .  r j j_ i (0) (4.2.43) 

and setting in eqn. (4.2.38) c ~ = ~ j ( j = l , . . . , N ) ,  ~ N + i - c e = %  with help of eqns. 
(4.2.35) and (4,2.33) we obtain 

Tj = T r ( . ) { r . l ( 0 ) . . .  r . j _  i ( 0 ) P . j r . j  + 1(0) . . .  r,N(0) x R.0(%)}.  (4.2.44) 

Thus  

T(~, ~ 1 , " " " ,  a N +  1)l~t= ~l . . . . . .  N = 0 , ~ +  l = a .  = T j  (4.2.45) 

(the proof  is demonstra ted in fig. 4.9). Obviously,  the operators T; having arbitrary 
set of ~j commute  also. But in our simple case they are equal. 

4.2.5. Factorization equations 
For  the case of S =  1/2, eqns. (4.2.32) were cited by Yang (1967). We shall show 

below that their solution does not depend on the magni tude of S (Fateev and 
Wiegmann 1981 a). The  most  general case, including various representations of the 
O(3) group, is studied by Kulish et al. (1981 ) and Zamolodchikov and Fateev (1980). 

First, we write R(~0) in the form 

exp (iIa" S/2) = W'o + 2w' a" S, (4.2.46) 

where (9~ and w' are functions of I (we recall that 0 .2 = 3). The  simplest way to find 
these functions is as follows. The  total spin a/2 + S can assume the values S +  1/2, 
and either a ' S = S  or a ' S = - ( S + I ) .  Therefore  

exp( i lS /2)=W'o+2W'S ,  e x p ( - i I ( S + l ) / 2 ) = W ' o - 2 W ' x ( S + l ) .  (4.2.47) 

Now we turn to eqns. (4.2.32). In  view of the fact that conditions (4.2.33) are 
invariant under  the t ransformations of the O(3) group, the matrices r and R mus t  be 
sought for in the form 

tT~t' - -  ! t R~o, (~) - Wo(C~)6~,6~, + 2w (e)a~,  • S~o,, (4.2.48) 

r~u~ ', (~) = Wo(e)6~, 6uu, + w(ot)a,~, . auu,. (4.2.49) 

I t  is expedient to introduce the following notations: 

a = w o + w  , b = w o - w  , c = 2 w  ~ (4.2.50) 
a'=w'o+W', b '=w'o-W' ,  c '=2w'.  ) 

Substi tut ing (4.2.49) into eqns. (4.2.32 a), we find that 

b(a) b'(c0 
h(c¢)- - (4.2.51) 

c(~) c'(~) 

and 

b'(~)c'(~ + ¢)c(~') + e'(~)e'(c~ + ~')b(~) = c'(c~)b'(c~ + ~')c(c~'). (4.2.52) 

In  te rms of h(e) the above equation assumes the form 

h(~) + h(~') = h(~ + ~'), (4.2.53) 
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550 A . M .  Tsvelick and P. B. Wiegmann  

whence, without  loss of generality, we can assume that 

h(~)=~/ig, (4.2.54) 

where g is a parameter .  
Equations (4.2.51) and (4.2.54) define b(~) and c(~) within an arbitrary factor. 

Conditions (4.2.47) determine the value of this factor at the points ~ = 0 and ~ = ~0. In 
all other respects the factor is arbitrary. I t  is convenient to select it in such a way that 
the unitarity condition (4.2.36) is valid for any ~: 

a(~),  ~ ~ a'(~), 
b ( ~ ) = ~ g  b'(~)= +ig 

ig a(~), c'(~)= ig , c ( ~ ) = + z g  ~ g a  (~), (4.2.55) 

a ( ~ ) a ( - - ~ ) = l ,  
--O~2+g 2 

a'(oOa' ( -- (z) = _ ~2 + g 2 ( S  + 1 /2)  2 " 

Using (4.2.33) and (4.2.35) and setting ~0 = 1 we obtain 

and 

a(1) = 

g =  

a ( 0 ) = l ,  

2 
tan ( I 2 S +  1/4), 

2 S + 1  

exp ( i lS /2) (2S+ 3 ) - ( 2 S -  1) exp ( - i I ( S +  1)/2) 

2 (2S+1)  

The  characteristic feature of the factorized matrices (4.2.49) is that the function h(~) 
does not depend on the impuri ty  spin S. This  is because eqns. (4.2.32) are bilinear 
in the impur i ty  spin operator S and contain only commuta tors  of the type 
[Sa, Sb] = ieabcSc, whose form does not depend on group representation. 

4.2.6. Diagonalization of the trace of the monodromy matrix 
Let us denote the matrix elements of the operator matrix Lt k (4.2.37) as 

L] =A,  L~=B,  L ~ = C ,  L ~ = D .  (4.2.56) 

The  matrix r(c~-~') in (4.2.40) according to formulae (4.2.49) and (4.2.50) is 

r~i(~) = b(cO3qq,6kk, + C(~)6qk,, 3kq', (4.2.57) 

where b(~) and c(~) are given by (4.2.55). Rewriting (4.2.40) in components  we have 

b(c~ - c()Lq(~x')L~',((z) + c(c~ -- o()L~(~')L~,(~) 

= b(~ -- ~')L~,(~z)Lq(c() + c(c~ -- ~')Ltk(~)L~,(cz'). (4.2.5 8) 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

hi
ca

go
 L

ib
ra

ry
] 

at
 1

8:
11

 1
8 

A
ug

us
t 2

01
5 



Exact results in the theory of magnetic alloys 551 

We need only the following commutation relations from (4.2.58): 

[A(~), A(fl)] = [D(~), D(fi)] = [A(~), D(fl)] 

= [C(~), C(fi)] = [B(~), B(fl)] =0,  (4.2.59 a) 

b(c~ -- fi)A(~)B(fl) = a(~ -- fi)B(fl)A(a) -- c(~ -- fl)B(~)A(fi), (4.2.59 b) 

b(fi--a)D(~)B(fi)=a(fl--cOB(fl)D(~)--c(fl--cOB(~)D(fl). (4.2.59 c) 

The commutativity of traces of the L matrices (4.2.42) 

[A(c 0 + D(~), A(fi) + D(fl)] = 0 

is the consequence of eqn. (4.2.59). 
Let  us consider the state f2 o with all particle's spins up, the impurity spin 

projection being + S. The matrices r.j(c~j-~), R,0(~XN+ 1--~), when applied to the 
vacuum ~o, become triangular matrices: 

r , j (O0~o=(a  7 )  c(°Oaf b(c0 )f~o (4.2.60) 

R,o(a)f~o = ( ( S +  1/2)a'(~)-(S-1/2)b'(a) 2c'(a)S- ) 
0 - ( S -  1/2)a'(~) + ( S +  1/2)b'(~) ~o. 

(4.2.61) 

As the result, the action of the diagonal elements A and D of the matrices r,j and R,0, 
to the vacuum 

C(~)flo=0, / 

A(~X)~o ---- AA0X)~O' D(~)f2o = AD(~)f2o, f 
where 

N 

AA(rX) = U a(O~j-- o 0 [ ( S  + 1 / 2 ) a ' ( ~  N + 1 - -  ~ )  - -  ( S -  1/2)b'(~ N + 1 - -  ° 0 ] ,  
j = l  

(4.2.62) 

t (4.2.63) 
N 

AD(~) = I ]  b(cg--~)[-  ( S -  1/2)a'(~N+ 1 --~) + (S + 1/2)b'(~ N + 1 - ~)]. 
j = l  

Let us examine the vector 
M 

f~(~'1,--., ~ ) =  1-[ B(~)f20 (4.2.64) 
9 = 1  

and show that it is an eigenvector of the operator A(c0 + D(~), if {~} satisfy a certain 
system of transcendental equations. Let us note that by virtue of (4.2.59) and (4.2.64) 
carrying A(c0, D(~) through all the B(c~) in (4.2,64), we have 

M M 

(A(c 0 + D(~)) l~ B(~)f2o = A(G {~,~}) l~ B(~)no  
p=l p=l 

M M 

~,=1 fl=l 
(4.2.65) 
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552 A . M .  Tsvelick and P. B. Wiegmann 

where 

and 

a ( a - - ~ )  ! 

H 
fl = 1 0 t O ~ f l  - -  0~) 

(4.2.66) 

Ay(cq {c@)= b(c~-c4~) p=l b(a'~--e'~) AAt'e"~, 
~ : g 7  

c(%-- a) I I  a(c~p- c~) AD(O(~). (4.2.67) 
b(~',- ~) ~ = ,  b(~- ~',) 

The  first summand on the right-hand side of (4.2.65) is obtained when we carry 
A(a),D(o 0 through B(e'p), using only the first term on the right hand-side of 
(4.2.59 b, c). The  second summand is obtained from the remaining commutations.  
Th e  operator expression 

B(~)... B(c()a)B(c0Y20 

appears if we commute A(c0, D(a), with B(a'l) , using the second term in (4.2.59 b, c), 
while for further commutations we use the first term. This  observation brings us to 
the expression (4.2.67) for AI(~; {~}). The  validity of the remaining formulae 
follows from the symmetry of all expressions with respect to the permutation of 

t ! 

0~i,. . . ,0{ M .  

As a result we see that ~({~})  is an eigenvector of A(~) q- D(~)--operator  with a 
spin projection S = = N / 2 - M +  S and eigenvalue (4.2.66) if {@} satisfy the system of 
equations 

1~ a(~j-a'~) [ (S+  1/2)a'(~N+~--a'~)--(S--1/2)b'(~N+l--Cd~)] 
j=lII b(0{j--0{'?) [--(S--1/2)a'(~N+ l--O:'~)+(S+ l/2)b'(c~N+ l--o:') ] 

= _  f i  a(cgp--o~'.e) b(a':,--a'p) (4.2.68) 
fl = 1  a(cd,-- 0~}) b(a} - a',)" 

It is interesting to note that condition (4.2.68) removing the 'unwanted'  terms in 
(4.2.65) also follows from the analyticity of A(e, {@}) with respect to the spectral 
parameter c~ (Manackov, unpublished). Indeed, the operator (~+ig)r(e)/a(a) is 
analytical in the complex plane of ~. Therefore,  the operator 

~ 1  c~S~_ ~z + ig T(a) 
s = ~ a ( ~ s -  o:) 

is analytical also and, moreover,  it is a polynomial of the Nth  order. Due to 
commutativity of the set T(~) the coefficients at various powers of e also commute.  
Hence, the eigenvalues ofT(a)  are polynomials of~. It is easy to see that requiring the 
poles at a=a~ to vanish in (4.2.66) one immediately gets eqn. (4.2.68). 

Setting ~ = g ( - ) . p  + i/2), ~ = 0, ccj = ~s+ 1,j and using eqns. (4.2.65) and (4.2.66) 
with b(0)= 0 we obtain 

[ i l S ~  : 2 ~ + / / 2 )  
e x p ( i k j L ) = e x p ~ - )  ~ (4.2.A) ~,=,\2~-i/2 " 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

hi
ca

go
 L

ib
ra

ry
] 

at
 1

8:
11

 1
8 

A
ug

us
t 2

01
5 



Exact results in the theory of magnetic alloys 553 

Equation (4.2.68) yields the following equations for 2~: 

(2~+i /2 )n (2~+l /g+iS )  _ f i 2~ - )~p+ i  
el I x • + l / g - i S  = # : 1 ~ - 2 ~ - i "  (4.2.B) 

We shall call, below, eqns. (4.2.A) and (4.2.B) the Bethe-Ansatz equations. The 
Bethe-Ansatz equations solve the problems of diagonalization of the s-d exchange 
hamiltonian and completely describe its spectrum. 

Note, that the eigenvalue of energy is determined by the momenta {k j} of the 
charge density waves,and by the rapidities {2~} of the spin density waves: 

N 

E =  ~ kj (4.2.C) 
j = l  

and the spin projection is given by S Z = N / 2 - M + S .  
Equations (4.2.A)-(4.2.C) for S=1/2  were obtained by Andrei (1980) and 

Wiegmann (1980 a, 1981) and by Fateev and Wiegmann (1981 a) and Furuya and 
Lowenstein (1982) for arbitrary S. 

4.3. Bethe Ansatz for the anisotropic exchange model 
The modern theory of exactly integrable quantum models provides the means for 

diagonalization of the s-d exchange model with an arbitrary impurity spin and 
anisotropy of a general type. However, for the sake of simplicity we restrict ourselves 
to the most interesting case of 1/2-spin impurity with U(1) symmetry 

1 
~ = a C 0  + ~ ~ cL [ Z lla~,SZ + I . (a~,, SX+a~,, SY)]Ck,~,. 

k,k'  
(4.3.1) 

Investigation of the thermodynamic properties of even this simple model with 
arbitrary Ijl and I± is a difficult task and may be performed only for the exchange 
term of easy-plane type: 

III > /1  >0- (4.3.2) 

Our consideration is restricted to this simplest case. 
We must admit that we do not know of any physical realization of the anisotropic 

exchange (4.3.1). Nevertheless, from the point of view of a 'theorist' the properties of 
the anisotropic model are richer than those of the isotropic model and open up some 
new possibilities for understanding the nature of the Kondo effect. 

An excellent example is the paper by Anderson et al. (1970) in which much 
information about the isotropic s-d model was derived from consideration of the 
anisotropic model. The RL model is related closely to the anisotropic s-d model. We 
describe its solution in the Supplement section. 

4.3.1. Two-particle scattering matrix and the Bethe-Ansatz equations 
This section is written for the reader who has studied the Bethe Ansatz for the 

isotropic s-d model (see §4.2). 
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554 A . M .  Tsve l ick  and P. B. W i e g m a n n  

T h e  coordinate  Bethe wavefunc t ion  ((4.2.10)-(4.2.13),  (4.2.19)) as well as all 
speculat ions,  e x p o u n d e d  in §4.2.2 for the isotropic  s -d  model ,  are valid for the 
anisot ropic  case, bu t  the pa r t i c l e - impur i ty  scat ter ing ma t r ix  has now ano ther  form:  

R0 :exp[i o  z+/I4 o+  +o ] 
We have already noted in § 4.2.2 that  the factor izat ion condi t ions  (4.2.26) are fulfilled 
for an a rb i t ra ry  matr ix  R. A non- t r iv ia l  ques t ion  is whe the r  the mat r ix  (4.3.3) lies on 
the algebraic curve R(~) defined by the t r iangle equat ions  (4.2.32). I t  has been  
expla ined in § 4.2.4 that  this condi t ion is necessary  and sufficient for  the factor izat ion 
of the spin scat ter ing and makes  it poss ible  to diagonal ize the T opera to r s  (4.2.29). 
T h e  answer  to this ques t ion  is posi t ive because  the solut ion of  the t r iangle  equat ions  
possess ing U(1) s y m m e t r y  contains  the  addi t ional  p a r a m e t e r  (Baxter  1972a),  
Zamolodch i cov  and Zamolodch i cov  1979): 

R(c0 = w0(~) + w II ( 7)°'~®a~ + w± (c~)(~x ®~rx + ~Y@~Y) 

sinh e f  
b(c~) = w0(e ) - w II (c~) - sinh ( a f +  i/2) 

a(e) 

i s in/2  

c(~) = 2w±(e) - sinh (0of+ i/2) a(~) 

a(7) = w0(c 0 + w II (c0, 

(4.3.4) 

(4.3.5) 

where  a(c~)a(-~) = I.  T h e  eigenvalues  of  the Tj opera to r s  (4.2.29) do not  depend  on 
the func t ion  a(c 0. The re fo re ,  we pu t  a(c~) = 1. T h e  solut ions of  the t r iangle  equat ions  
and relat ions (4.3.5) are p roved  in the A p p e n d i x  to §4.3.1. 

T o  find the relat ion be tween  (# , f )  and (III, Ix) ,  we rewri te  the scat ter ing ma t r ix  
(4.3.3) 

R = R ( 1 )  -- ~(l®l+~®.~)+ ~(I®I--~®~) 
1 ÷ 

+ ~-c(1)(a" 1 @0"2" +0"1-@a'~-), (4.3.6) 

a(1) = exp (ilii/2 - ii±/4), 

i I±  
c(1 ) = ~ sin ~ -  exp ( - ill1/4) 

b(1) = cos 1±/2 exp ( - ±Ill/4) 
(4.3.7) 

and put  Wi(1)=W i. Thi s  equat ion  yields 

cos 111/2. (cothf)2  _ 
c o s #  c o s l z / 2 '  

sin2111/2 

I 1 2  2 ) 
(4.3.8) 

T a k i n g  the l imit  g - l _ =  l imu+0f / /2=co t  1/2 we obtain  the SU(2)  invar iant  solut ion 
((4.2.49), (4.2.55)). 
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Exact results in the theory of magnetic alloys 555 

The  method of diagonalization of the 

Tj=W(0q ~1,- • .,0~N+ 1)]~=o;aj=6j . . . .  

matrices considered in (4.2.6) is valid for the anisotropic case. The  state D o with all 
spins up is still the eigenstate of the T(~) operator. Other eigenstates are constructed 
by a successive action of B(~}) (4.2.66). The  corresponding eigenvalues of the T(00 
matrix are calculated using commutat ion rules between the T matrix elements. 
These elements have the same form as those obtained for the isotropic case (4.2.60), 
but a(~), b(a), c(00 being determined by (4.3.5). Therefore,  the eigenvalues of the 
T(00 operator have the same form as in §4.2.6: 

A(~; { ~ } ) =  p=11" b(o~-a'o) j=IH a(°~J-°O+ p=l-- b(o~-a) J=~H b(o~j-oO. (4.3.9) 

The  quantities a~ satisfy the following equations 

N + I  1 ~ t t 

H a ( ~ j - - 0 ~ ) = -  11 a(a,--0~p) b(0~-0~) (4.3.10) 
j :  

Setting 0~ = 0 and o~'p = -#/f() .#- i/2); ~zj= 6j, N+ 1 one obtains 

=~ sinh [#(,~ + i/2)] 
exp (ikjL) = exp (i(Iii/2 -- 1±/4)) ~ = sinh [#()L~-- i/2)] (4.3 mA~ 

[sinh#(2~+i/2) In sinhp(2~+f/tl+i/2) M sinh#(2~--2~+i) (4.3.B) 
sinh #(St~ - i~ 2) sinh p ( ~  + f / # -  i/2) a=~ sinh #(5~ - ~p - i) 

PC 

E= ~ kj, S ~ = N / 2 - M +  1/2. (4.3.C) 
j = l  

Equations (4.3.A)-(4.3.C) were obtained by Wiegmann (1981). 

4.4. The Bethe Ansatz for the degenerate exchange model 
In this section the Bethe-Ansatz technique is applied to the degenerate exchange 

model which has been discussed in § 2.4.1. 

"]f = k,j ~ kC~Ckj + 2I ~_, Ckj+ Pj,jCk, j, + ~" EjPjj 
k,k' j j,j' 

( j = l  . . . .  ,n), (4.4.1) 

where I =  - 2  V2/cf, and Pj,j is a permutation operator. 
The  hamiltonian (4.4.1) describes dilute rare-earth alloys. Th e  energy of the f -  

electron level is assumed to be much larger than crystal field splittings ( - ¢ f  >> Ej). 
Therefore  effects related to the unspherical environment are taken into account only 
in the last term of (4.4.1). 

4.4.1. The coordinate Bethe Ansatz 
The  hamiltonian (4.4.1) commutes with a permutation operator. Therefore,  we 

may construct the eigenstates of (4.4.1) for an arbitrary irreducible representation of 
the permutation group. This  representation is characterized by the Young tableau 
[1N1-N2, 2N2-N3 . . . . .  n n~] (see fig. 4.10). The  number  Nj( j= 1, . . . ,  n) is the number  
of particles with the (j--(n+l)/2) the projection of the angular momentum.  It is 
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556 A. M.  Tsve l i ck  and P. B. W i e g m a n n  

Fig. 4.10 

113 ., 

N 2 ~'N 1 

The Young tableau corresponding to the representation of the permutation group 
[22 , 33 , 33 ] 

conven ien t  to charac te r i ze  an e igens ta te  by  a set of  n u m b e r s  r n l , . . . ,  rn, re la ted  wi th  
N j  as 

J 
mj= ~ N k. (4.4.2) 

k = l  

I t  is easy to genera l ize  the  coo rd ina t e  Bethe  wavefunc t ion ,  c o n s t r u c t e d  in § 4.2.1 for  
the  case n = 2, to the  case of  a rb i t r a ry  n. 

As  has been  shown for the  s - d  exchange  mode l ,  l inear i ty  of  the  c o n d u c t i o n  
e lec t ron  s p e c t r u m  enables  one to choose  a p e r m u t a t i o n  o p e r a t o r  P as the  S m a t r i x  of  
the  n o n - i n t e r a c t i n g  par t ic les .  Hence ,  the  fac to r i za t ion  c o n d i t i o n  (4.2.26) is sat isf ied 
i r r espec t ive  of  the  fo rm of  the  R mat r ix :  

R0j = exp ( i lPoj)  = cos I I o j  + i s in I P 0 j  (4.4.3) 

and  the Bethe  hypo thes i s  is val id .  N o w  one shou ld  t rea t  the  ind ices  in (4.2.26) t ak ing  
the  values  f rom 1 up  to n. T h e  p e r i o d i c  b o u n d a r y  cond i t ions  lead to the  p r o b l e m  of  
d iagona l i za t ion  of  the  m a t r i x  

T j  : P j j+ IP#+ 2 - . .  R - j 0 P j l  • - • P j j -  i .  (4.4.4) 

T h e  m e t h o d  for so lv ing  this  p r o b l e m  was sugges t ed  by  S u t h e r l a n d  (1968). His  
m e t h o d  enables  one to genera l ize  the  so lu t ion  wi th  n = 2 to the  case of  a r b i t r a r y  n. 
O t h e r  vers ions  of  this  m e t h o d  were  d i scussed  by  K u l i s h  and Reshe t i kh in  (I 98 I)  and  
Ar in s t e in  (1980). 

Le t  us define the  fo l lowing set of  the  R mat r ices :  

where  
R ( ~ ) = b ( ~ ) + c ( ~ ) P ,  (4.4.5) 

ig 
b(ct)/c(ct) = ct/gi; c(00 = - -  ; g = tan  I/2.  

e+ig 

T h e s e  ma t r i ce s  sat isfy  the  fac tor iza t ion  cond i t i ons  (4.2.32). T h e  fo l lowing  re la t ions  
are val id:  

R(O)=P 

R(1) = R exp ( --  i i /2),  (4.4.6) 

where  R is g iven  by  (4.4.3). 
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Exact results in the theory of magnetic alloys 557 

4.4.2. Bethe-Ansatz hierarchy 
W e  cons t ruc t  the m o n o d r o m y  mat r ix  accord ing  to the general  scheme cons idered  

in §4.3.6: 
N 

L(~) = 1-I R , j ( ~ j -  ~)R,o(~ N , i - ~)- (4.4.7) 
j - - 1  

T r a n s f e r  mat r ices  T ( ~ ) =  T r ,  L(~) fo rm a c o m m u t i n g  set of  opera tors .  
L e t  us diagonalize the opera to r  T(~). I t  is conven ien t  to express  the p e r m u t a t i o n  

opera to r  in t e rms  of  e l emen ta ry  mat r ices  Xvq: 

P#~'- ~ (Xvq)131V(Xqp)~' (4.4.8) 77' - -  
p , q = l  

( X v q )  °~fl = (~o~pC clfl. ( 4 . 4 . 9 )  

T h e  mat r ix  R(a)  is 

R(~) = 

- b(c0 + c(00Xi 1 C(00X2 1 " ' "  C ( ~ ) X n l  

c(~)Xi2 b(~) "~- 6 ( ~ ) X 2 2  . . .  C ( ~ ) X n 2  

c(~)X~, c(~)X2. . . .  b (~ )+c (~ )X . .  

(4.4.10) 

R , j ( ~ ) ~  = 

Act ing on it, R,j(o 0 gives 

J J - -  J J X f k ~ o -  6 k i X i i ~  o (~{)p = cS~l ) . (4.4.11) 

" 1 b(~)X21 

0 

0 

(we bear  in m i n d  tha t  b (~)+  c (~)=  1. 
N o w  we cons t ruc t  a vec tor  Qo pu t t ing  

N + I  N + I  

~o = [-[ ® ~ ,  ~o,p ...... p~+ ,=  [1 6p~,~. (4.4.13) 
j = l  j = l  

C o m p u t e d  on this vector ,  called ' ba re '  v acuum,  all R,j, Ro, and the m o n o d r o m y  
mat r ix  (4.4.6) b e c o m e  tr iangular:  

L(~; ai  . . . . .  an+ i ) ~ o  

!0 ' B~(~) B2(~ ) 
I 

- i bN-(£~)b(_~ + 1 ) 

I 

I o 
I " bN( -- a)b( - a + 1) ] 

~o.  (4.4.14) 

• . .  b(~)X. 1 

0 

b(~) 

(4.4.12) 

T h e r e  exists an a - i n d e p e n d e n t  vec tor  ~ which  reduces  R.j(a) to a t r iangular  form.  I t  
is the state wi th  the m a x i m u m  value of  colour:  
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558 A . M .  Tsvelick and P. B. Wiegmann 

In view of these results is is natural to split L(ct) into blocks 

L(a)=  ( A ( a )  B,(a) ) (4.4.15) 
\ cb(~) Dab(=) 

(compare with (4.2.56)). 
The blocks A, D,b act on the 'bare' vacuum as follows 

A(a)f~0 = f~0,  Dab(CO~o=SabbN(--cOb(--o~+l). (4.4.16) 

One may consider the blocks C b and B a as annihilation and creation operators 
respectively: 

Cb(~)f~o =0  
(4.4.17) 

B,(cQf~ 0 = ~(~, a). 

As above (4.2.6) the triangle equation gives the necessary commutation relations 
between the elements of L(~): 

qq '  - -  q '  k" - -  k q q ' l  Rkk,(O~ fl)L I (fl)L r (ct) - L k , ( O O L q , ( f l ) R k , r ( O ~  - -  fl). (4.4.18) 

Using (4.2.4), and (4.2.14) and rewriting (4.4.18) in components we obtain: 

A(e)Ba(fl)b(c~-- fl) = Ba(fl)A(c 0 -  c (a- -  f l )B.(a)A(fl) ,  

D . b ( C O B c ( f l ) b ( c t - -  fl) = Bv(fl)Dam(e)r~V(fl-- c~) 

- c(/~- ~)Bb(~)Dac(~), 

Ba(fl)nb(~) = r ~ ( ~ - -  fl)B~(~)Ba(fl), 

r ~ ( ~  - -  f l ) D p c ( f l ) D q d ( a  ) = D b m ( a ) D a ~ ( f l ) r m ~ ( a  - -  f i) ,  

c d  - -  c d  c d .  r ab(Ct) - b(o:)Iab + c(c 0 1 P . b ,  

c d  - -  . c d  - -  
l ab  - -  (S ab a cd, 1 P ab - -  a .aa  ~b, 

(4.4.19 a) 

(4.4.19b) 

(4.4.19 c) 

(4.4.19d) 

(4.4.19 e) 

where 1P is a permutation operator in ( n -  1) x ( n -  1) dimensional space. 
We have one eigenvector of the Tr,L(~) matrix f~o and a set of the creation 

operators Ba(a ). The algebraic approach to the Bethe Ansatz enables one to construct 
the other eigenvectors of Tr,L(00. One has to apply the creation operators Ba(2~) to 
f~0 and using commutation rules (4.4.19) and the properties of 'bare '  state f~0 (4.4.14) 
obtain transcendental equations for the rapidities 2~. 

More explicitly, consider the vector 

ml 

f2(1{2,, a i}ml)=Fl (a l , - . . ,  am,) H Ba,(2,)~0 (4.4.20) 

(we assume the summation over the repeated indices). 
Let us act by Tr  D,b(C 0 and A(~) on the state (4.4.18). Using the commutation 

relations (4.4.19) we obtain: 

ml 1 

A(cQf~(I{2,, ai}m, ) = i~=1 b(o~ - 2i) [~(1{2i' a~}ml) 

c(c~-21) ~_[i 2 1 Bal(~)~Q(2{2i, a/},,~)+...  (4.4.21) 
b(~--21) i b(2l --2i) 
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E x a c t  results in the theory  o f  magnet ic  al loys 559 

m, 1 

T r Dab(~)[)(1 {,~i, a i } m l  ) = bN( --  cob( - c¢ + 1) ~=~1~ b(2~ - c0 

~ a l P l l ' ~  a2P2 __ a m i p m  I __ X'aq, ~.-~l--~)rqlq2(22 ~)...rq,~,a (2m 1 g) 

421 -~ )  bN(_ 21)b(_ 2, + 1) x ~(l{2~,P,:}m,) b(2i-'~) 

m, 1 
a2P2 

X i=2H b(2i_2i  ) 6 a p 1 6 a l q l r q l q 2 ( 2 2  41) 

a3P3 , r a m ~ p m l (  ~ 
X rq2q3(/~3--41). --41) • • - q r n l  a \-vm 1 

x p,},,,,), p,},,,,) 

= F l ( a  I . . . . .  am,)np2(22). . .  Bp~,(,~m, ). (4.4.22) 

Th e  first summands in the right-hand side of eqns. (4.4.21) and (4.4.22) are obtained 
when we carry A(~)or  T r  Dab(00 through Bai(2i) , using only the first terms in the 
right-hand side of (4.4.19a, b). The  second summands are obtained if A(~) or 
T r  Dab(a ) c o m m u t e  with B~1(21) , and the second terms in (4.4.19 a, b) are used while 
for further commutations are denoted by points. 

As in (4.2.6) the summands of the first type give the eigenvalue of T(~) and the 
summands of the second type give the transcendental equations for the rapidities 2 i. 
In the previous cases these equations contain c numbers  but  now they contain the 
new operators acting on the isotopic structure of the function F l ( c t l , . . . ,  am,): 

m, 1 

E- -=  A(~)F 1 = b ( ~ _ 2 i )  F1, (4.4.23 a) 

rnt 1 

[ T r D a b ( ~ ) ] F l = b N ( - - ~ ) b ( - - g + l )  i=lI~ b(2/_ct~Tl(~)Fi, (4.4.23 b) 

where 

and 

Tl (e  ) = T r  Li(~ ) -  T r  l r ,  l(~l -- 0 0 . . .  lr,ml(2m, --  ~) (4.4.24) 

lr,j(~) = b(~) + c(~)lPv. (4.4.25) 

A necessary and sufficient condition for the vector f~(i {2i, ai}ml) to be an eigenvector 
is that F 1 be an eigenvector of TI(~ ) and the rapidities ,,t. i satisfy the vector equation 

T~¢ : - .~ , (  2 , )F , (a ' , ,  . . . , am1 ) = b -N(  -- 2~)b- 1( _ 2~ + 1) 

ml b(,~j__21 ) 
× H F l ( a l , " "  ,am1) (4.4.26) 

b(2i-2j )  j=l"= j¢i  

resulting from the vanishing of the 'unwanted'  terms in (4.4.21) and (4.4.22). 
The  operators Tl(~), Li(2 ) and lr(2) and the eigenproblem (4.4.22) and (4.4.26) 

reproduce our initial construction with the following modifications. There  are now 
sites in the chain and the operators l r . j (2 j -2 )  in C."-1® C~-1 depend through }~j on 
the label of the site. Thus  the B e t h e - A n s a t z  h ierarchy  appears. 

Let  us consider the simplest case n = 3, when the B e t h e - A n s a t z  chain contains 
only two links. 
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560 A . M .  Tsvelick and P. B. Wiegmann 

The L t (e) operator for n = 3 coincides with that of § 4.2.6. The number  m 1 plays 
the role of the number  of particles. The eigenvalues of Tl(e ) are calculated from 
(4.2.67) and (4.2.68): 

ml m2 1 m2 1 

- -  k__I[I A(cq {Ak})= H b(21-e) H b(Ak_C~) + (4.4.27) 
i = 1 k =  i = b ( ~ - -  Ak) 

where A k satisfy the following equations 

Ak--21 _ ,,2 Ak_ 2j-- ig 
Pi H (4.4.28) 
i=x Ak--2i+ig j=l Ak-Aj+ig" 

To solve the problem (4.4.26) we need the eigenvalues A1(2i, {Ak} ). As b(0)= 0, the 
first term in (4.4.27) vanishes. One obtains 

m2 1 
A~(21; {Ak})= k=lH b(2,_Ak) • (4.4.29) 

Substituting (4.4.29) in (4.4.26) we obtain the equation 

21 ~N( 2 i - 1  2,--Ak 2i--2,+ig 
21--igJ\2i--l--ig)kH=l - ,01  (4.4.30) 2 i -  A k -  ig 2 i - 2 j -  ig" 

j~ai 

Equations (4.4.28) and (4.4.30) determine rapidities {2i}, {Ak}. 
As b(0) = 0 the eigenvalues of the T operator are defined only from A(cQ. Equation 

(4.4.23) gives 

(2i--ig~ (4.4.31) T(O)=i=--I~I\ 2i ) 

What do the numbers ml, m 2 mean? As follows from above, m I is the total 

number of the creation operators B,, acting on the 'bare' vacuum. It means that m i is 

the total number of 'coloured' particles (we consider the 'bare' vacuum as white). In 

the present case the coloured particles have two colours, the number of particles with 

the first colour being m E. Thus, the Young tableau consists of three columns: 
[3 m2, 2 ml-2m2, 1 N-2ml+m2] (see fig. 4.10). 

Induction arguments enable us to write the Bethe-Ansatz hierarchy. Substitut- 
ing g(--2+i/2), -Ag  instead of ), and A one obtains for arbitrary n: 

ml /29)+i/2 ) 
exp(ikiL)= ~,UI ~ ~  ' (4.4.A) 

mlLi~(2~J)__2J+~)+i/2 ~ ,,j /~U)_~(J)-;\ 
,=+ ) = -  H / ' ~  "~-Z-a " ~ /  

H _1 fll--ll k ~ ~ / ~ -  e l  1 \ 2 ~ j ) _ 2 j ) ~  ] ,  (4.4.B) 

where 2(°)= - 1/g6=.N+l,j= 1,. . . ,  n-- 1, m o = N +  1, m ,=0 .  The eigenvalue of the 
energy is 

The number  of particles with 
m j  - -  m j _  1" 

N 
E =  2 k j .  

j=l 

momentum 

(4.4.C) 

projection j - ( n+ l /2 )  is equal to 
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Exact  results in the theory of magnetic alloys 561 

Consider some details omitted in the previous discussion. The  elimination of 
'unwanted'  terms in (4.4.20) and (4.4.21) leads to the following relation: 

m l  1 r a 2 p 2  c(2 i - a )  bN(_21)b(_2i  + 1) l--[ b(2i_21) •aplfaiql qlq2(22--21) 
b(21-c0 i = 2  

× ram~Pm,(2 __2i)Ba(CQBp2(22) . Bpm,(2m,)Fi(ai, .  am i) • " • q m l a  k m l  . . . .  , 

c(c~- 21) ~2 1 
+ b(~_2i~ i b(2i _2i) B,1(c0(22)... Bam~(2mJFi(a i , . . . ,  am~ ) --0. (4.4.32) 

Using the relation c ( - -cO/b( -c  Q =-c (cQ/b (~ )  one can rewrite (4.4.32) as 

rnl  

bn(--2i)b(--21 + 1) l~  6 6 ~.p2a2[] ~ "t 
a a l  p l q l ' q i q 2 V ~ 2 - - r " l ]  " ' "  

i = 2  

r~21~ml(2m ~ - -21 )F i (P i , - . .  , Pm~)Ba,(~)Ba2(22) . . . Ba,~(2rn~) 

- -  i=21--Im' b(21 -- 2i) b(2i_ 2i ) F(al  . . . .  , a~l)B,~(c~)B,~(22). .. B~,(2m~) = 0. (4.4.33) 

The  terms containing the identical products of the B operators should be equal. 
Therefore,  we have 

bN(-- 21)b(-- 2i + 1 ) ~  "aql~plaltTl'~p2a2(~k~I'qlqak'~2 __21 ) . . . r~:la,~(2ml __2i ) 
a 

x F i ( P l , . . . , P m j  = 
b(2i--21) 

i=2 b(2i --2~) F l ( a l ' " " " '  amJ. (4.4.34) 

Note that 

r(cQ = lr(~) 

and particularly 

Plql __ 

where 1 r is the matrix from (4.4.3) acting in C " -  i ® C  n- i. Using these equations it is 
easy to obtain from eqn. (4.4.34) the condition (4.4.26). 

The  Bethe-Ansatz hierarchy for the degenerate exchange model (4.4.A)-(4.4.C) 
was constructed by Tsvelick and Wiegmann (1981, 1982 a). 

4.5. The Bethe A n s a t z  for  the Anderson model 

In the idealized case with the orbital structure of an impuri ty ion neglected, the 
hamiltonian of the so-called non-degenerate Anderson model is 

J'~A= 2 ekC~,:k¢+ V ~  (c~,fl,~q-d+ ck.)q-~atom, (4.5.1) 
k , a =  "f, ~ k , a  

where c[~, cg~ are the creation and annihilation operators of the band electron with the 
wave-vector k and the spin a = ~ ,  ~, and d +, d~ are the creation and annihilation 
operators of an electron localized on the impurity orbital. The  operator Jf~tom 
describes the dependence of the impuri ty orbital energy on the occupation orbital 
number  * + n¢=d¢d~ .  
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562 A . M .  Tsvelick and P. B. Wiegmann 

The  atomic part  of the hamiltonian is conventionally writ ten as 

~ a t o m  = Z(.d1~la"{- gJ~,[., (4.5.2) 
(7 

where ed is the energy of the impuri ty  orbital measured f rom the Fermi  level, U is the 
Coulomb repulsion on the impuri ty  orbital ( U >  0). The  energies E+ = e d + U and 
E_ = - E  a are related to the variation of a number  of d electrons by +1 .  T h e  
interaction of band and localized electrons is phenomenologically described by the 
hybridization V (see §§ 2.1, 3.4 and 3.5). Integrabil i ty and the Bethe hypothesis for 
the Anderson model  were briefly studied by Wiegmann  (1980 b). This  solution will 
be given below. 

4.5.1. The effective hamiltonian 

The  simplifying assumptions adopted while solving the Anderson hamiltonian 
(4.5.1) are identical to those used previously to construct  the exact solution of the 
Kondo  hamiltonian (s-d exchange model) (see § 4.1.2). Namely,  it is our assumption 
that 

(i) the mixing ampli tude V does not depend on momenta  k; and 
(ii) the ampli tudes U, E a and F are small in comparison with the Fermi  energy. 

According to (i) the hamiltonian (4.5.1) describing only a unique impur i ty  is 
spherically symmetr ic  and consequently reduces to a one-dimensional  problem. 
Further ,  according to (ii) one can neglect electron states lying far f rom the Fermi  
surface so in the vicinity of k '~kF  the spect rum can be considered as linear 
s(k) = ( k -  kF)v F. We shall set, below, that v v = 1. Therefore,  the density of states on 
the Fermi  surface P(eF) is 1/2n. Thus ,  one can reformulate the problem in terms of 
the coordinate along an arbitrary line intersecting the impuri ty  position 

-- ic~ (x) ~x c,,(x) + gb(x)[c~, (x)d,, + d~ c,,(x)] } 

+ q ~ h o +  U~rn ,, (4.5.3) 
~t 

where x is the corresponding one-dimensional  coordinate. 

4.5.2. The two-particle scattering matr ix  

As is known,  to prove the integrability of the hamil tonian and the validity of the 
Bethe hypothesis,  it suffices to find out whether  the two-particle S matr ix  satisfies the 
factorization conditions. 

Obviously the total number  of particles is conserved: 

(4.5.4) 
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Exact results in the theory of magnetic alloys 563 

Elements of the two-particle S matrix are determined by the Schr6dinger 
equation for N =  2. For instance, in the case S~= 0 the eigenvector of the hamiltonian 
is of the -form 

N') = { f dxldx2g(xD xz)c~ (xOc~ (x2) + f dxe(x) 

x [c[(x)d~{-c-{(x)d~ ] +fd~(d~[ } [O), (4.5.5) 

where the vacuum 10) is a state without particles: G(x)lO)=d~[O)=O. The 
wavefunctions g(xl, x2) , e(x) and f satisfy the Schrgdinger equation ~ a ] ~ )  = E I ~ ) ,  
which in our case is of the form 

[-- i(8~, + 8,,~) -- E]g(xl, X2) + V[~)(xl)e(x2) + 6(x2)e(xl) ] = 0, (4.5.6) 

(--iOx 1 - E  +Ea)e(x)+ Vg(O,x)+ Vf(x) f=O,  
(4.5.7) 

J ( U +  2ca)f+ 2 Ve(O) = El. 

Above all, let us find a solution of eqn. (4.5.6) at U =  0. In this case the problem is 
one-particle, therefore the two-particle eigenvector (4.5.5) must be a direct product 
of two one-particle eigenvectors 

['Pk~)=(fdxgRx)c+(x)+e,d+),O). (4.5.8) 

With energies k and p such that k + p = E  

Therefore at U =  0 

g(xl' x2) =gk(Xl)gp(x2) +gk(Xz)gp(xl)' l 

e(x) = ekgp(x ) + epgk(X); f = 2eke p. 

The one-particle wave functions gk(x) and e k satisfy the equations 

(4.5.9) 

(4.5.10) 

( -- i~x-- k)gk(x) + V6(X)ek = 0 

6aek + Vgk(O) = kek. 
(4.5.11) 

The solution of these equations is 

gk(X) = exp (ikx + i~ 2 sign x6(k)), gk(O) = COS 6(k), (4.5.12) 

where 

v 
e k = ~__Edgk(O), 

6(k) = - 2 tan-  1 (4.5.13) 

is the one-particle phase of the scattering of a particle on the resonance level. 
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564 A . M .  Tsvelick and P. B. Wiegmann  

At U P  0 we derive the solution in the form 

g(x 1, X 2 ) = Zkp(X 1 -- x2)gk(X l)gp(x 2 ) + Zkp(X2 -- x 1)gp(x i )gk(X2), 

where Zkt, is a so far unknown function. 
Insert ing (4.5.14) into (4.5.6) we get 

e(x) = gl,(X)ek Zkl,(X ) + gk(x)ep Zip ( -- x). 

where 

(4.5.14) 

F U  
Zkp(X ) = 1 + i sign x (k--p)(k +p--  U-- 26n) (4.5.15) 

If  the spin of the particles is parallel, the interaction is absent and g(xa,xa) is 
determined by (4.5.10) and (4.5.12). 

Here  as in the solution of the s -d  exchange model,  we encounter  the following 
interesting circumstances. Even far f rom the impuri ty,  e.g. in the region xl,  x a < 0, 
the particles described by the wavefunctions (4.5.14) and (4.5.15) have a non-uni tary  
scattering matrix. Actually according to (4.5.14) and (4.5.15) the particle with the 
m o m e n t u m  k, scattered by another particle with the opposite spin, acquires the 
phase 

i ln [g(k)--g(p) + i/2 
L g ( k ) - g ( p ) -  i/2 ] '  

where 

g(k) = ( k - ¢  a -  U/2)e/2UF. (4.5.16) 

This  circumstance, discussed in detail in §4.2.2., does not, of course, imply any 
interaction and is a consequence of the linear particle spectrum. I t  is easy to check 
that the wavefunction (4.5.14) at arbi trary Zkp(x ) is a solution of the Schr6dinger 
equation 

- - i (  ~--~l + ~ 2  )g(xa ,x2)=Eg(xDx2) .  (4.5.17) 

One-dimensional  free particles with a linear spectrum allow representations with an 
arbitrary scattering phase (for instance, constructing the per turbat ion theory ( U ~  0) 
one uses a representation of free particles with a unitary scattering matrix). The  
presence of an impuri ty  unambiguously  fixes the free particle representation. 

T h e  hamiltonian (4.5.1) has rotational invariance. Therefore ,  the general form of 
the S-scat tering matrix far f rom the impur i ty  with the momenta  k, p and spins a l ,  0- 2 
is 

S ~  (k, p) = OJo(k , p) + w(k, p ) t r ~ a , ~  = b + cP 12, (4.5.18) 

where a = (a x, a y, 0.z) are Pauli matrices and P12 = 1/2(1 x 1 + a  I • 0.2) is a permuta t ion  
operator. Compar ing  (4.5.18) with (4.5.14) we get 

Zkp(X > O) _ g(k) --g(p) + i/2 
b ( k , p ) - c ( k , p ) -  Zkp(x<O) g ( k ) - g ( p ) - i / 2 "  

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

hi
ca

go
 L

ib
ra

ry
] 

at
 1

8:
11

 1
8 

A
ug

us
t 2

01
5 



Exact results in the theory of magnetic alloys 565 

If the spins of the particles are parallel, the interaction with the impuri ty is absent 
and the particles passing through each other do not change their phase 

Therefore,  

b(k,p) + c(k,p) = 1. 

g(k) - g ( p )  + (i/2)P 
S(k,p) = (4.5.19) 

g(k) --g(p) + i/2 

It is easy to check that the matrix (4.5.19) satisfies (4.1.17). Actually, in terms of 
the functions b(h, p) and c(k,p) the factorization equation is 

h(k, p) + h(p, r) = h(k, r), (4.5.20) 

where 

h(h, p)  = b(h,p)/c(k,p). 

The  general solution of (4.5.20) is h ( k , p ) = g ( k ) - g ( p ) ,  where g(h) is an arbitrary 
function. For  the Anderson model the function g(k) is determined by formula 
(4.5.16). 

4.5.3. The coordinate Bethe Nnsatz  
Let us now formulate the Bethe Ansatz. Let  Q and P be permutations of the 

integers { 1 , . . . ,  N}. in each domain XQ = {Xql < . . .  < XqN } {q}EQ, the wavefunction 
g,~ .... u ( x l , . . .  , Xn) , where ~j are spins of the particles, is of the form 

N 

g,l .... ~ , (x l , . . . ,xN)= ~ A,1 .... ~(QIP) VI gk,(xJ), (4.5.21) 
P = {P l  . . .  P N }  j = 1 

where {hi} is a set of unequal numbers and gk(x) is given by (4.5.12). It is possible to 
write down similar expressions for e . . . . . .  n ( x l , . . . ,  xu_l )  as well. Th e  underlying 
hypothesis is that in each domain the wavefunction is described by a unique set of Q- 
independent parameters. The  energy of the state with the wavefunction (4.5.21) is 

N 

E =  ~ h j .  
j=l 

There  is a number  of constraints imposed on the N! x NI matrix A(Q[P) by the 
Schr/Sdinger equation, continuity conditions at the boundaries of the domain XQ and 
antisymmetry.  The  number  of these constraints exceeds the number  of elements of 
the matrix A(Q]P). The  consistency of these constraints is guaranteed by the 
factorization condition which proves the Bethe hypothesis. Let  I =  { 1 , . . . ,  N}, then 
A(QIP) is related to A(IIP)  by the matrix S(QIP): 

A . . . . . . .  (QIP) = S~il".'.'.]~(QIP)A,~ .... ~(IIP). 

Then  S(QIP) is a multiparticle scattering matrix. Due to the validity of factorization 
conditions (4.1.17) it is the product  of two-particle S matrices (fig. 4.1). Th e  
antisymmetry requirement  with the wavefunction (4.5.21) at the pair permutations 
(x j, c~j) leads to the condition 

A,1 . . . . .  (QIP) = ( -  1)eA,~ ..... qN(QP) • 
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566 A . M .  Tsvelick and P. B. Wiegmann 

To  study the spectrum of the system, we must impose boundary conditions on 
the wavefunctions. As has been established in §4.2.3 we arrive at the following 
eigenvalue problem: 

"I'j~ = exp (ikjL + i6(kj))~, (4.5.22) 

where 

Tj = Sjj+ l(kj, kj+ 1). . .  Sju(kj, kN)Sjl(kj, k O . . .  Sjj_ l(kj, k;_ 1). (4.5.23) 

Since this eigenvalue problem is not specific for the Anderson model we do not give 
its solution here, referring the reader to § 4.2.6. 

The  eigenvalues of the operators Tj with the total spin projection Sz =  N / 2 - M  
are given by the equations 

M g(kj)--2~+i/2 
exp (ikjL + if(k j)) = I~ (4.5.A) 

= 1 g(kk) -- 2~-- i/2' 

where the quantities 2, satisfy the conditions 

2~-g(kj)+i/2 = - -  f i  2 ~ - 2 ~ + i  (4.5.B) 
j= 1 2 , -g(k;)  - i/2 ~ = ~  2~  ] 2 ~  i i" 

Equations (4.5.A) and (4.5.B) with the condition 

N 

E= ~ kj (4.5.c) 
j = l  

completely determine the spectrum of the Anderson hamiltonian. They  describe the 
quantization of the rapidities of the charge {kj} and spin {2,} excitations. Note that in 
the s-d exchange (Kondo) model these excitations are not coupled. 

4.6. The Bethe Ansatz for the degenerate Anderson model 
We present below the Bethe-Ansatz solution of the degenerate Anderson model. 

For  the origin of this model see §2.1.3. The  degenerate Anderson hamiltonian 
(2.1.14) describes the cerium or yt terbium impuri ty in both the localized-moment 
and mixed-valence regimes. 

The  effective hamiltonian of the degenerate Anderson model has the form: 

E fax f .+ + ;=1 {-zcj (X)~xxCj(X)+ Va(x)[c; (x)X0j 

+Xjocj(x)] ~ + ~ (q+Ej )Xj i ,  (4.6.1) 
) j = l  

where E i is a crystal field splitting and Xii is a projection operator, defined in § 2. As in 
the previous subsections, we have assumed that F and ed are small compared to the 
Fermi energy and considered only the linear part of the electron spectrum. However,  
in this section we assert that the intra-atomic energy E+, related with adding one 
additional electron to the impuri tyshel l ,  is infinite, i.e. much larger than the band 
width. 

The  methods described in §§ 4.4 and 4.5 are all that we need to solve the problem 
(4.6.1). Hence, the presentation will be brief with frequent references to ~ 4, 5 and 6. 
In the particular case n = 2 we arrive at the asymmetric non-degenerate Anderson 
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Exact results in the theory of magnetic alloys 567 

model  U--* oo. In  this limit in eqns. (4.5.6) and (4.5.7) the a m p l i t u d e f ~ 0 .  T h e  two- 
particle S matr ix  has the fo rm (4.5.19) with 

Q-- k (4.6.2) 
g ( k ) -  2F 

T h e  Bethe-Ansa tz  equat ions (4.5.A)-(4.5.C) mus t  be changed according  to the 
above. 

After  this note  we are ready to solve the problem.  Consider  the state 

{ t r t J ) = [ f c f ( x l ) c ; ( x 2 ) g j U 2 ( X l , X z ) d x l d x 2 + f J 2 +  1 dxeh(x)%(x)Xj~o  IO). (4.6.3) 

ej,(x ) satisfy the equations:  T h e  ampl i tudes  gj,i~(xl, x2) and j~ 

[ - i(ax, + ~,,~) - E ] g j a j 2 ( x  I , X 2) q- V(a(x,)ei~=(x2) -- 6(xz)e~(x)) = O, 
(4.6.4) 

J (-- iOx-  E + q)ej~(x) + Vgjd2(O , x)  -= O. 

T h e  solut ion of  these equat ions  is g iven by the fol lowing expressions:  

g j d2( Xl  , X2) = (gk( X l )gp( x2) --gk( x2)gp( Xl ) ) 

X (A jU20(x l -x2)+Sjz i~(k ,p )Aju~O(x2-x l ) ) ;  (4.6.5) 

ei~(x ) = (gk(x)% --gp(x)ea)(djdfl(x ) + ,~aJ.~ tk ~ , J l ,  ,p)dj l j~O(-x)) ,  (4.6.6) 

where the funct ions gk(x) and e k are given by (4.5.12) and the two-par t ic le  S matr ix  
has the fo rm 

hJ~ _ _ • J2J~ _ • (4.6.7) S j , j ; ( k , p ) - ( p  k +  2zFPj,j¢)/(p k+2z F) .  

Here  P is pe rmuta t ion  opera tor  of  rank n: 

pJzJ~ _ 15j,j~ (~J2Ji (j  = 1 , n). j l j i  - -  ' " " " 

Evident ly  the matr ix (4.6.7) satisfies the factorizat ion condit ion.  
T h e  coordinate  Bethe Ansatz  for our  problem,  formula ted  in the same m a n n e r  as 

in §4.5.3, leads us to the eigenvalue p rob lem of the opera tor  (4.5.23), where the S 
opera tor  is given by (4.6.7). For  the solut ion of  this p rob lem we refer the reader to 
§4.4.2. 

T h e  eigenvalues of  the operators  T / a r e  given by  the Bethe-Ansa tz  h ierarchy 

(kFq-iF) ~=lhJ 2r+2~'-i/2 
exp( ik jL)  k j - q + i F  = kj/2F+2(=1)+i/2 ' (4.6.A) 

mj+~ / '](j)__](j+l:)_l - ) = mj [/ ~(J)--~(J),,~ ,o~ + i )  
1~ 17 I "~ "~ , i/2 -- ~[ I ~J) ~(J)-~ii ' 

~= +_1 ~ 1  \2~J'--2J+~'--i/2 p=l \ , ~  -- ,~ 
(4.6.B) 

where 2~ °~= - h~/2F, m 0 = N,  m n = 0 and the numbe r s  mj( j = 1 . . . . .  n -  1) are defined 
by the Y o u n g  tableau (fig. 4.10) 

n--1 
mj= ~ Nk, (4.6.8) 

j=k 
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568 A . M .  Tsvelick and P. B. Wiegmann  

where m k is the number  of particles with (k-(n--1)/2) projection of the angular 
momen tum.  T h e  energy of this state is 

N 

E= ~ kj+ ~ EjNj. (4.6.C) 
j = l  j = l  

The  Bethe-Ansatz hierarchy for the degenerate Anderson model (4.6.A)-(4.6. C) was 
constructed by Schlot tmann (1982). 

4.7. General remarks 
The  physical propert ies of a system containing a large number  of particles 

(N--*~, N/L=const.) will be studied in the next sections with the use of 
eqns. (A)-(C) of §§ 4.2-4.6. Before that we discuss some propert ies of the derived 
equations and their relation to other models.  

First, note that eqns. (A)-(C) of§§ 4.2-4.6 in the absence of the impuri ty  describe 
a non-interact ing electron gas. T h e  impuri ty  terms are of the order of 1 /N with 
respect to others and can easily be selected f rom all these equations. For  the exchange 
hamiltonians the appropriate  factors in eqns. (B) of §§ 4.2-4.6 are 

(,~+ l/g+iS) ~l /g-- iS for the Kondo model  (eqn. (4.2.B)), 

(sinh#(2+f/#+i/2) ) f°r the anis°tr°pic K°nd° m°del (eqn" #(2 +f/# - i/2) 

( 2~1' +1/g+i/2 ) 
2~5 + ~ _ ~  for the degenerate  exchange model  (eqn. (4.4.B)). 

The  presence of the impuri ty  in the Anderson model  is reflected by the factor 

k-Ea+iF 
k-ea-iF 

in eqns. (A) of §§4.5 and 4.6. 
Obviously,  for either g = 0 or S =  0 and either f =  0 or F = 0 the interaction with 

the impuri ty  vanishes and all these factors are equal to unity. In  these limits the 
corresponding Bethe-Ansatz equations must  describe the non-interact ing electron 
gas. T h e  explicit proof  of this s tatement is given in § 6.1.4. Here  we only show that 
the excitation spect rum coincides with that of the free gas, i.e. 

E= 2~K/L, (4.7.1) 

where K is an integer. 
Indeed,  take a product  of eqns. (A) in §§ 4.2-4.6 for al l j  and the product  of eqns. 

(B) in §§4.2.-4.6 for all a. T h e n  one finds that at g = 0  

exp (iEL) = 1. (4.7.2) 

In the cases of S = 1/2 Kondo hamiltonian and degenerate exchange hamiltonians 
one gets a non-interact ing gas also in the s trong-coupling limit g -  1 = 0. T h e  net effect 
of the impuri ty  is an increase by unity of the exponent  of the free gas factor. This  
results in a replacement L~L[(N+ 1)/N] in (4.7.1) and (4.7.2) and, consequently, 
in a decrease of the particle density by 1/L. In other words, in the strong coupling 
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Exact results in the theory of magnetic alloys 569 

limit the impuri ty compensates one particle, and the system has the Fermi-liquid 
behaviour at low energies (Nozieres 1974). 

For our purposes a conventional consideration of 1/2 spin free particles as subsets 
of spin-up and spin-down particles is inadequate. In our approach the S matrix 
contains the permutat ion operator and convenient subsystems are the spin and 
charge ones. 

Equations (A) in §§4.2-4.6 describe the 'scattering' of the charge subsystem 
particles with momenta  kj on the spin subsystem particles having rapidities 2~. 
Equation (B) of the same section describes the spin-spin scattering. Both subsystems 
are fermionic since from an analysis of the normalization of the eigenvector Y~(~, {2~}) 
it follows that the wavefunction vanishes if any two values of either 2p or kj coincide. 
The  number  of particles in the spin subsystem is equal to the number  of flipped spins 
M. In the s-d exchange model a natural definition of the momentum of spin 
excitations is 

p(2) = 2 t an-  1 22, (4.7.3) 

whilst for the Anderson model it is 

1 
p(2) = ~ ~ 2 tan-  1 2(2-g(k~)). (4.7.4) 

j = l  

Taking the log of eqns. (A) and (B) in §§4 .24 .6  we obtain 

M 

kjL = 27rNj- ~ (n +p(2,)) - 6c(kj) (4.7.5 a) 

M 

Np(2~)=ZnJ~+ ~, qb(2,-2p)--6~(2,), (4.7.5 b) 
p = l  

where qb(2) = 2 tan-  12 is the two-particle scattering phase of the spin density waves; 
and 6s(2) and 6c(k) are the one-particle phases corresponding to the scattering of spin 
and charge excitations by an impurity. 

For  the s-d exchange model we have 

~(k)  = - I S / 2 ,  6s(2) = 2 tan -1 [(2+ 1/g)/S]. (4.7.6) 

For  the Anderson model 

6~(k) = 2 tan-1  ( ~ ) ,  6s(2)=0. (4.7.7) 

The  integers 2Nj and 2J~ are quantum numbers  of a system. 
In the exchange models the phases of scattering on the impuri ty do not depend on 

the momentum of the incident particle. As a result the spin and charge excitations do 
not interact. In the Anderson model both subsystems are interconnected. 

Add eqns. (4.7.5 a, b)'. Then:  

E-- Eh + El/L; Eh = E ch q- E sp 

Lj=I 

E~ p = _ 2n ~ N ~ M  
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570 A . M .  Tsvelick and P. B. Wiegmann 

are the energies of the charge and spin subsystems in the absence of the impuri ty  and 

M N 

+ 6°%) 
~ = 1  j = l  

is an impuri ty  contr ibution to the energy. 
As we see, in the exchange models the impuri ty  contr ibution to the energy 

depends only on the spin subsystem. This  can be seen explicitly in the bosonie 
representation approach § 3.1.1. 

As ment ioned in §4.2.2, for the free particles with the linear spect rum the 
scattering matrix can b e  chosen arbitrari lyt .  This  f reedom is eliminated once the 
interaction with impuri ty  is fixed. In the s -d  model  the particle-particle S matr ix  is a 
permuta t ion  operator P, whereas in the Anderson model it is of a more  general form 
(4.5.19). 

A traditional choice of the unity S matr ix  corresponds to a conventional 
per turbat ion theory. The  choice of a permuta t ion  operator  as the S matr ix  
Corresponds, on the contrary, to the strong coupling limit. 

Let  us consider, for example,  the S matr ix  (4.5.10). I t  is known that in the 
Schrieffer-Wolf  limit of U ~ 0 0  the Anderson model  is equivalent to the s-d  
exchange model. Therefore,  the relevant S matrix coincides with the permuta t ion  
operator 

lim S = P 
U--*~ 

I t  is far f rom well known how far f rom the per turbat ion theory this limit is at any 
small exchange ampli tude I =  8F/rcU. On the other hand, at either F ~ 0  or U--*0 the 
per turbat ion theory holds and the S matr ix  is close to the unity matrix 

lim $(k, p) = lim S(k, p) = I. 
U o O  F-*0 

In § 8 we show in detail how transition f rom the strong coupling to the per turbat ion-  
theory domain takes place. 

For  free particles the f reedom in the choice of the S matrix stems f rom the 
linearity of the spectrum. The  linear kinetic energy operator 

-i~,,=1 ~ t P = E ~  (4.7.8) 

approximates  the energy of the near Fermi-surface conduction electrons. 

- -n=l  ~x ,  2+EF tP=EtP"  (4.7.9) 

Equation (4.7.9) has, however, just one solution with the unity S matrix, which can 
never take the form (4.2.24). The  origin of solution (4.2.24) can be understood as 
follows. 

"~ The ambiguity in the equations with linear dispersion was discussed by Sutherland and 
Mattis (1981) and Lai and Shi (1981). 
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Exact results in the theory of magnetic alloys 571 

Consider the gas of 1/2-spin fermions with the delta-function interaction (4.1.20) 

0 2 

- ,=1 ~ ~x2, W+c,>jE 6(xi-xj)q '=EqL (4.7.10) 

As ment ioned above in § 4.1, this is a completely integrable model (Yang 1967) 
with the S matrix of the form 

k - p + i c P  
S(k,p)= (4.7.11) 

k - p + i c  

As known in the limit of a large num ber  of particles N ~  0% L--+ o% nN/L = kv and 
c<< 1 one can study only a small range of momenta  near the Fermi  surface and assume 
the spectrum to be linear. In t roduce the creation and annihilation operators for 

+ 
electrons near the r ight-hand and left-hand Fermi  points • +, t p  +,~ and ~ _  tp_ ,~ .  
The  hamiltonian (4.1.20) can be rewrit ten as 

This  hamiltonian is relativistically invariant in the 1 + 1D spacetime (~g+_ is a two- 
component  spinor) and has a background.  I t  was first studied by Anselm (1959) and 
Vaks and Larkin (1961) and, later, by Luther  and Emery  (1974) (see also Wiegmann 
and Larkin  1977). I t  is also known as the SU(2)- isospin Thi r r ing  model and the 
chiral Gros s -Neveu  model.  T h e  two-particle S matrix is of the form 

-- ~' + i~P 
S(r, z ' ) -  z - z ' + i t c '  (4.7.12) 

where z= + 1 are particle chiralities (Belavin 1979, Andrei and Lowenstein 1979) 
and can be obtained directly from (4.7.10) if one puts k=kvr. I f  in (4.7.10) K--*0, we 
set S--*I. However,  in (4.7.12) the S matrix tends to unity at 1¢~ oo only for particles 
of different chirality, whereas at z =z' irrespective of a: 

8(% r) = P.  

Indeed, two particles with identical chirality, say r =  1, obey the Schr6dinger 
equation 

-- i ~ + ~2x2 h u . . . . .  (xa, X2) -}- KkS(X 1 - -  X2)~ a,a{aa2afily~a[,ai(xl, X2) 

=EUd . . . .  2(Xl, X2) (4.7.13) 

which, unlike the free $chr6dinger  equation (4.2.20) has only one solution (4.2.24). 
Therefore ,  solution (4.2.24) can be considered as a ufl function of two interacting 
particles in the limit of identical momenta .  At identical velocities the interaction 
vanishes, so that both (4.7.13) and the free Schr6dinger equation have identical 
solutions. 

I t  has been observed repeatedly that the spin-1/2 s-d  exchange model and the 
SU(2) isotopic Thir r ing  model  are closely related to each other. Th is  observation 
was employed by Andrei (1980) to diagonalize the s-d exchange hamiltonian. 
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572 A . M .  Tsvelick and P. B. Wiegmann 

Indeed, the numbers  of both the left-hand and right-hand particles are conserved. 
Putting them equal to 

N + = ~ f ~ F + , ~ P + , ~ d x = N ,  N _ = ~ f q J + , ~ P _ , ~ d x  (4.7.14) 

we obtain the Schr6dinger equation 

- - i ~  + i  - -E  W~, (x l , . .  xN, Y) 
i=1 ~X/ -..aN,~ "' 

N 

+ ~ ~ fi(xi--y)a,~,o~ao~.~ .... ~ .... ,(x 1 . . . .  , xN, y) 
i = 1  

N 

+~c ~ b(xi-xj)a,n,~a,~j,~jtP .... ~ .... ~ .... ( x l , . . .  ,xN, y ) = 0 .  (4.7.15) 
i>j 

If  one substitutes XN-,'XN+Y and ~ I / 4 ,  (4.7.15) coincides with (4.2.9) with 
exception of the last term in eqn. (4.7.15). As stated above, this last term does not 
contribute, since, according to (4.2.10) and (4.2.24), 6(x~-xj)OT(xl, . . . ,xN)=O. 
However,  it helps to eliminate the ambiguity and to get the solution of (4.2.10). 

The  equivalence of the Kondo model and SU(2) isotopic Thir r ing model at 
condition (4.7.14) is still more obvious, if one uses Abrikosov's (1965) pseudo- 
fermions and replaces the S = 1/2 impuri ty spin operator by an equivalent operator: 

S =  + d,, S~,d~,. 

Note that the delta-function interaction of one-dimensional particles moving in 
one direction with coinciding velocities does not contribute to the energy provided 
only the interaction is isotropic. In the anisotropic case it results in the renormaliz- 
ation of the magnetic field and chemical potential (see § 5.2). 

Equation (4.7.5 b) with the omitted phase bs of the scattering on an impuri ty 
coincides with eqns. (4.1.4) and (4.1.42) for the Haisenberg model (4.1.1) but differs 
in the form of the energy functional. This  list can be continued: eqns. (4.4.B) 
coincide with Bethe's equations for the generalized Haisenberg ferromagnet (4.1.36) 
and (4.1.37): eqns. (4.5A-B) for the Anderson model are similar to Bethe's 
equations for the Hubbard  model (4.1.22) and (4.1.23) if one replaces 
g(k)--~t/U sin k. The  above analogy enables one to exploit the technique developed 
for the Haisenberg and Hubbard  models to study the integrable models in the theory 
of dilute magnetic alloys. 

Particles with rapidities satisfying eqns. (4.2-6 (A, B)) are bare excitations above 
the ferromagnetic state in which M,,~I and the spin is close to maximal SZ~N/2 .  
The  energy of this state (the 'bare' vacuum) is maximal, too. The  ground state of free 
electrons is, of course, antiferromagnetic: S~=O and M = N / 2 .  Th e  relevant 
excitations are real renormalized particles. Hence the ground state is always the 
many-particle state at N ~ o 0  is described by an infinite set of equations. 

In the § 5 we shall study the ground-state energy of the s-d exchange model as a 
function of the spin projection. 

Appendix to §4.3.1. Solution of the factorization equation 
We find the solution of the triangle equations 

rlj(~)rio(~ + ~')rjo(0() = rjo(~')rio(~ + 0~')rlj(~) (1) 
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Exact results in the theory of magnetic alloys 573 

with the uni tar i ty  condi t ions  

and the initial condi t ion  

rq(~z)rq( -- ~) = I (2) 

rlj(0) =Pij. (3) 

T h e  U ( 1 ) - s y m m e t r i c  solut ion should  have  the fol lowing form:  

1 + 
r i j ( cO=a(e ) ( l®l  + c r ~ ® a ~ ) + b ( ~ ) ( l ® l - a T ® a ~ ) +  ~c(~)(ai ®¢rf + ¢ r [ ® t r + ) .  (4) 

Us ing  eqns.  (2) and (4) one obtains  

b(c~)b(-- ~z) + c(oOc ( -- ~) = 1, (5 a) 

b(cOc( - ~) + c(e)b( - c~) = 0. (5 b) 

T h e  t r iangle  equa t ion  (1) in t e rms  of (4) is 

a(oOb(o~ + ~')c(~') = c(c~)c(~ + c~')b(o~') + b(oOa(o~ + c¢')c(c~'), 

(6) 
a(~)c(~ + C)a(~') = (b(~)c(o~ + ~')b(e') + c(~)a(e + ~')c(o~'). 

Let  us in t roduce  the  rat ios 

g(cO = a(oO/c(oO; h(oO = b(oO/c(cO (7) 

T h e n  eqn. (6) takes the fo rm 

g(~)h(c~ + c~') = h(C) + h(oOg(c~ + c~'), 
(8) 

g(oOg(~z') = h(oOh(og ) + g(cz + o~'). 

Set t ing  c~'= 0 in (8) one obta ins  

h(0) = 0, g(0) = 1. (9) 

T h e r e f o r e  condi t ion  (3) is val id for  a(0) = 1. F u r t h e r m o r e ,  dif ferent ia t ing eqns  (8) 
wi th  respect  to c~' and then  set t ing c~'= 0, one obta ins  

g(~) -~  h(ot) = u + h(~) w-g(~),  
~7 0~ 

g(~)v=h(~)u+f--~g(~) ,  

where  u=h'(O),  v = g ' ( 0 ) .  
T h e  solut ion of  eqn.  (10) is 

(lO) 

Quant i t ies  # a n d f  pa ramet r ica l ly  de t e rmine  v and u. T h e  uni tar i ty  condi t ions  (5 b) 
are au tomat ica l ly  satisfied and (5 a) yields the equa t ion  

a(~z)a( -- ~) = 1. (12) 

sinh (i# + f~) . sinhfc~ 
g (c0=  - i  , h (c0=  - z -  (11) 

sin # sin # 
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574 A . M .  Tsvelick and P. B. Wiegmann 

To  diagonalize the matrix Tj we need only the functions g(~) and h(~) and the 
quantity a(1). Therefore  function a(a) may be an arbitrary solution of eqn. (14), for 
example, a(a) = 1. 

§ 5 .  E X A C T  S O L U T I O N  OF T H E  s-d E X C H A N G E  M O D E L  AT T = 0  

The  subject of this section is the zero temperature magnetic properties of the s-d 
exchange model. We find the solution of Bethe-Ansatz equations for a large number  
of particles, describing the ground state of the system in the presence of a magnetic 
field. 

5.1. Isotropic s-d exchange model with an arbitrary impurity spin 
5.1.1. The continuous limit 

In general, the solutions of eqns. (4.2.A) and (4.2.B) lie in a complex plane of 2. 
However,  in § 6 we shall show that the ground state with a given spin projection S z is 
formed by the real solutions of eqns. (4.2.A) and (4.2.B). Putting off the exact proof  
of this statement let us return to eqns. (4.2.A) and (4.2.B). Taking the logarithm of 
these equations one obtains: 

M 
k jL=2nNj-  ~ (p(2=)+n), (5.1.1a) 

~=1  

M 

Np(2~)+as(2~)= 2nJ~+ ~ ~(2~--2p), (5.1.1b) 

where 

p(2) = 2 t an-  1 22, 68(2 ) =p[(2 + 1/g)/2S], ~P(2) =p(2/2), 

J= integer, if M is odd, J~+ 1/2 integer, if M is even, ] 2 J = I < . N - M  I (5.1.1 c) 

First, we should determine the configuration of the integers {Nj} and {J=} 
corresponding to the ground state. This  configuration does not depend on the 
impuri ty state and is determined by the state of free fermions only. Th e  following 
propositions play a principal role in our theory. We quote them without proof: 

(i) For  any set of J=s, Njs satisfying (5.1.1 c), no two of which are identical, 
there is a unique set of real 2's, k's satisfying (5.1.1 a, b), with no two 2's, k's 
being identical. With this set of 2's, k's only a unique eigenfunction of 9ff of 
Bethe's form, can be constructed (Yang and Yang 1969). 

(ii) The  solutions of eqn. (5.1.1 b) are monotonous functions of the integers J=. 
(iii) The  integers J= are bounded by the interval ( ( - N + M ) / 2 ,  ( N - M ) / 2 ) .  The  

boundaries correspond to 2 = -Y- ~ .  

The  energy of the free particles is the sum of energies associated with spin and 
charge degrees of freedom 

Ch 2n u =Z-_£ ,uj 

2n M L MN" Esp-  L ,~1 J ' -  

(5.1.2) 
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Exact results in the theory of magnetic alloys 575 

The  sum of these quantities is the energy of free Fermi  gas with a constant density of 
states. In  the ground state it should be equal to 

nN 2 2nS z2 
E(°)=E¢h+E ~p- - -  + (5.1.3) 

2L L 

We have already noted that free particles with a constant density of states may be 
represented by independent  spin and charge excitations. Therefore ,  we should 
minimize the charge and spin parts of the energy independently.  

According to (iii) the spin part  of the energy is bounded.  Therefore,  the integers 
J ,  should begin with the highest: J1 = J m a x  ~- ( N - -  M)/2 and go successively with unit 
step: 

N - M  
J ~ + x -  ~, ~ = 0 , 1  . . . . .  M - 1 .  (5.1.4) 

2 

Fur thermore ,  according to (ii) the solutions of eqn. (5.1.1 b) form, for a large N, M, a 
non-uni form dense distribution between a maximal  2. = + ~ and minimal  2 = - -B.  
The  value 2 =  - B  corresponds to the lowest integer J M = ( N - 3 M ) / 2  (fig. 5.3 a). 
When S Z = 0  ( M = N / 2 )  the integer J M = - N ] 4  and coincides with the lowest 
boundary  of the allowed interval. Therefore ,  when S z = 0 we have B = ~ .  T h e  spin 
part  of the ground-state  energy is 

Esp= -- L -  a=O 
M N  ] rcN2 Sz2 (5.1.5) 

+ T  = 2L +2Zhos t '  

where Zhost = L/4n is the Pauli susceptibility of a Fermi  gas with a constant density of 
states. Compar ing  (5.1.5) and (5.1.3) we see that E ~p coincides with the whole 
ground-state  energy. Here  we encounter  difficulty with a linear spect rum of initial 
particles. 

T h e  charge energy of particles with a linear spect rum is bounded f rom below. I t  
is interesting to note that this ambigui ty  does not affect the impuri ty  propert ies 
because they depend only on the spin subsystem. The  unboundedness  of the 
spec t rum reveals itself in the charge channel which does not influence the impuri ty.  
To  maintain mathematical  rigour we mus t  describe more  carefully the charge 
subsystem. We assume that all charge energies should not exceed the Fermi  energy 
e v = nN/L.  I t  means that the m i n i m u m  integer should be 

N1 = - N/2 

Therefore,  Nj  are successive integers f rom - N / 2  to N/2 and E Ch= 0. 
This  choice of Njs  may be illustrated by the following speculation. Let  M =  0. 

Then  all spins align, the interaction vanishes and kjs are ordinary momenta  of free 
spinless particles. According to the Pauli principle these particles fill all states 
beginning f rom the bot tom of the band - e v :  

N 3 = - N / z + j  ( j = I , . . . , N )  

I t  must  be emphasized once more  that charge excitations do not influence the 
impuri ty  properties.  

Following Yang and Yang (1969) we shall name the solutions of eqn. (5.1.1 b) 
'particle '  rapidities and we define 'hole '  rapidities as follows. 
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576 A . M .  Tsvelick and P. B. Wiegmann 

Let  us consider a function 

h(2)= ~ -  N p ( 2 ) + 6 5 ( 2 ) -  ~b(2--2p) , (5.1.6) 
#=1 

where the summat ion  is per formed over the rapidities of particles. We shall name 
'hole '  rapidities all those values of 2 = ~ (fl = 1 , . . . ,  N - -  2M)  at which h(~'#) is equal 
to an integer belonging to the lattice of the permissible integer numbers  and not 
coinciding with any quantum num ber  d~. For  the given case, f# = ( (N--  3M)/2) --ft. 
Thus,  for a large system N ~  ~ ,  L ~ ~ ,  rcN/L = E r there exists a density distribution 
of holes as well as of particles: 

Np(2)d2 = number  of ks in d2, 

Nfi()Od2 = num ber  of holes in d~. 

I t  is obvious that for the ground state with a given spin S z, the rapidities of holes 
take their values on ( - - ~ ,  - B ) .  Therefore,  f i=  0 when 4 > - - B  and p = 0 when 
4 <  - B .  

By definition, the num ber  of particles and holes in the interval d2 is the number  of 
times h(2) ranges over values J~ and fp in this interval. Thus ,  

1 dh(,~) 
N d2 - p(2)+fi(2).  (5.1.7) 

Equation (5.1.6) in the continuous limit gives 

2nh 2 f~,(2-Z')p(,~')d,~'12 ( 2 ) = p ( ) -  + ~ a ~ ( ) .  (5.1.8) 

Differentiation with respect to 2 gives 

0()1.) +~(2)  = a~(2) + ~ a 2 s ( 2 +  1/g)-- az(2-2')p(2')dZ , (5.1.9) 
-B 

where 

2 n a,,(,~) = ( 5 . 1 . 1 0 )  
rt 442 + n 2 " 

According to (4.2.C) and (5.1.1) the energy per particle for the ground state is 

1 
- - E  s p :  -- (p(,~)+rc)p(2)d2. (5.1.11) 
N L -B 

The  spin per particle is 

f ~  
!sz= 1 s p(2)d2. (5.1.12) 
N 2 + N -  _ ,  

Equations (5.1.9)-(5.1.12) describe all the magnetic propert ies of the impurity.  They  
were derived by Andrei (1980) and Wiegmann  (1980a). 

T o  find the impuri ty  magnetic m o m e n t  it is convenient to use the following trick. 
We have shown above that eqns. (5.1.9)-(5.1.11) without  the 1/N te rm in (5.1.9) 
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Exact results in the theory of magnetic alloys 577 

describe the free Fermi gas. Because of linearity the solution of eqn. (5.1.9) contains 
two terms 

1 
P = P h +  ~ P i  (5.1.13) 

corresponding to the host metal and impurity. 
These  functions satisfy the following equations 

Ph(~')=a,(~) - ~oo a2('L-~')Ph(~,')d~'; ~,> - B ,  (5.1.14a) 
J-- B 

Pi()O=a2s(~+ I/g) - ~oo a2(2-2')Pi('L')d'L'; ~,> - B .  (5.I.14b) 
j - -  B 

One may decompose the spin in the same way: 

1 S Z - l - - f ~ N  h--2 BPh(~)d~" (5.1.15a) 

Mi=S-- pi(),) dJ,. (5.1.15 b) 
- B  

In § 6 we shall show that B is really independent of the impuri ty state. Formulae 
(5.1.15a, b) describe the total magnetization of the host metal and impuri ty 
magnetization. In the leading order with respect to 1/N the total spin of the system is 
determined by the magnetism of the conduction band. Therefore,  

1 
- -  S Z= H/4EF. (5.1.16) 
N 

Let  us now determine the dependence of B on the magnetic field in the leading 
order with respect to 1/N, i.e. using only the solution of eqns. (5.1.15 a) and (5.1.16), 
and then find the impurity 'magnetization using the solution of eqn. (5.1.14 b). In 
other words, the eqns. (5.1.14 a), (5.1.15 a) and (5.1.16) determine the function B(H) 
and eqns. (5.1.14b) and (5.1.15 b) determine the impurity magnetization. 

5.1.2. The ground state and magnetic susceptibility at zero magnetic field H = 0  
The  characteristic feature of eqns. (5.1.14), as well as other equations which 

appear in problems related to the magnetic impurities, is that the region of definition 
of these equations is a semiaxis. Often it is possible to find the solution of such 
equations in an analytical form with the help of the Wiene r -Hopf  method. We briefly 
outline it in the Appendix to 5.1.3. 

However,  before solving eqns. (5.1.14) it is appropriate to study the character of 
the ground state. We have already mentioned that for M =  N/2 holes are absent and 
B =  0o (#=0) .  Assuming ~ =  o0 and integrating eqn. (5.1.14a) over ,~ we obtain 
S ~ = 0  as it should be. But the integration of eqn. (5.1.14b) gives the 2S-fold 
degenerate impurity ground state 

lim M i = S  - 1/2. (5.1.17) 
H ~ 0  

This result was conjectured by Mattis (1967) who used qualitative arguments. Thus ,  
the conduction electrons cannot quench the impurity spin S completely, and the 
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578 A . M .  Tsvel ick and P. B. Wiegmann 

impurity spin is decreased only by 1/2. If the spin of an impuri ty is equal to 1/2, as 
can be the case in real alloys (§ 2.1), there is total compensation of the impuri ty spin, 
so that the impurity ground state is a singlet state. 

To  make further conclusions more clear let us introduce the following 
transformations. It is convenient to express all physical quantities in terms of the 
distribution function of holes, i.e. to count the physical quantities from their ground- 
state values. 

Let  now H # 0  and B #  oo. To  count rapidities from the Fermi point let us make 
the following shift: 

r(2) =p (2 - -B) ,  

~(2) =f i (2--B) .  

Let  us define the functions p+(co) analytically in the upper (lower) half-plane 
of co: 

p+(~o)=f~exp(io,~)r(,~)d,~fo t 
p -  (2) = _ ~ exp (ico2)~(2) d2. 

Making the Fourier transformation of eqn. (5.1.9) we obtain 

p -  (co) + (1 +exp  (-]col))p + (co) =exp  (icoB) ( e x p  (-Icol/2) 

1 ) 
+ ~exp(-Slcol-ico/g) ; 

1 1 S 
- - S Z = - +  - p + ( 0 ) .  
N 2 

(5.1.18) 

(5.1.19) 

Dividing eqn. (5.1.19) by (1 + exp (-[co[)) and returning to the ~. space we obtain 

~ 0 

fh(2) + rh(2 ) -- R(2--  2')fh(2')d2' = (2 cosh x(2-- B)) -  1, 
- o 0  

(5.1.20a) 

f 
0 

/7i(~ ) + ri()~ ) - -  R()~ -- 2')~i(2')d2' = 5P2s(2-- B + 1/g), 
- o o  

(5.1.20 b) 

I 
0 

H/2ev = fh(2) d2, (5.1.20 c) 
- o o  

M i = S _ I  1 fo 2 + ~ ei(,Z)d,Z, (5.1.20 d) 
- o o  
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Exact results in the theory of magnetic alloys 579 

where 

R(2) = ~ exp ( --ico2)(1 + exp (Io91))- 1 &o, 
- - o 0  

(5.1.21) 
1 [+0o 

~9°2s(2) = 2n~ d - oo exp ( - io92) exp ( -2 cosh(2S -~o/21 )lcol/2) do. 

This form of equation is more convenient because all the characteristics of the 
system are expressed in terms of the excited states only. 

One may evaluate the 1/2-spin impurity magnetic susceptibility for H = 0  
without using the exact solution of (5.1.20). To  do so one must note how Nozi6res' 
(1974) (§ 3.1.3) correspondence between the low-energy behaviour of the 1/2-spin 
impurity and Fermi liquid shows up in eqns. (5.1.20). When H ~ 0  and B ~ o o  one 
should retain only the leading terms in the right-hand side of (5.1.20 a, b): 

(2 cosh n ( 2 -  B) ) -  1 ~ exp ( - rob + n2) 

~9°1 (2-- B + 1/g) ~- exp ( - nB+ re2) exp (n/g). 

In this approach the host metal distribution fh(2) and impuri ty distribution ~i(2) 
differ from each other only by the factor exp (n/g). Therefore,  one obtains 

(g) H/4c F - e x p  . (5.1.22) 

Equations (5.1.16) and (5.1.22) give the finite 1/2-spin impuri ty magnetic suscepti- 
bility at zero temperature 

Defining the Kondo temperature as 

we have 

(5.1.23 a) 

Zi = (2n TK)- 1. (5.1.23 b) 

We shall often employ the Fermi-liquid analogy below. 
We deal with a magnetic field small in comparison with the Fermi energy. The  

condition H<<EF or SZ/N<< 1 means that B>> 1, and it is only sufficienz to solve eqn. 
(5.1.20a) in the first order of e x p ( - n B ) .  Thus,  ;0 

H(B)/2e F = exp ( - nB) g(°)(2) d2. (5.1.24) 
- - 0 0  

Now g(0) is the solution of the equation 

f o  R(2-2')g{°)()g)d2'=exp(n2) • (5.1.25) f(°)(2) + r°(2)--  
d -  o0 

The  corrections due to the omitted terms in the right-hand side of eqn. (5.1.20 a) are 
of the order of ((H/EF)3). 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

hi
ca

go
 L

ib
ra

ry
] 

at
 1

8:
11

 1
8 

A
ug

us
t 2

01
5 



580 A . M .  T s v e l i c k a n d  P. B. Wiegmann 

5.1.3. Impurity magnetic susceptibility at arbitrary magnetic fields 
Equations (5.1.20) may be solved by the W i e n e r - H o p f  method.  T h e  solution is 

constructed with the use of the analytical in the upper  (lower) half-plane functions 
G(+)(e)) (G(-)(e))) having no zeros and factorizing the kernel 

(1 - R(e)))-  1 = G~+)(e))G(-)(e)), G ( ~ )  = 1. (5.1.26) 

These  functions have the form 

G(- ' ( e ) )=G(+) ( - e ) )=~ / (2~) f_ (~ ) /F ( l+ i~ ) ,  (5.1.27) 

where the functions 

fT(e))=(+-i~+O) + - i ° ~ e  (5.1.28) 

factorize the function 

exp ( - -  ~le)l) = f -  (e))f+ (e))- 

The  solution of eqn. (5.1.25) is 

G(- )(e))G( + )(irc) 
r (_°)(e)) = (5.1.29) 

i e )+g  

(see the Appendix to § 5.1.3). 
Using (5.1.24) and (5.1.29) we find the relation between B and H: 

H /' 2 x~ 1/2 
2OF = exp (--roB) ~ e  ) . (5.1.30) 

Let  us define the new scale which is correct for the per turbat ion theory 
(at H>> TK): 

1 1 T n 
B . . . .  l n - -  (5.1.31) 

g ~ H "  

This  scale is related to the Kondo temperature  (5.1.23) as follows: 

Then  using eqns. (5.1.20b) and (5.1.31) we obtain the universal formula for the 
impurity magnetization at T =  0 (Wiegmann 1980, Fateev and Wiegmann (1981 a, b): 

Mi( H)  = S -  ~ + de) 
- - o 0  

x exp ( -  2io~lnH/Tu)F(1/2 + ie))f2+s(e)) f2_s-a (e)). (5.1.33) 
e )+ i0  

The  integral (5.1.33) has two different representations and asymptot ic  expansions 
for different ratios of [t/T u. 
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Exact results in the theory of magnetic alloys 581 

I f  H >  Tn, the contour  of  integrat ion envelops the lower half-plane and one 
should calculate the integral over the contour  encircl ing the cut  f+(~o) and pole 
o~= - i 0  (see fig. 5.1): 

M i ( H >  Tn)=S-- I~  f ~ &o sin27zS°9 
27r 3/2 ~o 

x exp ( - 2o) In H~ TH). (5.1.34) 

Using  the ' invar iant  charge '  (§ 2.2) z(H/TH): 

1 
1/z-- ~lnz=lnH/T H 

Fig. 5.1 

® H <  T H 

H>T H 

.(a) 

® 

s>½ 

H<T H 

II 

H > T H 

(b) 

The complex plane of the integrand (5.1.33) for (a) S =  1/2 and (b) S >  1/2. 
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582 A . M .  Tsvel ick and P. B. Wiegmann 

we have 

1 dtsin2~zSZtF(1/2+zt) exp (--2t)  (5.1.35) 
M i ( H >  T•) = S -  2~372 0 t 

and obtain from (5.1.35) a power-series expansion in z 

Mi(H>TH)=S( 1+ ,=1 ~ a"(S)z"(H/Tu)) " (5.1.36) 

The  first term in this expansion at = -  1/2 coincides with the term obtained by 
means of the perturbation theory (Abrikosov and Migdal 1970). 

The  most interesting region H <  T~ is inaccessible by perturbation theory. The  
properties of the integral (5.1.34) in the cases of S = 1 / 2  and SvL1/2 are quite 
different. If  H <  T H the integration contour could be deformed to encircle the 
positive part of the imaginary axis. 

If S = 1/2 the only singularities of the integrand in the upper half-plane are the 
poles, leading to the power series in (HI Tu): 

2 ~(n+1/2) ('+*/2' (--1)" ( H ~  2"+1 
MP/Z)(H< Tn)= ~ ,=0 -e n!(n+ 1/2) \ ~ ]  (5.1.37) 

(Wiegmann 1980 a). This  expansion is absolutely convergent. If S = 1/2, H < T H all 
physical functions are analytical in the complex H plane. On the other hand the series 
(5.1.36) is asymptotical. It means that perturbation theory does not define the 
physical quantities unambiguously. For  example, functions differing from each 
other by an arbitrary analytical function of z t/2 exp ( - 1 / z ) = - H I T  n have identical 

expansions in z. Yet as follows from (5.1.37) such a function determines the 
behaviour of the physical quantities at a low magnetic field. This  is one more piece of 
evidence that perturbation theory is principally incomplete. 

Let  us consider the case S #  1/2. In this case the integration over the cut f_(o~) 
in the upper half-plane contributes to the low magnetic-field behaviour. Th e  poles of 
the F function now give only the exponentially small contribution to the impuri ty 

magnetization: 

1 dt sin z~(2S- 1)tz 
M I 0 ( H < T H ) = S - 1 / 2 +  2~3/~ o t 

,/Izl 
With exponential accuracy we have 

MIS)(H<TH)=(S-1/2)( 1+ ,=l~-' a"(S-1/2)z") +O(exp(-1/Iz')'~\ x/Izl j. (5.1.39) 

Note a remarkable 'duality' of the low and high magnetic-field series (5.1.36) and 
(5.1.39). The  coefficients a,,(S) in these series after substitution S+-+S-1/2. 

Th e  conduction electron cannot quench the impuri ty spin S completely. The  
dressed impurity remains magnetic. 

The  ground state with the moment  S-1/2 can be chosen as a zeroth order 
approximation in perturbation theory which would be correct in the low energy 
region. It follows from (5.1.39) that the coupling in this region is ferromagnetic (for a 
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Exact results in the theory of magnetic alloys 583 

discussion see §2) and the approach to this strong coupling fixed point is still 
logarithmic. T h e  logarithmic behaviour was predicted by Nozi6res and Blandin 
(1980) and observed by Cragg and Lloyd (1979), who treated the prob lem 
numerically. 

The  'dual '  logarithmic character of the low and high energy behaviour is a 
general feature of the problem. In particular, in § 6 below it will be shown that the 
temperature  dependence of the thermodynamics  quantities is dual in the cases 
T>> T K and T<< T K. The  impuri ty  magnetization is plotted in fig. 5.2. 

5.1.4. The scattering phase 
In this subsection we shall calculate the S-mat r ix  element for the scattering of 

electrons on the impuri ty  in an arbitrary magnetic field as a function of energy~. Note 
that the scattering phase is related to measurable quantities only at ~=0.  For  
instance, it determines the magnetoresistance. On the other hand, via the Friedel 
sum rule the scattering phase is related to the impuri ty  magnetization which has 
already been calculated. Still we deemed it appropriate  to present  here the 
calculations of the scattering phase because it illustrates the Nozi~res theory. 

T h e  methods developed above are quite sufficient to compute  the scattering 
phase. However,  we shall employ a much  more general and unified approach below. 
It  can be applied directly to the continuous limit and enables us to calculate 
simultaneously the bound state energy and the spect rum of elementary excitations. 
In the next section its extension will be used to study the equil ibrium properties at 
finite temperature .  Only the scattering phase of the electron with spin projection 
parallel to magnetic field AT t(z, H),  will be calculated below. 

T h e  scattering phase A(e) in general differs f rom the phase shift t/(¢o) defined by 
eqn. (3.2.8). The  scattering phase A(Q is the log of the S-scat tering matrix element 
and describes the real scattering processes, in contrast to the phase shift t/(c9) related 
to the Green function, which also takes into account virtual processes. This  is a 
reason, for example, why A(e) cannot be controlled by perturbat ion theory in 
contrast  to t/(¢0). These  quantities, however, coincide only at low energies and both 
can be found using the Fermi-l iquid approach. So A(g) correctly describes the low 
energy part  of the Abr ikosov-Suhl  narrow many-body  resonance. 

Consider elementary excitations in the system of odd number  of electrons N and 
the impuri ty  in the ground state and with spin projection S z. Add to the system one 
more spin-down electron retaining the number  of spin-up particles. Now the system 
is characterized by quan tum numbers  (N+I,SZ+I/2). The  excitation can be 
decomposed into spin and charge components .  The  charge subsystem is now 
described by N +  1 half-integer quan tum numbers  Nj= - N + j +  1/2 ( j =  1 , . . . ,  N) 
and N o >0 .  T h e  latter describes the excitation: 

M 

koL=2nNo+~c+ ~ (p()o~)+n). (5.1.40) 

In the spin subsystem the rapidities ~in do rearrange. The  new electron added to 
the in-box system gets the phase shift koL as it propagates through the system. In the 

"~ For the scattering on the Fermi level, the phase in the framework of the Bethe Ansatz was 
calculated by Andrei (1982). 
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Ln H/T  H 
(b) 

Magnetic field dependence of the impurity magnetization for the impurity spin: (a) S=  1/2 
and (b) S=  1/2, t (after Melnicov 1982b). 

absence of an impurity the phase shift equals 

x + 2n x (integer) = 2x(N 0 -- 1/2) + 2xJ~ + 

as follows from eqn. (5.1.40). In the presence of the impurity one gets rather 

- -  k o L  = 2 A  * * (e) (mod 2 n ) ,  

where Ai ~ t (e) (0 < A t T < n) is a phase shift for the scattering of the 1 /2-spin elementary 
excitations with energy e and spin directed along the total spin of the system. 
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Exact results in the theory of magnetic alloys 585 

The  total phase shift is related to energy via the obvious equation 

koL =L(E(N+ 1, SZ + 1 / 2 ) - E ( N ,  ZZ)), (5.1.41) 

where E(N+ 1, S=+ 1/2) and E(N, S ~) are energies of states with corresponding 
quantum numbers .  

Since the energy of the free electron gas Eho,t is a multiple of 2=/L, only the 
variation of the impuri ty  part  of the energy contributes to the phase shift: 

L 
A~(~) = - ~ ( E i ( N +  1, S~ + 1 /2) -Ei (N o S~)). (5.1.42) 

In leading order in 1 /N the excitation energy equals the integer part  of the total phase 
shift (5.1.41): 

= Eho,t(N+ 1, S~+ 1 / 2 ) -  Ehost(N , S"). (5.1.43) 

T h e  excitation energy as well as the scattering phase can be decomposed into spin 
and charge components:  

A = A c + A "  } (5.1.44) 

where Ac=IS/2 is the potential  scattering phase shift  which is a non-universal  
quantity, 

e¢ = 2~No/L , 

and A s is a phase shift for the scattering of the spin excitation with energy e~. 
Thus ,  a calculation of the scattering phase reduces to the problem of elementary 

excitations. In what follows we confine ourselves to the spin excitations responsible 
for the Kondo  singularities. 

In  (5.1.40)-(5.1.42) E(N, S ~) is an energy of the ground state of the system with 
quan tum numbers  N,  S ~. In  the ground state the integers J ,  are distr ibuted in 
consecutive order as shown by the crosses in fig. 5.3 (a). T h e  circles show the 
distribution of quan tum numbers  of holes. As N is increased by 1, the size of the 
lattice of integers also expands by  one more  site. This  new site corresponds to a hole 
J0 ~> (N--321//)/2 and 2 0 ~< --B.  The  excited configuration is presented in fig. 5.3 (b). 

Fig. 5.3 

X = - c 0  X = - B  X=+c0  
I O C O ~ O O O 0  I a × ×  × × × ×  × x - ~ .  × x × x  × : 

j _  N + M  d =  N-3_____M_M d =  N - M  
2 2 2 

(a) 

X=Xo 

Jo 

(b) 

S c h e m a t i c  s k e t c h  o f  t h e  d i s t r i b u t i o n  i n t e g e r s  J ,  a n d  r a p i d i t i e s  )~= in (a)  t h e  g r o u n d  s t a t e  a n d  
(b) the excited state. The integers J= are shown by crosses. The circles show the holes. 
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586 A . M .  Tsvel ick  and P. B. Wiegmann 

Its energy differs f rom the ground-state  energy by an amount  e(20). Of  course, as 
e--+0 the excitations rapidity coincides with the Fermi  surface: 2 0 - B .  Then  the 
quanti ty E(N+I,SZ+I/2) in (5.1.41) is also the ground-state  energy and, in 
particular, f rom (5.1.43) one immediately obtains the Friedel sum rule: 

A2+(H/2)==(1/2--Mi) } 
i.e. (5.1.45) 

dEi/dS ~ = MiX h. 
Now we turn to a general approach to elementary excitations in the Bethe-Ansatz 
framework,  the basic idea of which goes back to a remarkable paper  by Yang and 
Yang (1969). In  our presentation we shall follow the paper  by Japaridze et al. (1982). 
Let  p(2) and #(~,) be equil ibrium particle and hole distributions, i.e. those which 
minimize the energy functional. Consider small deviations 6p and 6~ f rom the 
equil ibrium distributions. Then,  as the energy function (5.1.11) 

~ (b(2) - H)p(2)  d2, (5.1.46) N -  I ( E - H S Z )  
d 

where 

N 
b(2)  = - ~ ( p ( 2 )  + ~) 

is a linear one, the energy will change by an amount  

f(6#(2)e + (2) - g-  (2)6p(2) + (b(2) - H)6p(2)) d2, 3E/N 

where e+(2 )>0  and g (2 )<0  are as yet unknown functions describing the linear 
response of the system to variations of the particle and hole distributions. T h e  
constraint (5.1.9) implies 

6~(,~) 
-- 3(2 -- 2') + a2(2 -- X). ap(2') 

Now we can derive an equation for the energy spectrum, putt ing the variation 6E 
respective to/o(2) equal to zero: 

+ (2) + e - (2) + ~a2(2 -,~o')~- (2')d2' = b(2) -- H.  (5.1.47) 
J 

This  equation determines the continuous function e = e + + e - .  Then  we can expand 
the energy of an arbitrary state in terms of g+ and g- .  Namely,  substi tuting b(2) 
(5.1.46) via (5.1.47) and using that ~+(2)>0 and e - ( 2 ) < 0 ,  we obtain: 

= f[e + (2)p(2) - e -  (2)fi(2)]d2 + E(°)/N, (5.1.48) E/N 

where E(°)= E(f)+ (1/N)E} °), 

E(h°>/N= fa1(2)~- (2  ) d2 (5.1.49) 
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Exact results in the theory of magnetic alloys 587 

and 

f a 1 (2 + 1/g)8- (2) d2. (5.1.50) E(O) 
i 

The formula (5.1.48) is a principal one in the determination of the ground state and 
elementary excitations. Indeed, the first two terms in (5.1.48) are always positive and 
the ground state should obey 

8+(2)0(2)=0; e-(2)fi(2) = O. (5.1.51) 

Therefore, in order to find the ground state it is sufficient to solve the basic equation 
(5.1.47). Evidently, as b(2) is continuous and monotonous the same is also true for 
8(2). 8(2) intercepts zero at a certain value of Z = - B ,  so that: 

8+(2)={; (2)  at 2 < - - B ,  {0 at 2 < - B ,  
a t Z > - - B ,  8-(2)= 8(2) at 2 > - - B .  

Then equations (5.1.51) imply that 

p(Z)=0 at 2 < - B ,  

so that eqn. (5.1.47) may be rewritten as 

8(2)+ f ~ s  a2(Z-- Z')8(2')d2'=b(Z)-H 

e(--B) =0.  

The resulting ground-state energy is 

fi(Z)=0 a t 2 > - - B  

( - o o < 2 <  -oo), 

(5.1.52) 

E(O) = p(0) .  ~,(0) 
~ h  ~ ~ i  , 

where Eta °) and E} °), given by eqns. (5.1.49) and (5.1.50), are the Fermi gas and 
impurity energies. 

From (5.1.47) and (5.1.49) it can easily be shown that 

E(h °)= (SZ)~/2Zh, (5.1.53) 

whilst the impurity magnetization, calculated in §5.1.3, equals 

Mi= --¢?EI°)/t?H (5.1.54) 

Equations (5.1.47) and (5.1.52) give the elementary excitation energy as a 
function of rapidity. Indeed, let there be a hole with rapidity 20 > - B  in the rapidity 
distribution: 

p(2) = po(2) - ~ ,5(2-  2o); fi(2) =rio(2) =rio(2) + 1`5(2-2o), (5.1.55) 

where P0 and rio are certain implicit functions which possess the continuous limit. 
Inserting (5.1.55) into (5.1.48), we see that, in view of (5.1.48), the energy variation is 
given by -8-(2o) .  We emphasize that one cannot insert (5.1.55) directly into 
(5.t.45), since P0 differs from the ground-state distribution by a term of the order 
1/N, which must also be included in the excitation energy. Thus,  8(2o) is the energy 
of the elementary excitation with rapidity 20 . The rapidity dependence of the 
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588 A . M .  Tsvelick and P. B. Wiegmann 

scattering phase As(2o) can be determined in a similar way. Namely, As(2o) satisfies 
the equation 

~oo a2(2-- 2')As(2') d2' = 6s(2o), (5.1.56) As(2) + 
d -  B 

where 6s(2 ) = 2 tan-1 [(2 + 1/g)/S] is the bare phase shift. Indeed according to (5.1.9) 
and (5.1.11) 

El= ~ 6s(2)p(2)d2. (5.1.57) 

Substituting 6s(2 ) in (5.1.57) by the left-hand side of eqn. (5.1.56) one obtains: 

N ( ' A +  Ei= ~ - J (  s (2)P(2)=A2 (2)P(2))d2 + EI °), (5.1.58) 

where 

--iFg°) = A~- (2)aa (2) d2 (5.1.59) 

is the energy of the impurity's ground state which, obviously, coincides with (5.1.50) 
and A + (2)= As(2)0 ( _ (2 + B)). Consider once more a configuration (5.1.52). Insert- 
ing (5.1.52) into (5.1.58) one gets 

Ei(N + 1, S z + 1/2) - Ei(N , S z) = As(20) (5.1.60) 

and according to (5.1.41) and (5.1.43) A~T(2)=A~-(2). Hence, eqns. (5.1.52) and 
(5.1.56) are parametric definitions of the scattering phase as a function of energy. 
Note that there exists a simple relationship between e+ and the characteristic of the 
Fermi gas with uniform density of states: 

1 0~-(2) 1 0e+(2) 
2% 02 -Ph(2); 2% 0~- - f ih (2 )"  (5.1.61) 

The similar relation reads 

0 0 + 
As(2) =p~(2); ~ A s  (2) =pi(2), (5.1.62) 

02 

where Ph and Pi are defined by eqns. (5.1.13) and (5.1.14). Equations (5.1.6t) and 
(5.1.62) provide the most simple formulae for the scattering phase and excitation 
energy. Indeed, As(+ 00) = 0 so that 

A~t = n  f ~  Pi(2) d2, 

(2> - B ) .  

- ( 2 )  = 2E F - B  -- ~ ph(2) d2, 

The Friedel sum rule follows immediately from here; taking e=0 ,  i.e. 2 = --B, one 
gets (5.1.44) in view of (5.1.15 b) (Andrei 1982). 

Now compare the results obtained for S =  1/2 with Nozi~res' theory. Of course, it 
may well be done using explicit formulae. Still it is simple and more instructive to use 
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Exact results in the theory of magnetic alloys 589 

only eqns. (5.1.52) and (5.1.56) which, for S = 1 t2, are very much  alike. Rewrite them 
in the form: f-" 

~()~)-- R ( 2 -  2')e(2')dZ - 2~F t an -  1 exp (n~) + H,  
--oo 7~ 

(5.1.63) f-i As(2 ) -  R(2--2')As(2')d2' = tan -1 exp (n(2+ llg))-xMi/2. 

(a) At e ~ 0 ,  H-~0  ( 2 - - + - ~ )  the r ight-hand sides of equations (5.1.63) can be 
expounded in powers o fexp  (n2). Therefore,  As(es, H )  is an analytic function ores and 
H, i.e. can be expanded in powers of eslT~ and H[TK: 

zL(~,~=A(0,0)-k,~ ~r +O T K ~ , T ~  . (5.1.64) 

(b) At 1 / g = 0  both equations coincide. Indeed, in this case the Bethe-Ansatz 
equations describe the Fermi  gas with one particle less than for the case of g =  0. 
Hence,  slopes k 1 and h2 should be identical to those for the Fermi  liquid. 

k1=1/4, k2=1/2 .  

However,  in the Fermi  liquid, the charge sector contributes to the specific heat as 
much  as the scattering in the spin channel: 

h h = n n ( e s  + ~ )  - -  H n  
A = A~ + A s 2 - 8e~ 4ev 

Obviously,  the charge sector does not contribute to the impuri ty  specific heat. 
Hence, 

-- ~e s / \c3~¢ + ~s  J = ~ - e x p  g 

As to the susceptibility, both for the impuri ty  and the Fermi  liquid it is solely 
determined by the spin channel, so that 

= \ ,s/tTU; 
and 

C i 1 Z i 

C h 2 Z h" 

Compar ing  (5.1.64) with (3.1.26) we find Nozi~res'  phenomenological  coefficient 

1 

4TK" 
In doing so one mus t  keep in mind that e is an energy respective to the Fermi  level in 
the magnetic  field, so that 

z=--e- - -H/2  in (3.1.26), 7 
(5.1.65) 

AT T(z) = A-  ( -  e -  -H/2). 

The  explicit forms of the functions - e - ( 2 )  and A2r(~,H) are given in §3.1.3 
(see eqn. (3.1.36)). 
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590 A . M .  Tsvel ick a nd  P. B. W i e g m a n n  

and 

At  H = 0  in the vicinity of  the Fe rmi  energy e<<e v 

g(2) = 2eF exp (rt:.~) (2--* -- oO) 
/'C 

A(2) = r e /2 -  t a n -  t exp (re(2 + 1/g)). 

Combin ing  these equat ions  we have the simple result  

A(e) = ~ /2- -  t a n -  t (e/TK). (5.1.66) 

Note  the quant i ty  dA(e)/d~ can be considered as the impur i ty  par t  of  one-par t ic le  
densi ty  of  state. At  ~ = 0 there is a nar row m a n y - b o d y  peak, the wid th  of  which  is TK. 
This  is the wel l -known A b r i k o s o v - S u h l  resonance.  

I t  is clear that  funct ions  e+(2) and A+(,~) defined by eqns. (5.1.52) and (5.1.56) at 
< - B parametr ical ly  define the scat ter ing phase of  the particle, the spin project ion 

of  which is opposi te  to the magnet ic  field, i.e. 

k+(e+)=At~(z-H/2) ,  

where z =H/2--e+. Using  the eqns. (5.1.52) and (5.1.56) we obtain  the Friedel  sum 
rule for A t 1 : 

A ~ I ( -  H/2)=A + (H)=A + (~+ (-oo))=rc/2 + ~Mi(H). 

T h e  funct ions  A t t(z) and AT ~ (z) fo rm two parts  of  the con t inuous  funct ion  A(e). In  
the region --oo < ~ < H  this funct ion is defined by eqns. (5.1.52) and (5.1.56). T h e  
energy  ~ = H is the threshold  of  the creat ion o f  h igher  excitation, namely,  the ' spin  
complex '  or '2-s t r ing ' .  These  excitations will be discussed in § 6. 

5.1.5. Scales in the Kondo phenomenon 
T h e  energy  scale in the K o n d o  effect is the so-called K o n d o  tempera tu re  T~:. 

Usual ly  one only bears in m i n d  the order  of  magn i tude  of  this tempera ture ,  
de te rmined  by the exponential  factor  

TK ~ ~v exp ( -- 1/[P((~F))" 

One  can specify the scale for the ' K o n d o  t empera tu re '  in a un ique  way by 
adopt ing  a certain definit ion of  T K. T h r o u g h o u t  this paper  T K implies the quant i ty  
related to the magnet ic  susceptibil i ty at H =  T =  0: 

TK = (2~Zi) - 1 

In  his classical paper,  Wilson  (1975) uses another  definition of  the K o n d o  
tempera ture ,  related to the per tu rba t ion  theory  at T>>H and T>> TK: 

T 1 1 
In -- - - l n z  (z>0), (5.1.67) 

T w z 2 

where  z(T)  is an ' invariant  charge '  (see § 2.5). We  denote  TK as defined by Wi lson  as 
T w. Recall that  by  definit ion all the physical  quanti t ies are represented as a series in 
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Exact results in the theory of magnetic alloys 591 

powers of the ' invariant charge' .  For  instance, at T>> T K 

T z i ( T ) - - I / 4 = z +  ~, anZ n, 
n=2 

where a, are as yet unspecified numbers .  This  definition fixed T w in a unique way. In 
another domain of per turbat ion theory H>> T, H>> TK the invariant charge is 
different. Hence a new scale T n is given by 

1 1 
In H / T  n . . . .  ~ In z. (5.1.68) 

z 

I t  is this scale T n which enters the formula (5.1.33). 
Different constructions of the model  may lead to different dependences of TK, Tn 

and T w on the bare parameters.  However,  their ratios are universal numbers  
independent  of how the ultraviolet cut-off  is introduced and can be calculated. I t  was 
done numerically by Wilson (1975), who used the renormalization group numerical  
approach and analytically by Andrei  and Lowenstein (1981), on the basis of the exact 
solution. The  ratio Tw/T  ~ is a regular function of I and can be calculated by 
comparing the per turbat ion theories in the domains T>>H and T<<H but  
max (T, H )  >> T K. T h e  other ratios TK/T u or TK/T w relate scales measured far above 
and below the Kondo tempera ture  and, hence, require a non-per turbat ive  t reatment  
of the crossover. Wilson's  numerical  result is (see eqn. (3.1.24)) 

Tw = 2n(0.1032 ___ 0.0005). (5.1.69) 
TK 

In § 5.1.3 another ratio (5.1.32) was calculated: 

Andrei  and Lowenstein (1981) combined it with Tw/T  n calculated in per turbat ion 
theory and compared  it with Wilson's  value (5.1.69). T h e y  found that the impuri ty  
magnetization in second-order  per turbat ion theory is 

at T / H ~ O  and 

M i =  1 ( 1 _  1 1 2 De Z p - ~ ( I p )  l n ( ~ ) + 0 ( ~ 3 ) )  

T 4  
Mi = ~TT (1 - lp  -- (Ip) 2 In (flye- 7/4DI T) + O(13)) 

at H/T-+O, where D is an ultraviolet cut-off  and 

(5.1.70) 

(5.1.71) 

f 
l X3(1 __X)2 

l n f i=  dx -~ 0"662122, 
0 7~2x2cosec 2 ~ x -  1 

and ln~=0 '577216  is Euler 's  constant. Compar ing  the log terms in (5.1.70) and 
(5.1.71) we find: 

Tw / Tn = 2flye- 7/4. (5.1.72) 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

hi
ca

go
 L

ib
ra

ry
] 

at
 1

8:
11

 1
8 

A
ug

us
t 2

01
5 



592 A . M .  Tsvelick and P. B. Wiegmann 

Now from the two universal numbers  TK/T u and Tw/T u one may deduce a third one: 

T w  -- T w  TH = 2flTTCl/2e-9/4= 2TC X 0.102676. (5.1.73) 
TI( TuTK 

An agreement  with Wilson's  numerical  answer is found (see (5.1.69)). 
The  general relation between high- and low-temperature  dimensional scales 

(5.1.72) for an arbitrary impuri ty spin was found by Furuya and Lowenstein (1982). 

Vw __ 2flygl/2a(1/1o)(1 -(4/3)s(s+ 1)) 

TK 

where 

c~=floX(rCZcosecrcx-x-2-(1-x)-2)dx~-0.841166. 

T h e  theory we discuss is not free f rom difficulties. As we have seen, the universal 
dependence of magnetization on H/T• corresponds well to the per turbat ion theory 
results: 

M~(H)=S 1 - ~ - z ( H ) +  . . . .  S 1 + . . . .  (5.1.74) 

Unfortunately,  this is not the case for the coupling constant dependence of TK or T n. 
Indeed, we have found (see (5.1.23) and (5.1.32)) 

T n = const D exp ( -- 1 lip). (5.1.75) 

Insert ing (5.1.75) into (5.1.74) we find a non-analytic dependence of the physical 
value of the invariant charge in the normalization point Z(H= D) 

( ,  1 ~ ) 
M i ( D ) = S  1 - ~ I p - ~ ( I p )  I n / p + . . .  , (5.1.76) 

1 1 
1 l i p = - - -  l n z ( D ) + c o n s t .  (5.1.77) 

z(D) 2 

Of course, this has nothing in common with the per turbat ion theory. We have 
already discussed in § 2.5 that the normalization point D depends on I in a non- 
universal way. But this dependence must  be analytic at I<< 1. On the other hand 
formulae (5.1.76), (5.1.77) and (5.1.75) require the substitution 

DoD(Ip)  1/2. 

This  trouble is an artefact of the linear spect rum and point-like interaction 
approximations.  T o  be more  precise, its origin is in the m o m e n t u m  independence of 
the scattering phase. In  order to get the correct pre-exponential  factor in TK as a 
function of I one mus t  regularize the theory preserving its integrability. For  the s -d-  
exchange hamiltonian this problem is not yet solved, whereas for the Anderson 
model in the Schrieffer Vgolf limit such a regularization was constructed by 
Wiegmann et al. (1982). In § 8 on the exact solution of the Anderson model we shall 
demonstrate  in detail how, in the Schrieffer-Wolf  limit, the Bethe-Ansatz equations 
(4.5.A)-(4.5.C) for the Anderson model t ransform into those for the s d model,  
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Exact  results in the theory of magnetic alloys 593 

subject to substitution of N in eqn. (4.3.B) by L(UF)I/2.  Th e  latter substitution leads 
to the known result (Abrikosov and Migdal 1970, Fowler and Zawadowski 1971): 
TK = D ( p l )  1/2 exp (-- 1/1/)). 

We conclude by emphasizing that the approximations of § 4.1.1, though yielding 
the wrong pre-exponential  factor for Tr:, are still the most adequate if one is 
interested in universality properties of physical quantities as a function of H/TK,  
T/TK. 

5.2. The anisotropic exchange model 

This  section is closely connected to §3.1.1. On calculating the impuri ty 
magnetization we try to illustrate Anderson's 'poor man scaling', Toulouse limit, the 
equivalency to the resonant-level model (see the Supplement section), etc., in the 
framework of the exact solution. We investigate, below, the magnetic properties of 
the anisotropic exchange model only at I .  < Ill" 

5.2.1. Scaling picture 
Using only the structure properties of eqns. (4.3.A)-(4.3.C) and the parametriz- 

ation (4.3.8) the scaling behaviour of the system may be established without the 
direct solution of eqns. (4.3.A)-(4.3.C). Indeed, in leading order in 1/N, eqn. (4.3.B) 
depends only on one parameter #. Another parameter f /#  defining the physical 
properties of our system determines the energy scale of the impurity. As will be 
shown below, the Kondo temperature 

T K ~ D exp ( - n f~#), (5.2.1) 

where the proportionality coefficient D is a slowly varying function of/~. Therefore,  
motion along the lines of the constant # on the plane (Itt, I-0 affects the energy scale of 
the system conserving the form of the interaction. This  plane is given in fig. 5.4. The  
arrows on the trajectories indicate the scale time inc rea se r s0 .  The  behaviour of the 
trajectories in the region I1. I , Ilt1[<<1 is well known. It corresponds to the scaling 
procedure calculated by the perturbation theory (Anderson et al. 1970). If 
1I±[, I/Ill<< 1 expression (4.3.8) gives 

I~-- l~t  =4/12. (5.2.2) 

One may obtain the renormalization group equations. Let  us assume that f is a 
function of D, T K being independent from D. Differentiating eqn. (5.2.1) with 
respect to D one obtains 

af - (5.2.3) 
d l n D  n " 

If  [III], II.l<<l eqn. (4.3.8) gives 

coth f = Iih/2 p. (5.2.4) 

Combining eqns. (5.2.3) and (5.2.4) we obtain 

dill 1 ( - I  n +4#2). 
c l lnD - 2n 

This equation together with the relation (5.2.2) coincides with the renormalization 
group equations of (3.1.5). 
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594 A . M .  Tsvel ick and P. B. W i e g m a n n  

Fig. 5.4 

1 

/ 
- -277  --7/- 

i 
I1  

2 ~  

0 ~r 2rr Ill 

The renormalization-group flow diagram: #(I,,, I±) = const. Trajectories depict the flow of the 
hamilton±an with decreasing energy scale (or decreasing f~0 ) .  The fixed points 
I± = __ Iii = n are the strong-coupling limits. At I± > Ill only the strong-coupling fixed 
point is stable. The lines Ill = i n  are the Toulouse limits. The region IIIl,I±l<<l is 
known as a 'poor man scaling' (Anderson 1970). 

Le t  us cont inue  the analysis of  the scaling picture.  I t  is evident  that  the lines 
III : ___1± ( # = 0 )  and ___Ill + / ± = 2 ~ ( # = 7 r )  are separatrices. On  the intersections of  
these lines there are fixed points.  One  of  t hem is attractive and another  is repulsive. 

T h u s ,  f o r / 1  > --Iii and for any interrelat ion be tween Iil and I x the sys tem has 
only one attractive fixed point.  Th i s  point  cor responds  to the s t rong coupl ing  limit: 
#If--. oo ( g ~  oo for an isotropic case). For  the value # = n / 2  the two-par t ic le  scattering 

phase 

~()~) = 2 t a n -  1 (cot # tanh ;~#)l. = ~/2 = O. 

At  this point  eqns. (4.3.A) and (4.3 .B) are decoupled,  the interact ion is absent  and 
we have a free theory.  Th i s  was discovered by  A n d e r s o n  et al. ( i970).  A brief  review 

of  their paper  can be found  in § 3.1.1. 
T h e  line Ill ---- 7c (#---- 7r/2) is known  as the Tou louse  limit. I t  is surpr is ing that  there 

exists a similar line at the fe r romagnet ic  region III : - ~" 
Accord ing  to the hypothes is  of  Ande r son  et al. (1970) the exchange ampl i tude  

I (D)  in the isotropic s -d  model ,  which  is small at a large energy and increases when  
the energy scale decreases, achieves the Tou louse  limit by  a finite n u m b e r  of  
recurs±on steps. We  see, however ,  this is not  quite true. Actually,  s tart ing f rom small 
I± and 111 > 0 the Tou louse  limit (i.e. the line # = n/2) can be achieved by  an infinite 
n u m b e r  of  steps because the scaling trajectories intersect  each other  only in the fixed 
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Exact results in the theory of magnetic alloys 595 

point. Nevertheless, the conclusion made by Anderson et al. on the magnetic 
susceptibility at T =  0 retains its validity. The  low energy propert ies of the theory are 
determined by the fixed hamiltonian. In the isotropic case the strong coupling leads 
to essential renormalization of the hamiltonian. However,  in the Toulouse limit on 
the one hand the theory corresponds to the case of the free particles and there is no 
renormalization; but  on the other hand both theories have coinciding fixed points. 
We shall continue this discussion in the next section. Here  we should note that the 
numerical  investigations performed by Melnicov (1982 a) and Oliveira and Wilkins 
(1981) showed that the strong coupling limit determines the behaviour of the system 
not only at T = 0  but  (perhaps due to some numerical  reasons) also describes the 
thermodynamics  up to T~<0"5 T K within 1~o accuracy. 

5.2.2. The ground state of  the anisotropic exchange model at I+ <IH 
The  statements of § 5.1.1 concerning the quan tum numbers  J ,  and Nj in eqn. 

(5.1.1) are also valid for the anisotropic Bethe-Ansatz equations: 

M 

k jL  = 2 n N  3 -  ~ (p(2~) + n -  #), (5.2.5 a) 
a = l  

M 

N p ( ) . , ) + b d 2 , ) = 2 n J , +  ~ q~(2,-2~), (5.2.5 b) 
/ / = 1  

where 

p ( 2 ) = 2 t a n - l ( c o t p / 2 t a n h # 2 ) ,  

~s(~)=p(~+f/~), 
• (2) = 2 t an -  1 (cot # tanh #),). 

(5.2.6) 

As well as in the isotropic case the ground state is formed by real rapidities 2, and k 1. 
T h e  charge numbers  are again equal to 

N j = - N / 2 + j  ( j = I , . . . , N ) .  

However,  the spin numbers  J ,  now form a uniform lattice between 

- (1/2n)[X(n - #) - M ( n  - 2#)] and (1 /2n)[N(n  - #) - M ( n  - 2#)]. 

This  leads to the incorrect formula for the ground-state  energy: 

LE(°~= - N M ( n - - # ) -  2n - ~ +  ~n [ N ( n - # ) - M ( n -  2#)] 

Formula  (5.2.7) shows that eqns. (4.3.A)-(4.3.C), described at f = 0 ,  describe 
non-interact ing fermions with a renormalized density of states of spin excitations 
p s = ( | / 2 n ) ( l - # / n )  -1, while we started from the density of states p s= l /2n .  This  
difficulty has a general character and appears in many models with linear spectrum 
(Japaridze et al. 1983). T o  understand the cause of this difficulty let us recall that for 
the construction of the coordinate Bethe Ansatz we factually added the contact 
interaction between the particles, which was of the same type as the interaction 
between particles and the impuri ty  (see § 4.6). This  interaction has been supposed to 
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596 A . M .  Tsvelick and P. B. Wiegmann 

be non-essential because it cannot change the spectrum of the particles moving to 
only one side with the same velocities. 

The additional interaction pr, oves not to influence the scattering kinematics but it 
may lead to the renormalization of the density of states in the limit of a large number  
of particles. This situation seems to take place only in the solution of the anisotropic 
s-d model, Indeed, the effective hamiltonian of 'free fermions'  has the following 

form: 

9if= --iC+(X)~x~(x)+ ~ ~+(x)C~,(x) 
a,a',fl,lY 

1 . . . .  } x ~(Illa~,~p,+Iz(~,~p~,+~,cr}p,))C~(x)(2~,(x) dx. (5.2.8) 

Consider, for example, the correction to the g-factor of the electron due to the 
interaction (5.2.8) for I ± = 0 .  That  correction already arises in the first order of 
perturbation theory. The  corresponding diagram is shown in fig. 5.5. It gives 

gaf=g(1 +Iii/4n). 

Thus  the ' interaction' leads to the additional magnetization of the conduction 
electrons. It is clear that for the isotropic case the additional magnetization 
corrections at H--~0 are absent because of the rotational symmetry.  This fact has 
been observed in §5.1 ,  where the additional interaction did not lead to any 
renormalizations. For the anisotropic case, however, renormalization takes place. It 
seems to be the cause of the appearance of the factor ( 1 -  #/~) in formula (5.2.7). 

Fig. 5.5 

0 
The first-order correction to the density of states. 

It is obvious that the influence of this 'interaction' is reduced to the renormaliz- 
ation of the density of states because the other diagrams having cuts with more than 
one fermionic propagator are equal to zero. Therefore, the simplest way to remove 
this artefact is to treat an electronic Lande-factor as 

g=(1--#/n), (5.2.9) 

which will always be implied below. The  same renormalization factor also takes place 

for compressibility. 
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Exact results in the theory of magnetic alloys 597 

5.2.3. Magnetic susceptibility 
We can now approach the limit N-+ oo, M-+ 0% L-+ oo proportionally, obtaining 

from eqns. (5.2.6) the integral equations (see § 5.1.1 for the details): 

Ph(4) + a2(~--4')ph(4')d4'=al(2); 4 >  --B, (5.2.10 a) 
- B  

f ~Ba2(2-- )pi(4 )d4 = a l (4+f /p) ;  pi(4) -}- 4' ' ' 4 >  --B, (5.2.10 b) 

where now 

1 sin #n 1 do9 exp ( - i~o4) sinh (hi#- n) o912 
a.(4) = 2n- cosh 2 # 4 -  cos #n - 2n _ sinh (n/2#)~ 

Functions Ph and Pi parametrically determine the impuri ty magnetization: 

H/g6v=l/2--f~BPh(4)d2, 

(5.2.11) 

Mi=l/2-f~pi(4)d2 
Further  calculations are quite analogous to those for the isotropic case. 

Multiplying (5.2.10) by (1 + a2)-a we go to the hole distributions Ph and Pi (for the 
definition of these functions, see § 5.1.1). 

f-i t~h(2)- R(4-4')~h(2')d4'=s(2)"~-exp(n2); 2 <  - B ,  (5.2.12 a) 

;-t ~i(2)-- R(2--2')Pi(2')d2'=s(2+f/#); 2 <  - B ,  (5.2.12 b) 

where 

x exp ( --/co4) sinh (n/2g -- 1)o~ 
2coshe)/2sinh(n/2#--l"/2)e)' s(2) = (2 c°sh ~2)-  1' 

Assuming H<<E F we restrict ourselves to the asymptotic of s(4) in (5.2.12a) for 
4 ~ - o o .  If H<<T K one may rewrite the right-hand side of eqn. (5.2.12b) as 
exp(n4+~f /# ) .  Comparing eqns. (5.2.12 a) and (5.2.12b) we obtain 

Zimp = exp (nf/~). (5.2.13) 
Z h o s t  

Therefore,  according to the definition of T K (5.1.23), we have 

TK= ~ e x p  ( - -  ~ ) -  (5.2.14) 
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598 A . M .  Tsvelick and P. B. Wiegmann  

When/±<<Il l  <<1 

and for I±~Iji  =I<<1 

TK = (i±/2iii)2~/I II 2eF (5.2.15) 

2E F (2n) 
TK= - - e x p  -- . (5.2.16) T 

These  expressions coincide with the per turbat ion theory results. 
Before proceeding to solve the equations for arbi trary magnetic fields we should 

make the following remark.  For  the isotropic case there is an essential difference 
between the distribution functions of bare particles (the r ight-hand side of eqn. 
(5.1.14)) and that of physical particles (the r ight-hand side of eqn. (5.1.20)). The  
cause of this difference is the strong renormalization accompanying the  transition 
f rom the high-energy to low-energy scale, in terms of Bethe-Ansatz equations ' to 
account for the interaction'  means to consider the distribution function of the holes/3 
instead of the distribution function of the particles p. In  the anisotropic case the 
difference ment ioned above is not too large. In  the infrared region one has: 

r.h.s, eqn. (5.2.12)--~exp(rc2), (5.2.17a) 

r.h.s, eqn. (5 .2 .10) -exp(2#2) .  (5.2.17b) 

In the Toulouse limit/~ = n/2 this difference vanishes as the kernel of eqns. (5.2.10) 
tends to zero and the theory becomes free. I t  is interesting that the presence of the 
anisotropy changes only the distribution of bare particles. T h e  distribution of 
physical particles at H--+0 does not depend on the anisotropy. 

This  circumstance is reflected in fig. 5.4. All trajectories with - I I I  < I .  have a 
common fixed point. Therefore ,  the hamiltonians (4.3.1) for different # have a 
common  fixed hamiltonian. With a decrease in the energy scale the renormalization 
of the hamiltonian with # = n / 2  does not occur and, therefore, the Toulouse 
hamiltonian (3.1.6) is fixed for any s-d  hamiltonian: 

~¢'s~--+~T at 'energy scale'--+0. 

The  solution of eqns. (5.2.12) is given by the formulae of the Appendix to 5.1.3, 
but  now 

sinh (n /2p-  1)to 
G~+)ffo)G~-)(o~) = 1 + (5.2.18) 

sinh noo/21.t 
and 

Gt-)(co) = G(+) ( -aJ )  = 
(2(n-- #))l/ZU(1 + ico/2#) exp (iooa) 

F(1 + (ico/2)(1/p - 1/n))F(1/2 + ico/2n) 

;) ') 
The  impuri ty  magnetization is given by the formulae (Wiegmann 1981): 

M i ( H )  - -  4 ~ -  _ co -t- i0  

x F(1/2 + io))/F(1 - ioo(g/#-- 1)); 

(5.2.19) 

(5.2.20) 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

hi
ca

go
 L

ib
ra

ry
] 

at
 1

8:
11

 1
8 

A
ug

us
t 2

01
5 



Exact results in the theory of magnetic alloys 599 

Tn ~ ~ F( l+n/2#)  
= zx/n F 7 i 7 ~  ~ )  exp (xa) TK. (5.2.21 ) 

The integrand in (5.2.20) only has poles placed in the imaginary axis of co (fig. 5.6). 
In the lower half-plane the positions of the poles are 

Imco= -n#/rc (n= 1 ,2 , . . . )  (5.2.22) 

and in the upper half-plane 

I m c o = n + l / 2  (n=0, 1 , . . . ) .  (5.2.23) 

If H <  T n the contour of integration presumably envelops the upper half-plane 
and the poles (5.2.23) give the power-series expansion of Mi(H): 

1 o~ ( - 1 ) (  H "~2,,+1 
r , , ) =  o 

exp (na(2n+ 1))F(1 +n/2#(2n+ 1)) 
x (5.2.24) 

(2n + 1)F(1/2 + n/2#(2n + 1)) 

Thus, at low energies the local moment is frozen out by the conduction electrons. 
The anisotropy does not affect the cha/acter of the power-series expansion 
determining only the coefficients. 

If H >  T n the contour of integration envelops the lower half-plane and the poles 
are important (5.2.22): 

1 1 ~ sin#n ( I  ~ )  
m i ( H >  T n ) -  2 2~/np n=l n! F + 

x F(n(1 - #/~z)) exp ( - 2#an). (5.2.25) 

The expansion in powers of (Tu/H) 2"/'~ was predicted by Luther and Emery (1974) 
in the perturbation-theory framework. 

Fig. 5.6 

® I H < T  H 

k t / r r  H > T H 

The complex plane of the integrand (5.2.20). 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

hi
ca

go
 L

ib
ra

ry
] 

at
 1

8:
11

 1
8 

A
ug

us
t 2

01
5 



600 A . M .  Tsvel ick and P. B. W i e g m a n n  

At H <  Tn the known  expansion in integer powers  of  H / T  u for the isotropic case 
may  be obtained directly if # ~ 0  is taken in each t e rm of the series (5.2.24). Yet, the 
limit # ~ 0  at H >  T u is not  so simple. T h e  poles (5.2.22) converge  fo rming  a cut  along 
the negative par t  of  the imaginary  axis and one should  calculate the integral  over the 
con tour  enveloping the cut. 

In  the Tou louse  limit # = ~ / 2 ,  T n = 2 T  K and 

T~ 
Xi= H z + T~" 

I t  is interest ing to consider  one more  case: # -z~ .  Subs t i tu t ing  # = g into (5.2.20) 
and (5.2.21) we obtain  

M i ( g )  = ~o+i~exp(io)lnH/nTK)F(1 - i ~ 0 ) r  +ic0 

1 (g/rCTK) 
= 2 (1 +(H/nTK)2) 1/2" (5.2.26) 

T h e  point  #=r~ cor responds  to I±=2rc-Iii  , where  TK~2¢v(rc--ju)--*0. Such  a 
si tuation has no physical  meaning.  However ,  the formula  (5.2.26) is approximate ly  
valid when  r ¢ - # < < l .  W h e n  g - ( I l l  +1±)/2<<1 eqns. (4.3.8) may  be approximate ly  
rewri t ten as 

+ I ±  "~ 
(7~-#)2_~2 7c-  I I I  ) tanI±/2,  f~O.  (5.2.27) 

F r o m  (5.2.27) one sees that  for validity of  the formula  (5.2.26) it is necessary that  
(2zc - III -- I±) tan 1±/2 << 1. T h e n  

2E F 
TK(#--* r~ ) = ~ -  [(2zc-- Ill -- Ix)  tan I±/2] 1/2. 

Appendix to §5.1.3. The Wiener-Hopf method 
Let  us consider  the equat ion 

O_(x)=ffV(x-x')O+(x')dx'+g(x) (x<0); l 

0+(x)= o V(x-x')O+(x')dx'+g(x) (x>0). 
(1) 

T h e  funct ions g(x), V(x) are assumed to be integrable and regular  on the real axis. 
Le t  us pe r fo rm the Four ie r - t r ans fo rmat ion  of  eqn. (1): 

~ + ( ~ )  + 0 _  (co) = V(co)O + (co) +g(~o). (2) 

Here  the funct ions  with a rgumen t  co are the Four ie r - t rans forms ,  for example,  

f +ao g(co) = exp (ioox)g(x) dx. 
- oo 
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Exact results in the theory of magnetic alloys 601 

In  the fol lowing we shall use the  fact tha t  any funct ionf(co)  m a y  be represen ted  
as the sum of  two s u m m a n d s  [ f ]  + (co) and  [ f ] _  (co) which  are analyt ica l  in the u p p e r  
and lower  hal f -p lanes ,  respect ively:  

f(co) = [ f ]  +(co) + I f ]  _(co), 

[ f ] + ( c o ) =  2t~ f +°° f(co') w' _~co_co,  +iO d , 

if+ 2 aw, [ f ] - ( c o ) = - -  ~ _ co--co - - i0  

(3) 

In  par t icular ,  us ing fo rmulae  (3) with f ( c o ) = l n ( 1 -  V(co)) one m a y  represen t  the 
funct ion  1 -- V(co) as the  p r o d u c t  Gt+~(co)G~-~(co), where  G(+)(co) is analytical  in the 
u p p e r  (lower) hal f -p lane .  

Rewri te  eqn.  (2) as 

~k +(co)G~+)(co)+~k_(co)/G~-)(co)=g~')/G~-)(co)=[g/G~-)]+(co)+[g/G~-)]_(co) (4) 

and 

+ G ~+) -- [ g i g  ~-)] + = - ~ _ /G ~-) + [giG ~-)] _. (5) 

T h e  le f t -hand  side of  eqn. (5) is analytical  at Imco~>0, the r i gh t -hand  side is 
analytical  at I m  co ~<0. Both  these have a c o m m o n  region of  analyt ic i ty  ( I m o g = 0 )  
where  they are equal  to each other.  The re fo re ,  one m a y  say tha t  the r igh t -hand  side is 
the analytical  con t inua t ion  of the funct ion  F = Ip + G t +) - [g/G ~ -)] + to the lower  half-  
plane.  

So defined,  the func t ion  F(co) is analytical  in the  whole  complex  p lane  and is an 
ent i re  funct ion:  

F ( ~ ) = P ( ~ ) .  

T h e  above specula t ion  is not  sufficient to find the  funct ion  F(co). I t  is necessary to 
r e m e m b e r  its behav iou r  at large co. F r o m  the in tegrabi l i ty  of  ~O(x) at x ~ 0  it follows 
tha t  ~p+(co~oo)--*0. Analogously ,  we have  

~+oo 
[g/G~-)]+(co) ~- ~ g(co') dco' = ! g ( x  = 0)--*0, 

- -oo (O 

O ) - - ~  O(3.  

So; F(co) is an ent i re  func t ion  and  tends  to zero at large co. The re fo re ,  F(CO)=0 at 
all co. 

T h e  solut ion of  eqn.  (2) is 

i f + ~  g(co') dco' 
~b+(co)= 27rG~)(co) _ G~-)(&)  c o - c o ' + i 0 '  

• ;d-oO 
~k_(co)= -- Z--G~-)(co) g(co') de)' 

2g " " -oo G~-)(co') c o - c o ' - i 0 "  

(6) 

For  a review of the W i e n e r - H o p f  m e t h o d  see, for example ,  Kre in  (1962)• 
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602 A. M. Tsvelick and P. B. Wiegmann 

5 6. THERMODYNAMICS OF THE EXCHANGE MODELS 

In this section we apply the Bethe-Ansatz equations (4.2.A)-(4.2.C) and (4.3.A)- 
(4.3.C) to study the thermodynamics of s-d exchange models (4.2.1) and (4.3.1). At 
finite temperatures we cannot derive such closed expressions for physical quantities 
as has been done for T= 0 (see 5 5). The thermodynamical properties are described 
by a set of non-linear integral equations. They can hardly be solved exactly. 
However, it is possible to study the analytical properties of their solutions and 
understand the character of the temperature dependence of physical quantities in the 
most interesting cases. As was the case above, all the mathematical intricacies will be 
exposed in detail for the example of the isotropic s-d exchange model (5 6.1). They 
are then applied to other models in less detail. The  proper mathematical approach to 
the thermodynamics of systems described by the Bethe-Ansatz equations was 
developed in the pioneering paper by Yang and Yang (1969) and applied to the 
Haisenberg model by Takahashi (1971 a, 1973), Gaudin (1971 a), Johnson and 
McCoy (1972) and Takahashi and Suzuki (1972). Many of the technical tricks used 
below are borrowed from the above papers. 

6.1. Thermodynamics of the s-d exchange model 

6.1 .l. Solutions with complex rapidities 
If T#O one should consider all possible solutions of eqns. (4.2.B): 

Obviously, apart from real solutions eqns. (4.2.B) admit some complex ones. Bethe 
(193 1) suggested the so-called 'string' hypothesis, according to which the solutions of 
(4.2.B), as well as other closely-related equations which arise in other models, 
consist, in the thermodynamic limit, solely of strings, i.e. families 

which are depicted in fig. 6.1. In (6.1 . l )  A: is real and n is order of a string. Here 6N is 
a number of excitations (Destri and Lowenstein 1982). The  proof will be given in 
Appendix to 6.2.1 where we also discuss what the thermodynamic limit means. 

The string's classification is defined by the right-hand side of eqn. (4.2.B). 
Therefore, the classification for the s-d exchange model coincides with that for the 
isotropic 112-spin Haisenberg ring, characterizing by the same symmetry group 
SU(2). It  is easy to derive the Bethe-Ansatz equations for the real parts A:. Let us 
consider a state with M, strings of nth order (n= 1, . . . ). Substituting (6.1 . l )  into 
eqns. (4.2.B) and taking the product of eqns. (4.2.B) forjth components of a string, 
we get tbe following equations for the real parts A:: 

where 
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Fig. 6.1 
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603 

An n-string solution in the complex rapidity plane. 

and 

n + l  . ) 
2 + i  ~ - - j + S  

e,, 2s(Z) = ]~I n + 1 . 
j=l 2 + i ( - - f - -  - ~ - S )  

(6.1.4) 

E,m(Z) = efn -ml('~)e~n-mr + 2(~) "'" e2~+m- 2 (2)en + ~2). (6.1.5) 

Each string contains n M  n spins up, the whole spin being equal to 

S ' = N / 2 -  ~ nM,. (6.1.6) 
n=l 

Equation (4.2.A) rewritten through real parts of Z I is 

exp (ikjL) = exp (ilS/2) []  g" ]-I e.(Z~). (6.1.7) 

Taking the logarithm of (6.1.2) and (6.1.7) we obtain 

kjL = 2zcNj- IS/2 - 
Mn 

(re + Pn('~)), (6.1.8 a) 
n=l ~ = 1  

n n ~ n m -,m(Z~.-- 2#), (6.1.8 b) 
m = l  fl=l 

where 2Ni, 2J~ are integers and functions p,(2), 6,,2s(2), E,,~ characterize a two- 
particle scattering, p~(2) is the momentum of a string with spin n/2, which 
provides scattering on the impurity and other strings with phase shifts fi,,2s(;L) and 
~,m(Z~- 2~), respectively. It is convenient to define the functions p~, 6~, 2~ and t"~nm as 

p~(2)=ilne.(2)=2tan -1 22/n (--Tz <pn~< rc ) 
rain (n. 2S)  

6 n , 2 S  ( '~')  = Z Pn+l+2S-2j( 2+l/g); (6.1.9) 
j = l  

rnin ( n , m ) -  1 

E,~(2) =Pl,  -~I(2) + 2 ~ Pr,-ml + 2*(A) +P" + ~(2). 
k = I  
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604 A . M .  Tsvelick and P. B. Wiegmann  

Equation (6.1.6) and (6.1.8) constrain the admittable set of integers 

1 
min(n,m)M~-D,; ~ nM,<~N/2. IJ~l<~2(N+M"+min(n'2S)-l)+n- m=~l n=l 

(6.1.10) 

I t  may be proven that for any set of J~s satisfying (6.1.10), no two of which with the 
same n are identical, there is a unique set of real 3,~s satisfying (6.1.8 b), with no two 
~,~s with the same n being identical. 

Hence,  the numbers  J~ as well as Nj  are precisely quan tum numbers  of the 
system. Therefore,  the number  of possible states is determined by the number  of 
possible sets of integers {J~} satisfying (6.1.10). Bethe showed (1931) that at S =  0 
this number  is exactly 2 N, as it mus t  be (see also Takahashi  1971 a) and Takhtaj  an and 
Faddeev (1981 a, b). We give below another proof  of this s tatement calculating the 
entropy of our system for high temperatures  (see §6.1.6). I t  should be equal to 
50 = 2 N l n  2 + In ( 2 S +  1)¢. 

6.1.2. Thermodynamic limit 
Thus  any state of the system is characterized by M n sets of integers J~ filling in a 

lattice with omit ted values J"- ( 'holes').  The  notion of a 'hole ' ,  introduced by us in 
§ 5.1.1 while studying the ground state with the fixed magnetic  moment ,  can easily be 
generalized to arbi trary state. 

Following Yang and Yang (1969), consider the function 

1 E ] h"(2)= ~ Np,(2)+5, ,2~(2)--  )-', E,m(2--2~) . (6.1.11) 
m = l  f l = l  

Those  values of 2 where h"(2) = J~eD, are the rapidities of particles 2~. Those  values 
of 2 where h"(2)= f~cD, are the rapidities of holes. 

Thus ,  for a large system one may  introduce a density distribution of holes as well 
as of particles: 

Np,(2)d2 = num ber  of 2% in d2, 
(6.1.12) 

Nfi,(2)d2 = num ber  of holes of  order n in d2. 

This  definition is a generalization of that given in § 5.1.1. 
By definition, the num ber  of particles and holes in the interval d2 is the number  of 

times h"(2) ranges over values J~ and J~ in this interval. Thus  

1 dh"(2) 
N d2 , - p , ( 2 ) + p , ( 2 ) .  (6.1.13) 

Equations (6.1.8 a and b) give 

Lkj = 2~zNj- N ~ ~(p,(2)  + u)p,(2) d2, (6.1.14) 
n = l  J 

N -:p,(2) + 6,,2s(2) - - , m ( 2 -  2 )pro(2 ) d2, (6.1.15) 
m = l  

The generalization of the direct combinatorial proof for arbitrary S was made by Furuya 
and Lowenstein (1982). 
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Exact results in the theory of magnetic alloys 605 

where boundaries of all integrals here and through this section are equal to _ ~ .  
Differentiation with respect to 2 gives 

l a  2 f a , ( 2 ) + ~  ,,2s( +l/g)=fi,(2)+ ~=1 A"m(2-J")P"(J")d2" (6.1.16) 

where 

2 n _,_,,,.-- = - 

/~ 4j, 2 q- n z , 
rain (n, m) - 1 

A,m(,1,) = 6,m~(2) + (1 --6,m)al,-,~l(,~)+a,+m(2)+2 
k = l  

rain (n, 2S) 

an, zs ( '~)= Z an+2s+l-2J(2)"  
d = l  

The  energy of the system is 

E = J = + E sp, kj ~ -  

1 ~ N ~ f(,#.(2)-t- nip.(2) d2. ~ E P = - Z  ,=I 

The  spin is 

1 z 1 o~ [" 
S = ~ - ,~=1 n jp.(Z) dZ. 

al.-m I + 2 k ( A ) ;  

(6.1.17) 

(6.1.18) 

(6.1.19) 

(6.1.20) 

(6.1,21) 

(6.1.22) 

The  formulae (6.1.16) and (6.1.20)-(6.1.22) describe all states of a spin subsystem in 
the continuous limit. 

For  the sake of simplicity we do not pass to the continuous limit in a charge 
subsystem. As has been discussed above, the charge subsystem is a gas of free 
spinless fermions and does not demand additional treatment. 

In conclusion we cite the important  relation between functions ~.,2~ and A.,.: 

1 d5,,,2s(~- 1/g) 
2~ d2 = s * d , ,  2s (2). (6.1.23) 

The  symbol s *f(2) denotes the convolution of s(2) and f(2) as follows: 

f 
+oo 

s *f(2) = (2 cosh re(2-- 2'))- if(Z) d2'. 
- c o  

The  validity of relation (6.1.23) can easily be proved by comparing Fourier- 
transforms of corresponding functions. For  instance, we have 

d,m(~ ) = coth ~ (exp ( - [ (n -  m)¢o[/2) - exp ( -  (n + m)]¢0[/2)). (6.1.24) 

Further,  we shall often use the inverse matrix A-1 .  It has the following form: 

( A  - 1 )nm(,~ ) = (~nm(~(~) __ S(,~)((~n, m + 1 q-  6n,  m - 1 )" ( 6 . 1 . 2 5 )  
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606 A . M .  Tsvelick and P. B. Wiegmann  

Using eqn. (6.1.16) one may rewrite eqn. (6.1.25) as follows 

pn(2) + fn(2) = s * (Pn- 1(2) + f ,  + 1(2)) + 6n ls(2) + 1 6 2sS(2 + 1/g) N n, 

and express the energy and the total spin through the density of holes: 

(6.1.26) 

1 SZ= lira f f n ( 2 )  d2, 
N n-*oo J 

E ~p- E (°) = 2N2/L ftan- 1 exp (7~2)f1(2) d2. 

Here E ~°J is the ground-state  energy: 

(6.1.27) 

(6.1.28) 

N 2 
E (o) = 

L 
{ f - - ~  A 11((D ) d(D 1 ;  +oo do9 

2 cosh o9/2 o9 + i0 + -oo _oo o9+i0 

exp (iog/g)A 1,2s(o9)/2 cosh o9/2 ~. × 
) 

(6.1.29) 

Note that the energy is completely determined by the distribution of the holes in 
the first string (n = 1). We have already said that in the ground state all Pn = 0 at n # 1. 
I t  follows f rom (6.1.28) that there are no holes with n =  1 in the ground state. 

Calculating the first integral in (6.1.29) it is easy to prove that it is equal to 
-nN2/2L,  i.e. the free-gas energy. T h e  second te rm in (6.1.29) is the impuri ty  
correction to the ground-state  energy. This  correction is not a universal function of a 
coupling constant and we do not evaluate it. 

6.1.3. Equilibrium distribution 
At finite tempera ture  T, we should maximize the contr ibution to the parti t ion 

function f rom the states described by Pn and Pn. In  other words, given Pn, fn is defined 
by (6.1.16) (or (6.1.26)). One then computes  the contr ibution to the parti t ion 
function 

e x p (  E--~S~)eS,  (6.1.30) 

where E is given by (6.1.21) or (6.1.28) and S is the entropy of the state. The  
equil ibrium p is then obtained by maximizing this contr ibution when pns, fins are 
varied subject to condition (6.1.16). 

T h e  entropy of the 'state '  does not vanish since the existence of the omit ted 
quan tum numbers  J~" allows many  wavefunctions of approximately the same energy 
to be described by the same Pn and fn- In  fact, for given Pn and fin, the number  of 
particles and holes in d2 is N(pn + fin) d2, of which Npn d2 are particles and N f ,  d~, are 
holes. Thus ,  the number  of possible choices of states in d2 consistent with given Pn 
and f ,  is 

[ N(p. + Pn) d2]! 

(Npnd2)! (Nfn d2)! " 
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Exact results in the theory of magnetic alloys 607 

Its lOgarithm gives the contr ibution to the entropy f rom d2". Thus ,  the total 
entropy is, 

S = N  ~l  f d 2 [ ( p , + ~ . ) l n ( p . + ~ . ) - p ,  l n p , - ~ , l n ~ ,  ]. (6.1.31) 

In  what follows one mus t  r emember  that functions p, and ft, are not independent.  
F rom eqn. (6.1.16) one obtains the relation between the variations of p, and f3,: 

@.(2) 
- -  - A m ( 2 - 2 '  ). (6.1.32) ap.(2') 

Varying the parti t ion function with respect to 6p. and defining the fundamental  
funct ionst  

8,(4) = T In [fi,(2)/p,(2)]. 

We obtain the following non-linear integral equations: 

£F 
Tln(1  +exp(~ , /T) )=A,m* Tin(1  + e x p ( - s m / T ) ) + H , - - - ( p , + n ) .  (6.1.33) 

n 

These  equations together with (6.1.16) define the equil ibrium distributions 
p,(2), ~.(Z). 

I t  may be proved that the solution of (6.1.16) and (6.1.33) indeed leads to a 
m in imum of the free energy, i.e. a m a x i m u m  of the parti t ion function (6.1.30) (Yang 
and Yang 1969). T h e  functions 8,(2) are the fundamental  quantities describing the 
thermodynamics  of integrable systems. Let  us return to eqn. (6.1.33). Another  form 
of these equations appears when one inverts matrix A: 

e,(2) = Ts * In ( 1 + exp (e, _ 1 (4)/T))(1 + exp (e, + 1 (2)/T) 

_ 2£Vta n -  1 exp (n2)6,1 , lira e, = H .  (6.1.34) 
7C . ~ o 0  n 

T h e  free energy may be expressed through e,s only. According to (6.1.21) and 
(6.1.31) we have 

- -  (p,  + n) -- T In (1 + exp (e,/T)) 
. = 1  

4. 
Using eqn. (6.1.16) we eliminate ~. and obtain 

{ ( 1 ) 
1 s ~ td2 a,(2) + a,,zs(2+l/g) ~ ~= p.(2)[...]-- 

n=ld  

(6.1.36) 

"~ In §5.1.4 we defined the functions e=81 for T=0.  We shall show below that for T ~ 0  
eqns. (6.1.33) and (5.1.52) do coincide. 
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608 A . M .  Tsvelick and P. B. Wiegmann  

The  te rm in square brackets is precisely the left-hand side of eqn. (6.1.33). 
Therefore,  we have 

1 ~ ~p = _ T d2 a,(2) + ~ an, 2s(2 + 1/g) 
N n=l 

xln(l+exp(--~n(2)/T)--H(½+S/N ).  (6.1.37) 

Another  useful expression for the free energy may be obtained f rom (6.1.35) 
removing p,s. T h e  te rm with ~, vanishes because of condition (6.1.34). Using the 
relation (6.1.23) we obtain: 

__ ~ s p =  _ T d2s(2) In (1 
N 

+ exp (~1 (2 ) /T)  

T 
f d2s(~ + l/g) In (1 + exp (e2s(2)/T)). 

N d 
(6.1.38) 

As has been discussed above, the spectrum of the charge subsystem is unbounded 
f rom below. In  § 5.1.1 we considered this problem and showed that one should 
consider only k t> -EF/2. Therefore ,  the chemical potential of the charge subsystem 
computed  f rom E F is equal to EF/2. According to this we have 

f o0 EF 7~2 T 2 
- (6 .1.39)  1 ~ch-  2EvT _~ln(l+exp(-k/T))dk+ 4 12 Er 

Hence the heat capacity of the charge subsystem is just  a half of that of free Fermi  
gas. 

6.1.4. Non-interacting electron gas and the Bethe-Ansatz technique 
A correct description of the behaviour of an impuri ty  requires a very unusual way 

of representing the gas of non-interact ing particles. Instead of studying free 
fermions with spin 'up '  and 'down' ,  we deal with the different types of fermions. One 
type transports  charge but  not spin, while the other does the opposite, i.e. does not 
change the local distribution of charges. Moreover,  excitations in the spin subsystem 
are linear combinations of different strings. 

The  fact that the non-linear equations (6.1.34), whose solution is analytically 
impossible, together with the first terms in (6.1.18) describe free particles is 
remarkable and requires proof  (Filyov et al. 1981). 

In eqns. (6.1.8) we drop the te rm with 1/N or s imply put  S = 0 :  

a.( ,b  = ~.(,~) + A.m * pm(~). (6.1.40) 

Compar ing  (6.1.42) with (6.1.34) and taking into account that a, =p',/2n, we find that 
in the absence of an impuri ty  the p, and j6, are linked by simple formulae 
characteristic of a free system: 

1 ~ , ( 2 )  
p,(2) = n@,(2)), (6.1.41) 

2E F 0,~, 

1 0~.(2) 
ft,(2) = - -  (1 - n(e,(2)))~ (6.1.42) 

2£ v 02 
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Exact results in the theory of magnetic alloys 609 

where  

n(~) = (1 + exp (~ /T) ) -  1 (6.1.43) 

is the  F e r m i  d i s t r i b u t i o n  func t ion .  
T h i s  means ,  for  one th ing ,  tha t  the  average  n u m b e r  of  s t r ings  at a g iven 

t e m p e r a t u r e  T is 

(M.) T [ l +exp(--e.(--oo)/T) ] 
- -  = - -  I n  . ( 6 . 1 . 4 4 )  

N 2@ 1 + e x p  ( - e n ( +  oo)/T) 
F o r m u l a  (6.1.43) also impl i e s  tha t  the  5, are m o n o t o n i c a l l y  inc reas ing  func t ions  
since,  b y  the i r  ve ry  mean ing ,  p, ,  fi,>~0. 

L e t  us  take the  free ene rgy  in the  absence  of  an i m p u r i t y :  

1 ~ T~fd,~a.(2)ln(1 ~ P =  = -n(~.(2)))-H/2. (6.1.45) 

Di f f e ren t i a t ing  eqn.  (6.1.34) wi th  r e spec t  to 2 and  c o m b i n i n g  the  resu l t  wi th  (6.1.45), 
we ob ta in  

-~1 T ~ fd2ln(l_n(e,,))[~2_.a,,_,,.,Tln(l_n(e,,,))]_H/2. (6.1.46) 
- - ~ P - -  2£F ,=1 

T h e  second  t e r m  ins ide  the  b racke t s  y ie lds  zero because  .~..,, is an o d d  c on t i nuous  
func t ion ,  hence  

de In (1 - n(e)) - - -  (6.1.47) 
~-~P ~--" G n = l  d m i n e n  2 

T h e  easiest  way  to es tab l i sh  the  l imi t s  of  (6.1.47) is to e m p l o y  eqn.  (6.1.34). 
I ndeed ,  send ing  2 to - o o ,  we have  a se l f -cons i s ten t  sys tem of  equa t ions  in 
g. ~ m a x  e.(2): 

T & 
G =  -- ; l n [ n ( G + l ) n ( G _ l ) ] ;  l i m -  = H ,  g o = - ° °  n = 1 , 2  . . . . .  (6.1.48) 

Z tl~oo n 

I t  is easy to find the  so lu t ion  to these  equa t ions  (Takahash i  1971 a): 

wi th  

g. = T i n  (~2 _ 1) (6.1.49) 

• , = s inh  (e ,  + ;8)/sinh e. 

T o  f ind ~¢ and fl one m u s t  use the  b o u n d a r y  cond i t ions  for  (6.1.48). As a resu l t  
~=fl=H/2T and  

s inh  (H/2T)(n + 1) 
• , = (6.1.50) 

s inh HI2 T 
In  the  o the r  l imi t  2 ~ + ~ we have ~ t ~ - E ~  << - T. T he re fo r e ,  if  we assume tha t  

n ( e l ) =  1, we have  an equa t ion  for g , - -min~.0~) :  

T 
g , =  --  ~- ln  [n(g,+ 1)n(g,_ 1)]; n = 2 ,  3 , . . . ,  l im g,/n=H. (6.1.51) 

n~o0 
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610 A . M .  Tsvelick and P. B. Wiegmann  

Compar ing  (6.1.48) with (6.1.51), we find that 

~"=s-"+l = T ln  sinhH/2T --1 n = l , 2 , . . . .  (6.1.52) 

T h e  behaviour of the functions e,()~) derived f rom the numerical  calculation 
(Melnicov 1982a) is depicted in fig. 6.2. 

Using eqn. (6.1.52) one can rewrite the expression for the free energy (6.1.47) as 

1 T ln(l+exp(--e/T)dg= 6v n2T2 
~hp-  2cv cF 4 12ev (6.1.53) 

Here  the magnetic field is supposed to be equal to zero. I t  is convenient  to calculate 
the magnetic part  of the energy by calculating the magnetization. According to 
(6.1.27), (6.1.43) and (6.1.52) 

SZ=lim T ~ l n I l + e x p ( e " ( - ° ° ) / T ) ] = H / 4 ¢  v (6.1.54) 
.-~oo 2ev 1 + e x p  (e,(+ oo)/T) 

and we obtain, for the spin part  of the host free energy, 

1 6 F ~zZT 2 H 2 
N f f ~ P -  4 12e v 8 @  (6.1.55) 

Here  is an important  point. The  magnetic susceptibilities of the host spin subsystem, 
Z sp, and the electron gas, Zh, coincide, while the heat capacities differ by a factor of 
two" 

C sp _ 1 Ch --2~Z2/3. (6.1.56) 
TZ sp 2 TZ h 

Fig. 6.2 

/ 

2 

4 

/ 

3 

/ 
I r / I I ~ X 
2 1 0 -1 - 2  

Plots of the solutions of the universal equations (6.1.60). In (1 + exp (q~,(Z))) versus 2 at H = 0  
describes the thermodynamics of the s-d exchange model (after Melnikov 1982 a). 
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Exact results in the theory of magnetic alloys 611 

We discussed this connection earlier in § 5.1.4. This  result will be used below. 

6.1.5. Universality 
According to the general conditions for renormalizability, the impuri ty parts of 

thermodynamic functions must  be universal functions of T/T K and H / T  K or 
functions of the invariant charge z(T/TK) and H / T  at I--+ 0, e r ~  oo, TK-----const. 

Equations (6.1.34) are the simplest for eliminating non-universal terms. Let  us 
substitute everywhere 2 + l / n  In nT/2c F in place of 2 

1 / 1 rrT'~ 
g ' n ( 2 )  ---~ ~en ~2 + ~- In 2-~c F ) .  (6.1.57) 

In the process the absolute term of (6.1.34) becomes 

2EF tan-  t ( n T 
n \ 2~F exp (n2)]  

and the free energy is 

1 f ~  ( 1 -  In ~--TT ~ In (1 + exp (e'i(~))) d2, (6.1.58 a) 
~ , ~ P = - - T  a s  2+  n zErJ  

~ i  = T 2 + - In In (1 + exp (e~s(2))) d2, (6.1.58 b) 
- -  _ m  s 7~ 

At T<<e r the main contribution to the integral in (6.1.58 b) is provided by the region 

[)4"" + 1/nln T/TK<<l/nlner/T. 

Therefore,  for the term 2eF/ntan-l(nT/2~vexp(n2)) in eqn. (6.1.34) we must  
substitute Texp  (re2). But this can only be done if we wish to calculate the impurity 
part, o~ i. For  the function ~-~P the important  region is only ],~l-,,1/nlneF/T. 
Performing such an approximation in (6.1.58 a) we obtain, instead of (6.1.54) for 
~ P ,  a complete series in powers (H/eF) 2 and (T/eF) 2. However,  the first term in this 
series are just the same as in (6.1.55). 

The  dimensionless functions 

~ 0 . ( 2 )  = e ' . ( 2 ) / E F  = oO 

depend on HIT  only as a parameter and satisfy the universal set of equations 

qo,(2) = - 6,1 exp (n2) + s * In (1 + exp (q0. + i (2))) 

x (1 +expq%_l()o))); lira ~o,,/n=H/T. (6.1.60) 
n ~ a o  

Here ~ i  is a universal function of H~ T and T/T~. 

rf+  (iOlnT Ces(o),H/T) 
Yi = 2n do  exp - - -  , (6.1.61) 

_~ n T K/  2cosho9/2 

where 

f 
+ o O  

C2S(09, H~ T) ~- exp ( -- io,~) In (1 + exp ((~2s(2))) d2. 
- o o  

(6.t .62) 
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612 A . M .  Tsvelick and P. B. Wiegmann 

Equations (6.1.60)-(6.1.62) determine the thermodynamics of an impurity in the 
entire region of universality. These equations were derived for S = 1/2 by Andrei and 
Lowenstein (1981) and Filyov et al. (1981) and for an arbitrary S by Fateev 
and Wiegmann (1981b). They  were numerically solved by Melnicov (1982a), 
Desgrange and Schotte (1982) and Rajan et al. (1982). The plot of In (1 + exp (q),)) at 
H =  0 is depicted in fig. 6.2. (Melnicov 1982 a). The  temperature dependence of the 
impurity magnetic susceptibility, entropy and heat capacity are represented in 
fig. 6.3. 

6.1.6. The limits of strong and weak coupling 
Let us send T~ T K to oo in eqn. (6.1.58 b). Since In (1 + exp (s~s)) is bounded, we 

have 

and according to (6.1.52), we have 

[sinh(H/2T)(2S+ 1 ) ]  (6.1.63) 
Yi(T>> TK)= -- T ln  sinhH/2T " 

At high temperatures the interaction of an impurity with the conduction electrons 
vanishes, as expected. Therefore, (6.1.63) describes the behaviour of a free magnetic 
moment  S, and we are dealing with the weak-coupling limit. Note that the high 
temperature limit of the host entropy is proved to be 

S C h = N l n 2  and SSP(T-*oo)=ln(l+exp(ga/T))=Nln2. 

This shows a completeness of the states determined by eqn. (6.1.8). Now let us 
consider the case of strong coupling, i.e. T/TK-~O. According to (6.1.52), we have 

F s inhHS/T ] 
~i(T<< TK) = -- T ln  [ sinhH/2T ] "  (6.1.64) 

® 

D 1 

(a) 

Fig. 6.3 

® 

Dn 
n > l  

(b) 

The singularities of D2~(~o ) defined by eqn. (6.1.73) in the complex plane o~ for (a) S =  1/2 and 
(b) S>1/2. D,(e)) at n>]  has a cut in the lower and upper half-planes with dual 
discontinuities at this cut. Dl(~o ) is analytic everywhere in the upper half-plane except at 
~) = oo, and has a cut in lower half-plane. 
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Exact results in the theory of magnetic alloys 613 

We can therefore conclude that at T = 0  the impuri ty  ground state is 2S-fold 
degenerate. T h e  impuri ty  entropy and the magnetic momen t  are In 2S and S -  1/2, 
according to (6.1.64) (Fateev and Wiegmann (1981 b). The  conduction electrons 
cannot compensate  for the impuri ty  spin and decrease it by 1/2. On the basis of 
quantitative arguments,  Mattis arrived at this result as long ago as 1967. 

In the following we shall show that when S is not 1/2, the strong-coupling 
limit is approached logarithmically and the coefficients of inverse powers of 
In [max (H, T)/TK] can be found by a per turbat ion- theory technique. But if S = 1/2 
at T<< T K the impuri ty  part  of the free energy can be expanded in a power-series in 
T~ TK, H~ TK, as noted before. I t  has been proved for T =  0 in § 5. Now we show it for 
another limit T>>H (Filyov et al. 1981). I t  suffices to prove that CI(CO ) is analytic in 
the upper  half-plane. Inde6d, eqns. (6.1.60) imply that ~pl~ - e x p  (n2) as ).--* + ~ ,  
and the integral 

C l ( m ) =  _ e x p ( - i ~ 2 ) l n ( l + e x p ( q h ( ~ ) ) ) d 2  (6.1.65) 

is finite at I m  co > 0. 
Then,  at T<< TK we can bend the integration contour in (6.1.61) into the upper  

half-plane and determine the integral via the sum of residues of (cosh co/2)-1: 

~ s -  1/2)= _ T ~ (-- 1)"Cl(in(n+ 1/2), H/T)(T/TK) 2"+1. (6.1.66) 
n=0 

Knowing the behaviour of cpl() 0 at ;b-* + oo one can derive the asymptotics of 
Cl(iTr(n + 1/2)) at large n >> 1. Indeed,  substituting ~p~(2) = - exp (re2) into (6.1.65) we 
find 

C~(iTr(n + 1/2))~n!.  (6.1.67) 

The  expansion (6.1.66) is an asymptot ic  one in contrast to the analogous expansion 
for the impuri ty  magnetic m om en t  at T = 0  (5.1.37). 

6.1.7. The Fermi-liquid picture 
T o  determine the expansion coefficients in (6.1.66), we must  know the ~0, versus 

dependence over the entire range for 2. Nevertheless,  the heat capacity at T--+0 can 
be determined by simple reasoning (Filyov et al. (1981). Note  that the formulae for 
the free energy of the spin subsystem (6.1.58 a) and of an impuri ty  with spin S - -  1/2 
(6.1.58b) are very similar. In the strong coupling limit g-+oo they coincide 
completely, hence 

Ci  - -  2EF (6.1.68) 
C sp ~ T  K 

From the same reasoning we have already derived the expression for the magnetic 
susceptibility (5.1.23). These  formulae, together with (6.1.56), yield 

C i C sp 1 C h 2/~ 2 
(6.1.69) 

T Z i -  TZ sp 2 TZh -- 3 

and 

7r T 
- -  ( 6 . 1 . 7 0 )  

Ci 3 TK' 
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614 A . M .  Tsvel ick and P. B. W i e g m a n n  

Zi= (2~TK) -1 , (6.1.71) 

1 
C 1 (i7r/2, H~ T)  = ~/6 + ~ (H/T)  2. (6.1.72) 

It  goes wi thout  saying that  this me thod  can be used only to find the first t e rm in 
expansion (6.1.66). T h e  point  is that  the t empera tu re  dependence  in (6.1.58 a, b) lies 
not  only in s(2) but  in E1(2 ) as well. Therefore ,  the formula  for the free energy of  an 
impur i ty  (6.1.58 b) contains integral powers  of  T/cv as well as integral  powers  of  
T/TI(. But since s'l = q~x + O(T2/e2), terms wi th  TIE v appear  only in the four th -  and 
h igher -o rde r  terms.  

6.1.8. Thermodynamics of the impurity 
For  fur ther  studies we shall list the analytic proper t ies  of  C2S((D, H/T) .  These  

will be part ly p roved  below. We  start with the asymptot ics  as 2--* + or: 

C,(cn) = 2i In O, 2 '  in ~ ,  + 1 
~o+i~ z ~  + D,(~0), (6.1.73) 

where  O, is defined in (6.1.50), and D,(o~) is finite at o~=0 and has the fol lowing 
propert ies:  

(i) D,(co) has a cut  in the lower half-plane and, for n > 1, also in the u p p e r  half- 
plane. These  cuts start f rom c o = 0  and are supposed  to go along the 
imaginary  axis (fig. 6.3). 

Fig. 6.4. 

0.18 " 1 ' " ' 1  ~' ~ " '~1 ' I I [ " I '  I ' ' " 1  ' ' '  ' ' ' '  ' ' ' '  ' ' ' '  

0.16 

o,o / \  

0,2 i 
• \s=½ 

C.~L 0 .10  

kB 0.08 

0 .06  

0.04 

0 0 2  

0 - , I  " 

10 .2 10 -1 1 101 [02 103 

T/T. 

The specific heat C/A B versus loga0 TIT K plot for impurity spin S =  1/2, 1, 3/2. The points are 
the renormalization group calculation results by Oliveira and Wilkins (1981) (see 
§ 3.1.1 ) (after Rajan et al. 1982, Melnicov 1982 a, Desgranges and Schotte 1982). The 
figure is taken from Rajan et al. (1982). 
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Exact results in the theory of magnetic alloys 615 

(ii) The  discontinuities at these cuts are dual: 

Disc D,  + 1 (i[~[) = Disc D,(  - i[c0[). (6.1.74) 

(iii) D 1 (~) is analytic everywhere in the upper  half-plane except at o = ~ ,  a point 
where the function has an essential singularity at T>>H. 

T/H)([°')] ~ -l~'/z'~, (6.1.75) (iv) DiscD"(-il°Jl)=B"(l~l' \ 2n J 

where B,(og) is analytic everywhere except at the cuts and seems to have 
zeros in ~o= - i n ( 2 k +  1) ( k = 0 ,  1 . . . ) .  

At arbitrary T/H the functions C,(~0) cannot be expressed explicitly. However,  at 
T = 0  eqns. (6.1.60) become linear and the functions e , = l i m  Tqg,, will be found 

T + O  

analytically in §6.1.9 to illustrate the above properties.  Compar ing  (6.1.61) with 
(5.1.33) we shall show in §6.1.9 that 

rl/inmo[C,(2ne),H)exp(2i°91nH)T ] 

( e) nl/2 f2+s(e))f2-s- 1(c°) -- ie) In 
- (ico+0) 2 F(1/2+ie))  exp 

where 

(6.1.76) 

The  above propert ies  of C,(co) determine the dependence of free energy on 
temperature  and magnetic field both at T>>H and at T<<H. Indeed,  at H<< T and 
T>> TK, bending the integration contour into the lower half-plane and by-passing the 
cut yields. 

I sinh (H/2T)(2S+ 1) 
~ i =  - - T i n  sinhH/2T 

I~°B2s(2nt, T/H) t- t 
+ T J 0  cos~nt 

x exp ( -- 2t In 7"/TK) dt (6.1.77) 

at In TIT k >> 1 and we arrive at the well-known per turbat ion- theory expansion in 
inverse powers of ln T/T K (see §2.4.2). According to i tem (iv), the poles of 
(cosh (o/2)-1 are compensated for by zeros of B2s(O ). 

Formula  (6.1..77) implies that f f i  can be expanded in a power-series in the 
invariant charge (2.4.22) for 0 < z << 1 : 

1 
1/z(T) -- ~ In z ( T )  = In T/TK. (6.1.78) 

Changing variables in the integral in (6.1.77), we have 

z f f  B2s(2nzt'T/H) 7ttz , ~'= 1 b,(T/H,S)z". (6.1.79) 

We shall find below the first terms of the expansion in z and compare the result with 
the per turbat ion- theory expansion. As usual, (6.1.79) is an asymptotic  expansion 
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616 A . M .  Tsvelick~and P. B. Wiegmann  

and its coefficients grow like n! as n--+o0. This  readily follows from the fact that the 
integrand has a finite radius of convergence in t, which is determined by the position 
of the pole of (cos 7ztz)- 1 

Now let us turn to the region T<< T K and S ¢ 1/2. Bending the integration contour  
into the upper  half-plane, we again encounter  a cut and poles of (cosh o9/2)-1. At 
Izl << 1 the cut plays the main role, while the poles are exponentially small. Therefore,  
according to (6.1.52), at T<< T K the free energy of the s -d  model  with S ¢  1/2 is given 
by an asymptot ic  expansion in inverse logarithms whose coefficients coincide with 
those of the expansion at T>>TK with S = 1 / 2  substi tuted for S (Fateev and 
Wiegmann 1981): 

, . ,  ~ sinh S H / T  ] 
~ i (  Z<< TK) = -- 1 In L s~nnh H ~ - T  + n = l  ~ bn( T/H, S -  1/2)z n + TO(T~ TK). 

(6.1.80) 

The  logarithmic behaviour of the free energy in the s t rong-coupling limit g = oo was 
discovered by Cragg et al. (1980) in the numerical  investigation of hamiltonian 
(2.4.7). 

The  duality of the logarithmic expansions in the low- and h igh- tempera ture  
regions can be qualitatively explained in the following way. In  each interaction act of 
a conduction electron with the impuri ty,  the configuration with the electron spin 
opposite to the impuri ty  spin is the most  favourable. At high temperatures,  when the 
effective interaction is small, the correlation between the impuri ty  spin and the spin 
of the electron that has just interacted with the impur i ty  drops off over a long t ime 
interval compared  with the interaction t ime but which is still logarithmically small. 
In  the s trong-coupling limit (i.e. at T-+0) the spins of the impuri ty  and electron 
' r emember '  their mutua l ,  position after interaction for an infinitely long time. 
Therefore,  the actual magnetic m om en t  of the impuri ty  is S - -  1/2, and we can speak 
of a ground state of the impuri ty  that is 2S-fold degenerate. 

T h e  interaction of the e lectron- impuri ty  system whose spin is now S -  1/2 with 
other conduction electrons can proceed in two ways. First, this may again be by the 
exchange interaction, which produces a ' reverse '  Kondo  effect and leads to 
logarithmic corrections in (6.1.80), but, as (6.1.80) shows, the interaction is now 
ferromagnetic,  i.e. increases with energy. Indeed,  an electron whose spin is opposite 
to that of the impuri ty  does not interact with the impuri ty  since its energy level is 
occupied by the bound electron. But if its spin is parallel to that of the impuri ty,  a 
spin-flip process is possible. Since 'this is a second-order  process, it leads to a 
decrease in energy, i.e. the interaction is ferromagnetic (Nozi~res and Blandin 1980). 

The  other possible interaction mechanism is connected with polarization of the 
e lect ron- impuri ty  system. This  mechanism leads to power contributions made by 
the poles of (cosh09/2)-1 in (6.1.79). These  contributions are exponentially small 
compared to the contr ibution provided by integration around the cut. 

The  situation differs drastically at S =  1/2. As has been shown in § 6.1.5 C1(09 ) 
and, hence, Dl(09) are in this case analytic in the upper  half-plane, and the 
logarithmic contribution at T<< T K vanishes, b , ( S = 0 ) = 0 .  Only the poles of 
(cosh 09/2)- 1 contribute,  leading' to an expansion in integral powers of T/TK (6.1.66). 
We arrive at the same result in the region H>> T; but  here the power-series in H 
(H<< TK, S =  1/2) converges. 
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Exact results in the theory of magnetic alloys 617 

6.1.9. Zero-temperature limit 
Let  us show that  eqns. (6.1.60) for T ~ 0 ,  but  keeping H finite, coincide with 

eqns. (5.1.52). 
We  in t roduce  the notat ions 

0 at e . < 0 '  ~n-= ~. at e. <~ 0 

Equat ion  (6.1.34) implies that  at n > 1 all the ~, are positive, therefore e~ = 0 at n > 1. 
Only  e 1 changes  sign, and since it is monoton ic ,  it vanishes at only one point  2 = - B ,  
i.e. 

~ : I ( -B)  =0 .  (6.1.81) 

As T-~0 

T In (1 + exp ( _ g, /T))  ~ +_ ~ (6.1.82) 

and eqns. (6.1.33) become linear: 

g+ = -- n i l - -  e~ (n + p , ) - -  A , t  * g[ (6.1.83) 

and for n = 1 coincide with (5.1.52). T h e  fact that  all the s,- are zero at n >  1 implies 
that the g round  state is a linear combina t ion  of  only the real solutions o f  eqns. 
(4.2.B). Indeed ,  according to (6.1.44), 

( M . )  e(1-)(+ oo) 
- -  = --6.1 (6.1.84) 

N 2£F 

as T--*0. I t  is expedient  to rewrite eqn. (6.1.83) in such a way that  e, and e~- are 
expressed in terms of  e~-: 

~, = (n--  1 ) H +  A,1 * A~-I 1 * e l ,  (6.1.85) 

2£ F 
e( = H / 2 - - A t l  * e~ -- - - - e x p  (n2). (6.1.86) 

T h e  last equat ion has been solved in § 5.1.4. Us ing  this solut ion and eqn. (6.1.85) 
we obtain the funct ions  

~. ,~+~ln ~-  ~ /  /J  2~- ~ -®d~° 
G(-)(o) 

x exp(--ico2--(n--1)loot/2 ) + ( n -  1)H. (6.1.87) 
(co - i O ) ( o J  - -  in) 

The  linear equat ions (6.1.85) and (6.1.86) are the first approx imat ion  of  the 
pe r tu rba t ion- theory  expansion in T / H  at T<<H. This  theory  will be cons t ruc ted  in 
the next section. 
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618 A . M .  Tsvelick and P. B. Wiegmann 

6.1. l O. Low-temperature expansion at #BH >> k R T 
At H>> T all e, > H  except el- Therefore,  at n > 1 

In (1 + exp ( - e , /T) ~ O(exp ( - H~ T)) 

and within the exponential accuracy we have, instead of eqns. (6.1.33), 

Q(Z) = H / 2 - -  2eF exp (nZ) + T R ( Z - 2 ' )  In (1 +exp(ea(Z') /T))d2'  , (6.1.88) 

e, = (n + 1 )H+a ,_  1 * T l n  (1 +e x p  (el~T)). (6.1.89) 

R and a,_ 1 are defined by (5.1.21) and (6.1.17). These  equations enable us to 
calculate the coefficients in the expansion of free energy in T / t t  (Filyov et al. 1981): 

= - -  ( 6 . 1 . 9 0 )  

We use the trick suggested by Takahashi (1973). Let us rewrite the integral in 
(6.1.88) as 

TR * In (1 + exp (e1(2)/T)) = T R  * In (1 + exp (--[el (Z)[/T)) 

+ R ( 2 -  2')e~(2') d2'. (6.1.91) 

We shall show below that -&l /g2[_s , ,~H.  Therefore,  the first integral in the right- 
hand side of (6.1.91) may be calculated in the saddle-point approximation: 

TR * In (1 +exp  (-]z~(2)]/T))~-R(,,],+ B)n2T2/6 &~2 (-B) + O(T*). (6.1 P 92~ 

Here we must confine ourselves by B and (08flc3Z)(--B) calculated at T = 0 :  

Hn 1 [-26F{" 2 '~1/2 7 __881(_B)=2@ph(_B) = 

(6.1.93) 7'nL t j,J J - a,z" x / 2  

Let us set 

7~2T 2 
e t (;t.) = eta°)(2) + U(2), (6.1.94) 

61(aq/a,l) ( - B)q 

where el°)(2) is the solution of (6.1.88) at T =  0 determined by (6.1.87), U(2) satisfies 
the following equation: 

U(2)-- R ( 2 - 2 ' ) U ( 2 ' ) d 2 ' = R ( 2 + B ) .  (6.1.95) 
- - o o  

The  free energy of impurity is 

-- @i(0, H) -- -- T f5°2s(2 + 1/g) In (1 + exp (-- le l (2) l / r ) )  d2 ~ i (T ,  H)  

+ ~2s(Z + 1 (o) /g)(e l (Z)-e  x (2)) dZ, (6.1.96) 
- o o  
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Exact results in the theory of magnetic alloys 619 

where 

exp ( -- io)2 --I~01(s- 1/2)) 
d o  

2 cosh o)/2 

According to (6.1.94) and (6.1.96) we have 

7~2T 2 
ff~(T, H ) -  ~i(0,  H ) =  

61(&1/02) ( - B ) I  

where V(~) satisfies the following equation: 

V ( - B ) + O ( T 4 ) ,  (6.1.97) 

f B V(2) - R ( 2 -  )/) V(2') d2' = 5~2s(2 + 1/g). (6.1.98) 

Compar ing  eqn. (6.1.98) with eqn. (5.1.20b) we see that 

V(2) = fii(2). 

Thus ,  according to (6.1.97) the impuri ty  heat capacity at T<<H is (Filyov et al. 1981): 

C i=  TTC2/6EF lim fii(•)/fin(•). (6.1.99) 
3.~ -B 

To calculate f i b ( -B )  and ill(--B) it is convenient to use the relation (see Appendix to 
§5.1.3): 

p ( - - B ) = i  lim ~op-(co). 

Using this relation and (5.1.33) we have 

fib( -- B) = Hn/2x/2E v 

Pi( -- B) = x/2(nHzI(H/Tu) ) 

and, hence, 

(6.1.100) 

(6.1.101) 

1 27t z 
~Ci(H/TK)  = ~ -  )&(H/TK). (6.1.102) 

So the Wilson-Nozi~res  formula proves to be valid for arbitrary magnetic fields. 
This  has been noted earlier (Wiegmann and Finkelstein 1978). Besides that we see 
that the limits H ~ 0  and T ~ 0  commute ,  as must  be the case for a Fermi  liquid. 

The  above method may be applied for finding higher terms in the expansion 
(6.1.90). However ,  the appropriate  calculations are too cumbersome.  

6.1.11. High-temperature expansion (perturbation theory) 
In  § 6.1.7 we showed that DI(c0 ) is analytic in the upper  half-plane. The  values of 

this function at o~=#c(n+l/2), n = 0 , 1 , . . . ,  determine the coefficients in the 
expansion of the heat capacity of an impuri ty  with S = 1/2 in powers of T~ T K. Except  
for Dl(in/2), there is little hope of finding these quantities analytically. 

The  situation is quite different for the expansion in inverse logarithms both at 
T>> T K and at T<< T K when S ¢ 1/2. Indeed, the coefficients of the leading powers of z 
are determined by the behaviour of D2s(C0 ) at small values of co or by the behaviour of 
q~2s(2) as 2--+ __+ ~ and can be found from eqns. (6.1.34) by an iterative method. Here 
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620 A . M .  Tsvelick and P. B. Wiegmann 

we shall construct the first iteration of eqns. (6.1.60) and show that (Filyov et al. 
1981, Fateev and Wiegmann  1981 b): 

t o ) DiscDzs(--i102],H/T~O)= S(S+I)((H/T)2-co 2) 1 - ~ l n 1 0 2 1  • (6.1.103) 

This  formula, according to § 6.1.6, leads to asymptot ic  expressions (2.2.24) known 
from perturbat ion theory. 

It  is convenient to rewrite eqns. (6.1.60) as 

C,,(2)=ln{l+exp[-a, lexp(n2)+s*(C,,_l(2)+C,+l(2))]}, Co=0 .  

(6.1.104) 

T h e  zeroth approximation to the C.s are their asymptotics at 2--+ _ oo: 

C(0)= { 21n~ ,  )~<0 
" 21n~._1  2 > 0 ,  n # l  

and 
C(1°)(2) = In (1 + (I)(1) exp ( - exp (n2))) at 2--+ + oo. 

Let  us find the next approximation 

d, = C, -- (7 (0) v / l  - 

Linearizing eqns. (6.1.104) and going over to Fourier  t ransforms,  we have: 

(I)2(n) + d  + ( I )2(n- l )  
d2 q)(n--1)O(n+ l) (I)(n-- 2)(I)(n) -s*(d"+t +d"-*)' n>~3, 

~2(2) 

4 -  o(1)~(3~ + a ;  - -  

02(1) 
d~ 0(2) 

where Y+ ~ +_ z'/(02 +_ iO) and 

d+(02)=f]exp(i02,~)d(2)d,~, 

02(1) 
=s*(d3+d~)+ Y+, 

0(2) 

- -  = s , d 2 +  Y _ ,  

fo 
d - (02) = exp (i022)d(,~) d2. 

- - o O  

(6.1.105) 

(6.1.106) 

(6.1.107) 

(6.1.109) 
O2(1) 

d~- qb(2) - s ' d 2 +  Y+ 

We did not write the equation for d + because this quanti ty is not small. The  
solution of the boundary-value problem (6.1.105)-(6.1.107) as c0~0 leads to 
(6.1.103), since 

D.(02) = d.(02) + 0(023). (6.1.108) 

Here  we shall obtain only the principal order in ]02] in (6.1.103). T o  this end we 
neglect the influence of the regions 2 > 0 and ). < 0 on each other. In  other words in 
eqns. (6.1.105)-(6.1.107) we leave only terms with d + or t e rms  with d~-. These  
equations then t ransform into equations for d +, defined on the real axis: 

02(n) 
d; O~(n--1)O(n+ 1) = s *  (dn-+ 1 + dn-- 1), 
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Exact results in the theory of magnetic alloys 621 

and 

02(n - 1) 
d +  O ( n  - 2)O(n )  = s * (d.++ 1 + d + -  1), 

(6.1.110) 

+ (I)Z(1) 
d2 0(2)  - s*d~ + Y_. 

Hence,  we see that  at least in this approx imat ion  d,- = d++ 1 and the duali ty of  the 
coefficients of  the expansion in z at T>> T K and T<< T K descr ibed in § 6.1.7 occurs.  I t  
can be proved  that  this is t rue for all orders  of  per tu rba t ion  theory.  T h e  recurrence  
equat ions (6.1.109) and (6.1.110) are encountered  in studies of  h igh- tempera tu re  
expansion for the one-dimensional  Haisenberg  model  (Takahashi  1971 a), Johnson  
and M c C o y  1972). T h e i r  solut ion is 

2 cosh ~o/2 i 
d,- (co) = [(I)(n + 1) exp ( - n[co]/2) 

(I)(1)O(n) c o - i 0  

-O(n-1)exp( - (n+ 2)lco[/2)]. (6.1.111) 

Th i s  implies that  d,(co) and, hence,  D,(co) bo th  have a d iscont inui ty  that  passes 
t h rough  point  co = 0. Retaining,  in (6.1.111), the leading terms as co+0,  we arrive at 
(6.1 .103). 

Therefore ,  the impur i ty  par t  of  the free energy  is 

-T In (2S+I ) -TS (S+I ) f (T /TK) ,  T>> TK, 

3 (6.1.112) 
f f i (T)  = (S  2 - 1/4) f(T/TK), T<< TK, 

- T i n  2 S -  T 3 

where  

f(x)----~-£ 1 - - 1 ~ x  In 3x" 

In  conclusion,  we note that  the accuracy of  i terations grows with the g rowth  of  n 
of  the funct ion  C,. Indeed ,  as n increases, the difference between the asymptot ics  at 
2 ~ ± m  and at H/T--*O becomes  smaller. Therefore ,  the parameter  in the 
pe r tu rba t ion - theory  approach  is not  only small ]co[ but  large n as well. At  n>> 1 we can 
retain the entire dependence  on In T/TK. Therefore ,  at S>>1 we have t  

~ - i=  -- T l n 2 S +  tan -1 (nS/ln T/TK)- in 2 T/TK+(nS)z 

H 2 S 2 F 1  7~S 

Th i s  formula  is equally suited for T>> TI( and T<< T K. T h e  next  i terations of  eqns. 
(6.1.105)-(6.1.107) are more  complicated.  

t Equation (6.1.113) is similar to the 'exact solution' of the Suhl-Nagoaka equations (for a 
review see Mfiller-Hartmann and Zittartz (1971)). 
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622 A . M .  Tsvelick and P. B. Wiegmann 

6.1.12. Numerical solution of the non-linear integral equations 
We have shown in § 6.1.5 that the thermodynamic  propert ies of the impuri ty  are 

derived f rom the system of the dimensionless universal non-l inear  equations. T h e  
analytical properties of the solutions of eqns. (6.1.60) obtained in § 6.1.7 enable us to 
describe the impuri ty  behaviour at low- and high- temperatures .  T h e  only way to 
obtain information about impuri ty  thermodynamics  which is beyond the per tur-  
bation theory and the Fermi- l iquid approach frameworks,  e.g. to s tudy the crossover 
regime between weak- and strong-coupling limits, is by a numerical  investigation. 

Recently, three groups of authors have almost simultaneously numerically solved 
the thermodynamic  non-linear integral equations (6.1.60) and derived the impuri ty  
the rmodynamics t  (Melnicov 1982~, Desgranges and Schotte 1982, Rajan et al. 
1982). Here  we give a brief review of their results. 

The  r ight-hand side of eqns. (6.1.60), considered as an operator,  is found to 
realize a shrinking transformation.  I t  enabled all the above authors to solve system 
(6.1.60) iteratively. Since the num ber  of equations in system (6.1.60) is infinite it is 
necessary to truncate the system in a certain way and to check the convergence of this 
procedure with the increase in the num ber  of the equations. Different authors have 
used different ways of truncation as well as different procedures of numerical  
integration. Nevertheless,  the overlapping final results obtained by different ways 
are identical. 

Melnicov has computed  the specific heat and magnetic susceptibility for S =  1/2, 
1, 3/2 impuri ty  in zero magnetic  field. Actually, he has solved eqns. (6.2.13) of the 
anisotropic model for anisotropy (cos l l l /2 ) / (cosI±/2)=cosn/v ,  where v increases 
f rom 3 to 10. In  this case (see § 6.2.1) the number  of equations is finite and equal to 
v - 1 .  

T o  control the accuracy of calculation and the convergence of the interational 
procedure,  the integral Cl(in/2, 0) was calculated by iterations to compare  it with its 
exact value, which is equal to n/6 independent  of v (see 6.1.72). For  v = 10 after 120 
iterations this integral converged to g/6 x 0"9997. 

I t  was sufficient to get, in the range ]In T~ Tk] ~ 8, the overall accuracy better  than 
1 }/o for the specific heat and magnetic susceptibility. T h e  simultaneous computat ion 
of these quantities by a Wang-2200-VP minicomputer  took about 6 hours. 

The  convergence of the specific heat with v was quite rapid. This  is not 
surprising, since the difference of the Oliveira and Wilkins (1981) results (see § 3.1.1, 
fig. 3.1) from those at the Toulouse limit, corresponding to v = 2, is minor  at T <  TK. 

In fact, the difference in the specific heat calculated at In T/T~ ~ 5 for v = 3 and 
v = 10 is about 10~o and is much  smaller at low temperatures (at T <  TK the difference 
is smaller than 2~).  Substantial differences should naturally occur at large T>> TK 
due to the perturbat ive power-like asymptotics of Ci(T). However ,  the numerical  
results testify that per turbat ion theory is valid only at very large T. T h e  rapid 
convergence of Ci(T) with v makes one believe that the numerical  results for 
v = 1 0  in the region in T/TK>>I should be very close to the specific heat of the 
isotropic exchange model.  In this case it is known (see eqn. (6.1.112)) that 
Ci(T)=S(S+ 1)n2(ln T/TK) -4 at in T/TK>>I. At S =  1/2 for example,  the specific 
heat calculated at In T/T K ~ 8 with the use of this expression is half as big as Ci(T) 
computed  for v =  10 (see table 1). 

Similar equations describing the thermodynamics of the 1/2-spin Haisenberg ring were 
numerically solved earlier by Takahashi (1974 a). 

We are greatly indebted to V. I. Melnicov for permission to use his unpublished results. 
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Exact results in the theory of magnetic alloys 623 

Table 1. Values of the universal Kondo specific heat for S = 1/2, 1, 3/2. The specific heat for 
1/2-spin impurity is given for certain values of the anisotropy parameter v (after 
Melnicov 1982b, Desgranges and Schotte 1982). 

Cll2 
l nT /T  K T/T K v=3  v=5  v = l l  C1 C3/2 

--8'1 0"0003 0.00031 0 " 0 0 0 3 1  0'00031 0'00131 0"00257 
- 7 ' 8  0'0004 0-00042 0-00042 0-00042 0'00156 0.00295 
-7"5 0.0005 0.00057 0"00057 0-00057 0-00187 0.00339 
-7"2  0"0007 0.00078 0-00078 0'00078 0"00224 0.00390 
--6'9 0'0010 0-00105 0-00105 0'00105 0'00272 0.00449 
- 6 ' 6  0'0013 0-00142 0-00142 0'00142 0"00332 0.00516 
-6-3  0-0018 0.00192 0'00192 0.00192 0-00408 0-00593 
-6"0  0-0024 0.00259 0"00259 0.00259 0-00504 0"00682 
- 5 . 7  0'0033 0.00350 0-00350 0.00350 0-00624 0-00782 
- 5.4 0.0045 0.00472 0.00472 0'00472 0-00773 0-00894 
-5-1 0'0060 0.00638 0'00637 0-00637 0.00953 0.01019 
-4 -8  0-0082 0.00860 0"00860 0.00860 0.01168 0.01157 
--4.5 0"0111 0.01161 0"01161 0'01160 0"01420 0-01308 
- 4 . 2  0-0149 0.01564 0-01564 0-01564 0"01715 0.01471 
- 3-9 0"0202 0-02106 0.02106 0-02106 0"02005 0.01645 
- 3 . 6  0.0273 0-02830 0.02830 0-02829 0'02442 0.01828 
- 3 ' 3  0"0368 0.03788 0"03788 0.03788 0-02876 0-02018 
- 3-0 0"0497 0.05037 0"05036 0.05035 0-03351 0.02211 
-2 -7  0"0672 0-06627 0.06624 0-06623 0'03856 0.02402 
- 2 . 4  0"0907 0"08570 0.08564 0-08563 0-04375 0.02588 
-2 .1  0"1224 0-10806 0-10794 0.10792 0'04884 0.02760 
-1"8 0-1652 0'13158 0"13135 0'13131 0"05357 0-02915 
-1 .5  0"2231 0-15330 0.15290 0-15285 0"05762 0.03047 
- 1 ' 2  0'0311 0'16970 0'16905 0"16897 0-06073 0'03150 
-0 -9  0.4065 0.17781 0.17688 0.17676 0.06268 0.03220 
-0 -6  0.5488 0-17644 0.17520 0"17505 0-06334 0-03255 
-0 .3  0"7408 0.16647 0-16496 0'16478 0"06270 0.03255 

0'0 1'0000 0-15031 0 " 1 4 8 6 1  0'14839 0"06085 0.03219 
0-3 1.3498 0.13100 0.12921 0"12898 0'05799 0.03151 
0-6 1.8221 0.11105 0'10927 0-10902 0.05435 0.03054 
0.9 2-4596 0.09224 0.09056 0"09030 0-05021 0-02933 
1.2 3-3201 0.07554 0-07403 0"07377 0-04582 0.02793 
1.5 4.4816 0.06130 0.06002 0.05976 0.04139 0.02639 
1-8 6'0496 0.04949 0.04846 0-04820 0'03708 0"02475 
2'1 8"1661 0-03985 0'03909 0.03884 0.03300 0.02306 
2'4 11-0231 0'03207 0"03157 0'03133 0-02922 0-02136 
2"7 14'8797 0.02582 0.02557 0-02534 0"02574 0"01968 
3"0 20'0855 0-02080 0.02078 0"02057 0-02255 0.01805 
3.3 27"1126 0.01678 0'01696 0"01677 0'01977 0'01647 
3'6 36"5982 0-01354 0-01390 0'01372 0.01709 0.01497 
3.9 49-4024 0.01093 0.01144 0.01128 0.01479 0.01356 
4.2 66"6863 0-00882 0.00945 0 " 0 0 9 3 1  0-01278 0.01224 
4-5 90"0171 0'00711 0'00783 0 " 0 0 7 7 1  0-01104 0.01102 
4"8 121-5104 0.00573 0.00652 0'00641 0-00954 0"00990 
5'1 164.0219 0"00461 0'00544 0'00535 0-00825 0-00888 
5"4 221"4064 0"00371 0'00456 0"00448 0-00714 0'00795 
5"7 298-8674 0'00298 0'00383 0"00377 0-00620 0"00711 
6"0 403-4287 0"00239 0"00322 0"00318 0.00539 0-00635 
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624 A . M .  Tsvelick and P. B. Wiegmann 

To  calculate the magnetic susceptibility at zero magnetic field Melnicov 
linearized system (6.1.60) in (H/TK) 2 by substitution 

In (1 + exp (en(5[)/T)) = C,,(2) + H2/T2Wn()O (6.1.114) 

and solved the doubled set of equations for the C,s and U~nS. 
Desgranges and Schotte have calculated the specific heat and entropy for the 

1/2-spin impuri ty.  They  truncated the system of eqns. (6.1.60) by approximat ing the 
function en in the last equation by the starting function of the iteration process. T o  
obtain the percentage accuracy it was necessary to iterate 20 equations 26 times. 

T h e  most  complete numerical  solution was given by Rajah et al. (1982). They  
computed  the specific heat and magnetic susceptibility for S =  1/2, 1, 3/2 impurit ies 
in the presence of a magnetic field and compared  their results with the experimental  
data. They  also truncated the infinite system of eqns. (6.1.60) by a certain v, taking 
T ln  (1 + e x p  (en/T)) at n~>v to be equal to en. T h e  error in this approximat ion is 
shown to be of the order of 1/v 2. T h e  free energy was calculated and the susceptibility 
and specific heat were obtained by numerical  differentiation. 

Now we turn to the results of the calculations. Figure (6.2) shows the functions 
C ,= ln( l+exp(~3n/T) ) .  This  picture gives a good illustration of the analytical 
t reatment  described in § 6.1.6. Figure 6.4 displays the tempera ture  dependence of 
the specific heat in zero magnetic field for S =  1/2, 1, 3/2 impurities.  T h e  points in 
this figure are a renormalization group of calculation results (Oliveira and Wilkins 

1981). 
One can see f rom fig. 6.4 that the impuri ty  makes its largest contr ibution to the 

specific heat around T =  0"5 T K. As the spin of the impur i ty  increases, its contr ibution 
decreases. In  fact, the higher spin impuri ty  acts more and more like a free classical 
rotator. T h e  positions and values of maxima of the C,s are given in table 2. T h e  
impuri ty  contr ibution to the entropy is presented in fig. 6.5 (Desgranges and Schotte 

1982). 

Table 2. The positions and values maxima of the impurity specific heat for S =  1/2, 1, 3/2 
(after Melnicov 1982 a). 

s TMITK c(ru) 

1/2 0.45 0-177 
1 0.53 0.063 

3/2 0"56 0-033 

Melnicov has calculated directly the first analytically uncalculable terms in the 
tempera ture  expansions of the specific heat and magnetic  susceptibility for S = 1/2: 

7r T 
Ci(T) . . . .  15"4(T/T~) 3, 

3T~ 

zi(T) = 1/27rTK--O.433( T/ TK) 2. 

Figures 6.6 and 3.3 show 1/2-spin impuri ty  specific heat and magnetic 
susceptibility on a linear tempera ture  scale. The  magnetic susceptibility curve 
Z11/2)(T) was first obtained by Wilson (1975) by the numerical  renormalization group 
approach. In the tempera ture  range 0"3TK<T<IOTK, where the interpolation 
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Exact results in the theory of magnetic alloys 

Fig. 6.5 
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The 1/2-spin impurity contribution to the entropy (Desgranges and Schotte 1982). 

Fig. 6.6 
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The universal Kondo specific heat for 1/2-spin impurity versus T/T K (after Melnicov 1982 a, 
Desgranges and Schotte 1982. The figure is taken from Melnicov 1982 a). 
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626 A . M .  Tsve l i ck  and P. B. W i e g m a n n  

(3.1.23) is valid, the new numer ica l  results  agree with (3.1.23) with good accuracy, 

~ 0 - $ 7 o .  

We believe it useful  to give the results  for the magne t ic  suscept ib i l i ty  at T <  0'5 T K 
bo th  in table 3 and  in fig. 3.3 (Meln icov  1982 b). T h e  crosses in this figure cor respond  
to the renormal iza t ion  group results given in table V in K r i s h n a - M u r t h y  et al. 

Table 3. Values of the universal Kondo susceptibility versus T / T  K for figs. 3.3-3.5. For 
T >~ 13 T K Zi(T) is accurately calculable using eqns. (3.1.20) and (3.1.22) (after Melnicov 
1982 b). 

In T I T  K T I T  K S =  1/2 S =  1 S--- 3/2 

--6-6 0"0013 0'15886 213"02547 563"65320 
-6"3 0-0018 0"15886 158'47150 418'85551 
--6'0 0-0024 0"15886 117"95038 311'34671 
--5-7 0-0033 0"15886 87"84407 231'50623 
--5.4 0'0045 0"15885 65"46840 172-19893 
--5"1 0-0060 0-15885 48-83160 128-13215 
--4"8 0'0082 0-15883 36"45573 95"37983 
--4-5 0'0111 0'15881 27"24411 71'02924 
-4"2 0"0149 0' 15877 20'38286 52-91870 
--3'9 0-0202 0-15869 15'26821 39'44401 
--3"6 0"0273 0"15854 11"45817 29-41440 
--3"3 0"0368 0'15823 8"60222 21'94581 
--3-0 0-0497 0-15782 6"47145 16-38167 
--2'7 0'0672 0"15701 4"87638 12"23433 
- -2-4  0-0907 0"15561 3-68064 9-14142 
-2"1 0'1224 0"15328 2"78280 6"83361 
--1'8 0-1652 0'14960 2'10739 5"11068 
--1"5 0'2231 0"14409 1"59830 3"82368 
--1"2 0"3011 0'13641 1'21377 2-86178 
-0"9 0'4065 0-12646 0-92269 2'14248 
--0"6 0'5488 0"11452 0"70189 1"60434 
-0-3 0"7408 0-10121 0"53409 1-20154 

0'0 1"0000 0"08734 0"40637 0"89994 
0-3 1-3498 0"07373 0"30906 0"67403 
0"6 1'8221 0'06102 0"23488 0-50480 
0'9 2-4596 0-04963 0"17833 0-37799 
1"2 3"3201 0-03978 0-13523 0-28298 
1"5 4-4816 0-03150 0"10242 0-21179 
1"8 6"0496 0"02468 0-07746 0"15846 
2'1 8"1661 0"01917 0"05850 0"11852 
2"4 11.0231 0"01479 0"04412 0"08861 
2'7 14-8797 0"01135 0-03323 0"06622 
3"0 20'0855 0"00868 0'02500 0'04946 
3-3 27"1126 0"00661 0"01878 0"03693 
3'6 36'5982 0'00501 0"01409 0"02756 
3-9 49"4024 0"00379 0"01056 0"02056 
4'2 66"6863 0"00285 0"00791 0-01533 
4-5 90"0171 0"00215 0"00592 0'01143 
4"8 121"5104 0'00161 0'00442 0"00851 
5'1 164-0219 0-00121 0-00330 0-00634 
5"4 221-4064 0"00090 0-00246 0-00472 
5-7 298"8674 0"00067 0'00184 0-00351 
6"0 403'4287 0'00050 0"00137 0"00261 
6'3 544'5719 0"00037 0'00102 0"00194 
6'6 735-0951 0"00028 0'00070 0'00144 
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Exact results in the theory of magnetic alloys 627 

Fig. 6.7 

2o6 

~ xSTkB/S(S+I)(g/~8) z 
0.8 

0.2 

-I -2 0 2 1 Ln T /T  K 

The 3k s TzJS (S + 1)(g/~s) 2 versus In T/TK plot for S = 1/2, 1, 3/2 impurities. The dashed line 
in the right-hand side of the figure is the high-temperature asymptotic behaviour: 
3TzJS(S+I)-~I--1/0n T/TK). The dashed lines in the left-hand side are the low- 
temperature ones: 3 TzarS z -  1/4 (after Melnieov 1982 a). 

(1980a). 3)~/S(S+1) for zero magnetic  field for S = 1 / 2 ,  1, 3/2 as a function of 
In T/T  K (Melnikov 1982 a, Rajan et al. 1982 are plotted in fig. 6.7. Rajan et al. (1982) 
also calculated the specific heat of the S = 1/2 impuri ty  and the impuri ty  magnetiz-  
ation as a function of H / T  for various values of the magnetic field. 

6.2. The anisotropic s-d exchange model at finite temperatures 

The  description of the anisotropic s-d  exchange model at finite temperatures  is 
more complicated and contains some new elements not encountered in the isotropic 
case. This  is due to the complicated classification of the general solutions of eqns. 
(4.3.B): 

f i  s inhg(2~+i/2)  
exp (ikjL)= (6.2.A) 

~ = 1 sinh #(2~-- i/2)' 

[ sinh#(2~+i/2)] ~sinh#(2~+f/#+i/2) ffI s inh#(A~-2p + i )  (6.2.B) 
s-~nh/~(2,-i/2) ] sinh#(2,+f/#+i/2)  = -  ~=1 s i n h # ( 2 ~ - 2 ~ - i ) '  

This  classification is defined in the leading order of 1IN. We have already ment ioned 
that eqns. (6.2.B), without  the impuri ty  term, coincides with the Bethe equations for 
an anisotropic Haisenberg chain ( X X Z  model). The  X X Z  model at finite 
temperatures  was investigated in detail in the remarkable paper  by  Takahashi  and 
Suzuki (1972). The i r  paper  contains all the necessary mathematics.  In  this section 
we treat the thermodynamics  of the anisotropic s -d  model using our unpublished 
results and the paper  by Hida  et al. (1983). We shall consider the case I H > I ± .  
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628 A . M .  Tsvel ick and P. B. W i e g m a n n  

6.2.1. Classification of states and basic equations for I x <III  < 7r 
In  the t h e r m o d y n a m i c  limit N , M , , L - ~ ,  N/L ,  Mn/L=cons t .  the roots of  

(6.2.B) are g rouped  in various strings character ized by a c o m m o n  real abscissa 2~"' ~), 
order  and pur i ty  v = + 1: 

2~n'k' -) =-)~'  -) + t ~ ~ - -  -- k + 2~# + O ( e x p  ( - 6 N )  rood , (6.2.1) 

where  ~ = 1 , . . . ,  Mn, k = 1,2,  . . . ,  n, and 2~"' v) is real. These  states are the n th -o rde r  
strings with + and - parities, respectively.  

T h e  par i ty  v and order  n of  a b o u n d  state should  satisfy the condi t ions  (Takahashi  
and Suzuki  1972) 

v s i n # k s i n l t ( n - k ) > O ,  k = l  . . . .  , n  (6.2.2) 

which are p roved  in Append ix  A to 6.2.1 and solved in Append ix  B to 6.2.1. 
T h e  classification of  n u m b e r s  (n, v), pe rmi t ted  by (6.2.2), which  was done by 

Takahashi  and Suzuki  (1972) for an arbi t rary  #, is ra ther  complex.  For  the sake of  
simplici ty we consider  the simplest  case 

n/#=v>12 (6.2.3) 

(v is an integer).  T h e  fundamenta l  equat ions for an arbi t rary  # ~< ~z/2 is wri t ten down  
in Append ix  B to 6.2.1. For  # = ~r/v the classification of  solutions is qui te  simple. Only  
v pairs (n, v) satisfy the condi t ion (6.2.2): 

v = + ,  n j = j = l , 2  . . . .  , v - - l ,  

As in the isotropic case, the discrete equat ions  for real A~ "'v) have the fo rm (6.1.8), 
bu t  now we should  define p ,  and E,~ as follows: 

p(2; n, v) = 2v t a n -  1 [(cot n#/2) ~ tanh 2#] 

Ejk(2 ) =p(2 ,  In~ -- nk[, VjVk) +p(2 ,  nj + rig, VjVk) (6.2.4) 

rain ( n i , n k )  - 1 

+ 2 ~ p(2, [nj--nk[ + 2q, VjVk). 
q = l  

At # = ~/v the funct ion p(2, n j, v j) m ono t onous ly  increases f o r j  = 1 , . . . ,  v--  1 and 
decreases for j = v .  Therefore ,  the solutions 2~ "'~) m o n o t o n o u s l y  increase with 
increasing j~,v when  j = v ,  v j= + 1  and m o n o t o n o u s l y  decrease when  j = v  and 
v v = - 1 .  Tak ing  this into account  let us write down  the equat ions  for dis t r ibut ion 
funct ions  of  particles and holes: 

aj(2) -~ ~ aj(,¢ +f/#)  =/~j(2) + Ajk * pk(2) + bj * Or(2), j = 1 . . . .  , v--  1, 

(6.2.5) 
1 

av(2) + ~ a~(2 +f/#) = -- fi~(2) -- p~(2) + a z * p,(,~) + bj * p j(2), 
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Exact results in the theory of magnetic alloys 629 

where  

1 f +~° Isinh(v--j)o9/27 , 
a/(2) = ~ -m exp ( -- io92)) s~nhnh v ~  j ao9, 

1 f +~ , • , , [ - s i n h o 9 / 2  1 
av(2) = -- ~ -o~ exp t - -  wg~t) L s i ~ - v ~  do9, 

1 I + ~ exp ( -  io92) cosh o9/2 sinhjog/2 
ba(2) = 6j, ~_ 16(2) -- ~- 3 - ~ sinh vo9/2 de), 

ra in  ( j ,  k) - 1 

A j k = a l j - k l  + aj+k + 2 2 alj-k[+ 2q q-Ojk(~(2)" 
q = l  

T h e  energy  of the sys tem is 

Esp=  -- j= l  ~ fd2pj(2)(p(2, nj, vj)+rcO(vj)-nj#)+ V--lv Ha=" (6.2.7) 

As usual  it is conven ien t  to express  all the  quant i t ies  in t e rms  of  the hole dis t r ibut ion.  
Revers ing  the ma t r ix  A 

(A - 1)jk(2) = 6~k6(2) -- S(2)(6~, k + 1 + a j, k-  1) (6.2.8) 

and using the relat ions 

( A  - 1)j k • ak(2 ) = C S j l S ( 2 ) ,  (A - 1)j k * bk(2 ) = - -  6 j ,  v -  2 S ( 2 )  (6.2.9) 

we obta in  

~j l (S(2)+~S(2+f) ) '=Pj (2) 'q - (A-1) jk* f ik (2) - -S*pv(2)~ j ,v -2 ,  (6.1.10 a) 

p~(2) + /~(2 )  = s * p~_ 2(2), (6.2.10 b) 

~ ? E = E ( ° ) +  t a n -  t exp (n2)j61(2) d2, (6.2.10c) 

1 ~ v /  
s ,62 0 , 

Analogously ,  the equat ions  for energies  of  e l emen ta ry  exci tat ions take the fo rm 

e j(2) = Ts * In (1 + exp (gj _ 1 (2)/T))(1 + exp (ej + 1 (2) /T))  + 6j, ~ _ 2 

x T l n  (1 + exp ( - e ~ ( 2 ) / T ) )  

- -  (2EF/7~)~j1  t a n -  1 exp (=2); j<~v--2, (6.2.11) 

e~ _ 1(2) = H(v -- 1 )/2 + Ts * In (1 + exp (e~_ 2 (2)/T)) ,  

g~(2) = H(v - 1)/2 - Ts * In (1 + exp (e~_ 2(2)/T)).  

Thus ,  in the case #=rc /v  we have a finite n u m b e r  of  equat ions .  T h e  first v - 3  
equat ions  coincide wi th  those for the isotropic case. 

(6.2.6) 
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630 A . M .  Tsvel ick  and P. B. Wiegmann  

T h e  free energy has the following form: 

1 s T f s ( 2 ) l n ( l + e x p ( l +  e1(2)'~ 

T ~ I maxen 
= - -  de In n(--~),  (6.2.12 a) 

2EF n =1 ,J rninen 

~i = -- Tfs(2 +f/#) In (1 + exp (ea (,~)/T)) d2. (6.2.12 b) 

W h e n  T<<EF, # < n/2 one should pu t  t a n -  1 exp (x~) ~- exp (n~) in the first equat ion of 
(6.2.11). T h e n  eqns. (6.2.11) become universal  equat ions  for the dimensionless  
funct ions  ~0,: 

1 ( 1 n T )  ~o.(,~1=~. ,~+~ln}-/~E~ , , ~ = 1  . . . .  , v - 2 ,  

1 ( 1 Tn "X H(v - 1 ) 
+ ) 2T 

We have 

<pn(J.) = s * In (1 + exp (q~n- 1 ()~)))(1 + exp (~Pn + 1 ()~))) -- C$n 1 exp (x~), 

H ( v -  11 
(p~_ 2 = s *  In (1 + exp (9~_s) 1 + 2 c o s h  

(6.2.13 a) 
x exp (<p~_ 1) + exp (2¢p~_ 1) , 

~P~-t = s ,  In (1 + exp (qG_ 2)), 

~ i - - - T  s 2 + ~ l n  l n ( l + e x p ( ~ x ( 2 ) ) ) d 2 .  (6.2.13b) 

For  r = 2  (Tou louse  limit) eqns. (6.2.13 a) tu rn  into 

(pl (2) = -- exp (n2) + H/2T. (6.2.14) 

Using this relation and eqn. (6.2.13 b) we obtain the expression 

ff i  #~--- k Z + T ~  In l + e x p  , (6.2.15) 

which corresponds  to the Tou louse  hamil tonian  (see § 3.1.1). 
T h e  next  simple case is that  of  v = 3. T h e r e  are only two equations:  

~P t (2) = - exp (n)o) + s * In (l + 2 cosh H~ T e x p  (q~2(2)) + exp (2~02(2))), 

92()t) = s  * In (1 + exp (~pl(2))), (6.2.16) 

. ~ i = _ T ~ o 2 (  1 1 T ~  

T h e  eqns. (6.2.13) for  v = 2 , 3  . . . .  have been chosen as consecut ive approxi-  
mat ions  to the infinite system (6.1.60) for  a numerica l  analysis (Melnicov 1982) 
(see also §6.1.11). Such  a p rocedure  proved  to be rapidly convergent .  
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Exact results in the theory of magnetic alloys 631 

6.2.2. Impurity thermodynamics at I± <Iir <n 
We present below a detailed realization of the program discussed in § 6.1. 
The  function cp~ monotonously increases and cpj j#  v, monotonously decreases. 

Let  us define the function fj(5[): 

f2(5[) = (1 + exp (q~;(5[))). 

When 5[--*-oo, satisfy the following system of equations for f j =  lim fj(5[): 
.,~ ---¢ --o0 

f~j- - l=f j+l f j_l ( l+f j ,~_zf~_zexp(--H(v-1) /2T)) ,  (6.2.•7) 

rp , ( -  oo) = - l n  f ,_2,  qN_ 1(-- oo) = l n  f ,_z ,  (6.2.18) 

with boundary condition f0 = 1. 
The  solution is 

2Tv ( j + l )  sinhH(V-1)2Tv (6.2.19) 

when 5 [4+00 ,  the limiting functions 3~= lima~+~fj(5[ ) satisfy the same eqns. 
(6.2.17)-(6.2.18) with another boundary condition: 

3~=1.  

In that case one obtains 

sinh H fl2 T (6.2.20) 
J~ = sinh H/2 T" 

In such a manner  we see that all the gjs are positive except the function g,(5[) which 
changes a sign when 5[ approaches - B .  Th e  qualitative behaviour of the ejs is 
illustrated in fig. 6.8 (a). 

Therefore,  for zero temperature there remains only one equation for el(,~): 

~l(5[)+f~Ba2(5[-5[')~l('~")d')J=Rm(v-1)v ~ ( p 1 ( 5 [ ) + / r ( 1 - ~ ) ) .  (6.2.21, 

One may be convinced that eqns. (6.2.• 1) and (6.2.12 a) describe the thermo- 
dynamics of a free gas. fi~ccording to (6.2.10 d) and the relation between pj and ej we 
have the correct magnetic moment:  

SZ = Tv ( l +exp(G_x(5[)/T) ~ -~ H 
~ @ l n \ l ~ ~ j l + o - g E  F (6.2.22) 

The  spin part of the entropy has the following form: 

d~(nO; ) In n(e) + (1 - n(e)) In ( - n(g))). 
S s p - -  2 e F  n = l  minen 

(6.2.23) 

In the Appendix to 6.2.2 we prove that this complex expression does lead to the 
correct value--half  of the entropy of the free Fermi gas 

7~ 2 
S ,p= -~- T/¢F. (6.2.24) 
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632 A . M .  Tsvelick and P. B. Wiegmann 

Fig. 6.8 

%IT 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~.?.. . .  

-1 

\ 

~n 

-2  

(a) 

J 

/ 

(b) 

Schematic sketch of the excitation spectrum of the anisotropic s-d 
(a) ~t=n/v (v=3,4 . . . .  ); (b)/~=n(1-1/v) @=3,4 . . . .  ). 

model (T#O) 

As in the isotropic case one obtains the ratio Ci/T)~ i 

Ci[ T)~i = 2~2 /3. 

This ratio appears to be independent of the anisotropy (Wiegmann and Finkelstein 
1978). 

The analysis of eqns. (6.2.13) is quite analogous to that of the isotropic case. One 
may show that the function 

C ( o , H / T ) =  exp ( -  io)2) In (1 + exp (~o1(2))) d2 
- o 0  

has no singularities in the lower half-plane except --ioo and it has a set of poles 
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Exact  results in the theory of magnetic alloys 633 

co = i#n and zeros co = iTrn in the upper  half-plane. This  proper ty  leads to the law of 
integer powers at T<< TK: 

/Z T 2 ~ / '  T ' x 2 n + l  

~-i- 6 T K + T ~ =  [ | 

and to the scaling expansion for T>> TK: 

~ - i = - - T l n 2 +  ~ b,(TK/T)ZU"/'L 
n = l  

6.2.3. Impuri ty  thermodynamics at ~<I i i  <27r 
We restrict our consideration below by # = n ( 1 - 1 / v ) ( v = 2 ,  3 , . . . ) .  Generally 

speaking, in this case the classification of the complex solutions of eqns. (4.3.B) 
differs f rom that used above. However ,  instead of deriving all thermodynamics  anew 
one may  use all the results of § 6.2.2 by employing the following trick. In  eqns. 
(6.2.A) and (6.2.B) make the following change of variables: 

(1 - -  1 / v ) 2  = Z'/v + i /2 .  

Then  from eqns. (4.3.A.) and (4.3.B) we obtain 

sinh (~/v)(,~, 
exp ( ikjL) = 11 

,= 1 sinh (~ /v) (2 ,+i /2 i '  

[ sink sink +Sl 
- - ~  sinh i/2) + f ]  

= - -  f i  s i nh (~ / v ) (2~ -2~+i )  
p= a sinh (n/v)(2~--2p-i )"  

Thus  eqns. (6.2.25) bring us back to the case of p = zc/v < ~/2. The  only difference is 
that the sign of the spin part  of energy changes: 

(6.2.25) 

E sp = p(2~, nj, v j) + ~O(v;) - v n~ 
j = l  e = l  

(compare with (6.2.7)). Therefore,  we may use eqns. (6.2.11) changing sign at 
t an -  1 exp (n2) in them. This  innocuous change of sign alters the structure of the 
ground state cardinaly. The  general behaviour of the ej's change: all ej ( j # v )  are 
monotonously  increasing and e v is monotonously  decreasing. However ,  the limiting 
values of these functions at - o0 are not influenced by the free term and are still equal 
to those given by (6.2.19). On the contrary, the limiting values of the ej's at + 
change and are now of the order of ev. 

I t  is convenient  to use again the matr ix  A and rewrite eqns. (6.2.11 ) in such a way: 

e,,+ T K *  In (1 + e x p  (,%/T))-- Qj* Tin(1  + e x p ( - e j / T ) ) = ~ ° ) + H / 2 ,  

ei + TBjk * In (1 + exp ( - ek/T)) -- Q~ • T in (1 + exp (ev] T)) [,, (6.2.26) ! 

= ~}o) + H/26j , ,_  1, 
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634 A . M .  Tsvelick and P. B. Wiegmann  

where the Fourier  t ransforms of the kernels are 

1 ~ + ~ sinh ( v -  2)o9/2 
K(2) = 2nn J do9 exp ( -/coX) 2 sinh o9/2 cosh (v-- 1)o)/2' 

- o 0  

1 f + ~ F coth o9/2 sinhjog/2 
Q j(2) = ~ . / - ~  do) exp ( - io92) l 

sinh vo9/2 ] 

- 6j~ ~_ 1 2 cosh (v - 1)o9/2 sinh o9/2 ' 

1 
Bjk = Ajk d- bj 1 -- a 2 bk 

and the r ight -hand sides are 

e~o~= _e~ ~( , l )  = - 2E~ t a n -  ~ e x p  ( ~ , ~ / ( v - -  1 ) ) ,  
7~ 

(6.2.27) 

(6.2.28) 

e}°)(2) = ~z/2 + t an -  \ s~-n n j / ~ v - - ~  ' j = 1 , . . . ,  v-- 1. 

T h e  region of ej ~ T gives the main contr ibut ion to all integrals in eqns. (6.2.26). In 
leading order in T/eF one may use asymptotics of 

e}°)()L) = Cj exp (n2/v - 1), j = 1 , . . . ,  v; 

4eF 
Cj= - - s i n ( T r j / 2 ( v - - 1 ) ) ;  ( j =  1 , . . . ,  v-- 2); 

7~ 

C v = - C  v_ l= - -2~F/g ;  

and define a dimensionless function 

~pj(2) = l e j ( 2 +  ( v -  1) In n~eTF). 

The  function (pj satisfies the following universal equations: 

v - 1  

q ~ + K ,  ln(1 +exp((p~))+ ~ O j , l n ( 1  +exp( -q~ j ) )  
j = l  

= H / 2 T - - e x p  ( n 2 / v -  1), 

(pj + Bjk * in (1 + exp ( -- (Pk)) + Qj * In (1 + exp ((p~)) 

= H/2  T6~. ~_ 1 + (2 sin nj/2(2v--  1) -- 6j. ~_ 1) exp (n2/v - 1). 

The  free energy is 

(6.2.29) 

 i=-T fPJ( +v-llnT) ) .= n ~ ln( l+exp(--q~J(2)( - -1)°(~-J-1))  ' (6.2.30 a) 

~P = N ~ i (  TK = 2EF/n), (6.2.30 b) 
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Exact results in the theory of magnetic alloys 635 

where 

pj(~) = ~ ( -  

The  functions In (1 + exp ((pv), In (1 + exp ( - (p j)) decrease as exp (--  exp (Ir21v - 1)) 
when 2 tends to plus infinity (2--* + 0o) and all integrals in eqns. (6.2.29) and (6.2.30) 
are rapidly convergent.  

We have already seen that only e v changes its sign, all the ejs ( j ¢  0) being positive. 
Therefore,  eqns. (6.2.26) turn, for T ~ 0 ,  into a linear integral equation: 

f + 0° H 2£ v 7~)~ 
ev(2) + K(2--2 ' )ev(2 ' )d2 ' - -  e x p - -  (6.2.31) 

-o0 2 zc v--1 

Equation (6.1.43) makes it obvious that eqn. (6.2.31) coincides with eqn. (5.2.10 a), 
already studied for T- -0 .  

Note  that in the region # > ~ / 2  we have f o r j C v ,  T = 0  

~0j(2) = (2 sin zcj/2(v - 1) -- 6j, ~_ a) exp (rc2/v-- 1) + O(H/ev).  

Contrary to the case # < re/2 the functions (pj do not vanish even at H,  T =  0. 
It  is shown in the Appendix to 6.2.2 that the formulae (6.2.29) and (5.2.30b) 

describe a free non-interact ing gas. T h e  behaviour of the functions (p j(2) is presented 
in fig. 6.8 (b). 

Appendix  A to §6.2.1. The Proof of the 'string' hypothesis 
The  's tr ing'  hypothesis has a long history going back 50 years to Bethe's (1931) 

t reatment  of the one-dimensional  Haisenberg spin chain. According to Bethe the 
accuracy of string solutions is of the order of exp (--  const N).  This  does occur for 
strings forming a ground state (such kinds of strings appear, for instance, in the 
Haisenberg ring with high spin S >  1/2(4.1.15), the Hubba rd  model (4.1.22) and in 
the Anderson model (§ 8 and Appendix  to 8.2.1)). The  strings, which are excitations, 
become a good approximation only when the density of other excitations keep finite 
when one passes to the thermodynamic  limit 

N 
N-+oo; L-*oo;  L =const ;  n / L = c o n s t .  (A 1) 

The  accui'acy of the strings is (Destri and Lowenstein 1982, Woynarovich 1982, 
Babelon et al. 1982): 

O(exp ( -- const n)). (A 2) 

At low tempera ture  and magnetic  field the average number  of the gapless excitations 
n --~ L max (T, H).  T h e  conception of the thermodynamic  limit determines the order 
of the limits N,  L-+oo and T, H--+0 which do not formally commute:  

( 0 lim lim 0 exp = 
H , T ~ O  N-*oo E F 

It  means that the string hypothesis is valid in the thermodynamic  limit. Here  we 
prove the string hypothesis for the s-d  exchange model. We confine our consider- 
ation to the case of the anisotropic model with # < zc/2. One can extend this proof  to 
the isotropic case passing in the end to the # = 0 limit. 
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636 A . M .  Tsve l ick  and P. B. W i e g m a n n  

Le t  us consider  eqns.  (4.3.B). At  first we d rop  the impur i t y  t e r m  which  does not  
change the classification of the strings.  T h e n  we have  

( sinh #(2~ + i/2) ~n = _ f i  s i n h # ( 2 ~ - X p + i )  ( 1 4 )  
~ i / 2 ) ]  p=l sinh # ( 2 ~ - 2 ~ - - i )  " 

Accord ing  to conjec ture  (6.2.1) the a r r a n g e m e n t  of  zeros and poles of  the  S ma t r ix  of  
bare  part icles (the r igh t -hand  side of  (A 4)) establ ishes the f o r m  of  the  string. In  our  
case this conjec ture  is 

2(an'v'k)=2(n'v)'~- k ) ~ + ~ ( 1 - - v ) Z + ? k '  m o d  i , (A5)  

k = l , . . . , n ;  v = - t - 1 ,  

where  the n 's  are some  selected integers.  L e t  us find the accuracy  y("'v) of  the  
conjec ture  (A 5)T. L e t  us consider  the state wi th  M ,  ~ str ings of  o rder  n. Inse r t ing  (A 5) 
into (A 4) we obta in  

sinh #(2 + i(n/2 + 1 -- k)) 7 N 
- j 

M~) sinh#(2_2~m, +) +i(n--m/2 + 1 - k - l ) )  
= f i  f i  [ I  sinh#(2_2~.,,+)+/((n~_-(--~:'i-), 

m , .  z=l  t~=l ( A 6 )  m = l  

r~  s i n # ( / +  1 -k+iTa)-- i?  (k)) 
× 

t=lll sin #(l -- 1 -- k + i7 (1) - i7 (k)) 

M~' sinh # (2- -  2~ m' -) + i((n-- m)/2 + 1 -- k + l)) 
x m=, f i  '=X f i  #=al--[ s i n h # ( 2 _ 2 ~ m , ~ l ~ / ) )  

and f o r v = - - I  

[cosh#(2+i(n /2+ l - -k))  ] n 
cosh #(2 + i(n/2 -- k) 

i~i f i  M"~ s i n h # ( 2 - - 2  ( m ' - ) + i ( ( n - m ) / 2 +  l - -k+ l ) )  
= ~=,  ~=~ p=ll~ sinh # (2- -  2 (m' -) + i((n-- m)/2) - -  1 -- k + I ) ) '  

m = i ( A  7) 

r~ sin #(l + 1 - k -  i? (° + iv(k)) 
X 

l=llt sin #(I -- 1 -- k -- i? (0 + i7 (k)) 

f i  M("+) cosh#(2_2(~m,+)_(_i((n_m)/2 + l - k + l ) )  . 
x m=l z=t p=aI--[ cosh # ( 2 -  2~ m' +) + i ( (n -  m)/2 - 1 - k + I))'  

we omi t  the subscr ip ts  (n, v). 
T h e  s y m m e t r y  of  eqn.  (A 4) enables us to confine our  cons idera t ion  to the 2k < n 

case: 

I~k + 1 -- ?k[ = I?.-k+ 1 -- 7.-k[" (A 8) 

T The proof of the string hypothesis without the assumption (A 5) was made by Babelon 
et al. (1982). 
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Exact results in the theory of magnetic alloys 637 

At first we derive the necessary condition which selects the orders of the strings. For 
this purpose it is sufficient to consider the case of particular {M~}, namely, 

1, (n, v) = (n o,vo) 
M(,,v) = 0, (n, v) ~ (no, v0). 

It means that only the string with (no, v0) exists. In this case eqns. (A 6) and (A 7) give 
US 

[ sinh#(2+i(n/2-k))~~ IN 
[•k+ 1--7k1 = cons t  L ] (v=  +1),  (A9) 

] cosh #(2 + i(n/2 - k)) I n 
17~+~-7kl =c°nst c~sh ~ + ~ i n / Z  (v= -1), (A10) 

k = l , . . . , [ n / 2 ] .  

The  quantity ]Yk+i--gk] is exponentially small only if 

- s i n 2 # ( n / 2 - k ) + s i n 2 # n / 2 > O  ( v = l )  ( A l l )  

or  

--cos2#(n/2--k)+cos2#n/2>O (v=  - 1 ) .  (A12) 

One can rewrite (A 11) and (A 12) as 

v sin#k s i n # ( n - k )  >0;  k = l , . . . ,  <n/2 (A13) 

(Takahashi and Suzuki 1972, Korepin 1979, Fowler and Zotos 1981, Hida 1981). 
The  solution of this unequality is given in Appendix 6.2.9. 

Let  us return to eqns. (A 6) and (A 7) assuming that all the n's satisfy conditions 
(A 13). Set, for simplicity, #=rc/v where v is an integer. According to §6.2.1 the 
continuous limit gives us 

I ~)k+l-~k()yk-~)k- 1) 1--C5kl --exp{N(Gn-2k+l'm*pm(~) 
s i n h # ( 2 + i ( n / 2 + l - k ) )  p , ( 2 ) ) } ,  (A14) - -Re ln  ~ / ~ - ~  - - t . _2 ,+ , ,  

where Fourier transforms of the kernels G.,. and t n are 

Gnm(~)  = 2n 1 [ , ( v - - n - m - - 1 ) C O + c o s h ( V - n - m + l ) c o  
co sinhvco/2 [ cosn  2 2 

- cosh (v - In- m -  1 I)co _ cosh ( v - - I n -  m + 1 I)60 ] 
2 2 J 

( m = l  . . . .  , v - l ) ,  

2 sinh 6o 
t,(co) - sinh too~2. 

sinh vco/2 

It is convenient to use the 'hole' distributions ft, instead of p,. According to 
(6.2.10) one has 

p. = - (A - 1).m * tim + 6~. ~_ 2 s * Pv "Jr- S(~nl. 
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638 A . M .  Tsvelick and P. B. Wiegmann 

Using the identity 

2/~ (2) 
(A-1),,zGmt = ~ - t a n h ~  (6,,t+ t + 6,,t- 1) (A 15) 

we find 

7k + 1 - -  7 k  ~ exp -- d2' In ]coth n ( 2 -  2')1 
(7~ -- 7k- 1) - co 

x (~._ 2k(2') + ~._ 2k+ 2(2')) } . (A16) 

Finally from (A 16) one obtains the following estimate: 

[yk+l--Ykl,-~exp - -~-  d2 ' lnlcothr~(2-Z)l  Z (Pn--2q (/~') 
-0o q = l  

+t~.- 2q+2(2')) } • (A17) 

From (A 17) it follows that for any k 

o r  

N f + c  ° lyk+ 1 --7kl ~< [72-- 711 ~ exp - -~-  d2' In [coth n(2--2')1 
-co 

x (~._ 2(2') + ~.(2')) } 

P 
17p+11~< ~ (r.h.s of (A.18)). 

k=l  

(A 18) 

The  quantity ~1 may be included in the definition of the string's centre 2(n,m). 
Estimate (A 18) is valid for v >/4, both for # = n/v and p = n(1 - l/v) (in particular for 
v ~  oo, i.e. for the isotropic case). Thus,  if condition (A 13) is satisfied formula (A 5) is 
valid with exponential accuracy for any {M.} for which 

UfdX' In Icoth 7c(~- 2')1(~.- 2(~') -t- ~.(~')) >> 1. 

For an equilibrium state at temperature T the estimate (A 18) acquires the form 

f + co d2' 
[7t2 "' +)-- Y~l"' +)1 = const exp -- L T _ co sinh 7c(2- 2') 

× In (1  +exp  e " - ~ 2 ' ) )  ( 1 ' t e x p ~ - )  }. e.(2') '~ 

We note the difference between the kt < n/2 and # > ~/2 cases. According to §§ 6.2.2. 
and 6.2.3 

f (r, H), Tln  (1 +exp  (e,, /T))~ m a x  
EF, 

# < n / 2  (A 19) 
#>~/2 .  
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Exact results in the theory of magnetic alloys 639 

Therefore, 

exp ( - const L max (T, H)) p < 7112 
exp ( - const N) P > 7112 

In both cases the string hypothesis is valid in the thermodynamic limit. 

Appendix B to $6.2.1. Thermodynamics equations for the arbitrary exchange 
aniso tropy 

Takahashi and Suzuki (1972) obtained solutions of the constraint (6.2.2) in the 
following form. Let 

Let us represent the quantity pG1 by the continued fraction: 

where vi are integers v, 2. Let us define a series of integers vi, mi, yi and a series of 
real numbers pi as follows: 

y-1=0, yo= l ,  y l=vl ,  y2=v,v,+1 

and 

y i = y i - l + ~ i y i - l ,  i=1 ,2  ,... . 

Then the order and parity of all bound states are given by 

nj=yi-,+(j-mi)yi for mi<j<mif l ,  j=1 ,2 , .  . . 
v1 = + 1, , , ,  = - 1 and v.  = ( - l)[("j-')/~~] 

J 

where [x] is the integer part of x (Gauss' symbol). 
In these notations the non-linear integral equations have the form: 

Tln (1 + exp (c0(1)/T)) = 2+0(1) sign (p - n/2), 

cj= T(l - 2Smi_ ,, j)si *In (1 + exp ( E ~ -  ,/ T ) )  

+ T s , * l n ( l + e x p ( ~ ~ + , / T ) )  f 0 r m ~ - ~ < j < m ~ - 2 ,  

E ~ =  T(1- 2Smi_ ,, j)si * In (1 + exp ( E ~ -  ,/ T)) 

+Tdi*ln(l+exp(~j/T))+Tsi+l*ln(l+exp(~j+l/T)) forj=mi-1, 

lim ~ ~ / n ~ =  H( l  -p/n). 
j - t  m 
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640 A . M .  Tsve l ick  and P. B. W i e g m a n n  

Here  

1 
si(2) = 2~/sech (Tr,~/pi) , 

I f  +°° i~)02c°sh((pl--Pi+a)¢°/2) 
d i ( 2 )  = - -  -oo &o exp ( - -  coshPicO/2 coshPi+ ~09/2 ' 

~i:-Tfsl(2+~°)ln(l+exp(el(i,)/T))d2,. 
Appendix to §6.2.2. The proof of the identity (6.2.24) 

Le t  us p rove  that  the spin par t  of  the host  en t ropy  is equal  to 

Le t  

T h e n  

1 n2 T 
_ _  S S p  = _ _  _ _  

N 6 eF 

_ + l _  . 7(a, b) = 1 - x x 

2eF 6 { m a x e j ( 2 )  . ej(2) 
~ S s P  ~ , m l n ~ - ) .  
TN j=~ 

W h e n  ~<n/2 according  to (6.2.19) and (6.2.20) we have 

( , )  ( , , )  _ _  s p _  1, + 2 7  = A I ( v ) .  TN S -~  ( v - l )  2 v - 1  ' v  

Le t  us p rove  that  this quan t i ty  does not  depend  on v. Di f ferent ia t ing  wi th  respec t  
to y = (v--  1) - 1 one obtains:  

d ~A,(y)=O. 
There fo re ,  

1 S sp T A I ( v = 2 ) = n 2 T  
N 2~ F 6% 

W h e n  # > n/2, ej( + 00),.,, eF (j=/= V), e,( + GO),,~- EF, the (e j ( - -  oo)'s be ing  the same. 
T h e n  

As above,  we p rove  that  A2(v ) does not  depend  on v and in par t icular  A2(v ) = Al(v ). 

(,1) 
A 2 ( v + l ) - A z ( v ) = - 2 7  + 7  ,0  = 0 .  

v ' v + l  
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Exact  results in the theory of magnetic alloys 641 

§ 7. I N T R O D U C T I O N  TO T H E R M O D Y N A M I C S  OF THE 

DEGENERATE EXCHANGE MODEL 

It  has been argued in §2 that dilute magnetic alloys of Ce and Yb may be 
described by the exchange hamiltonian (4.4.1). Th e  Bethe Ansatz for the degenerate 
exchange model has been constructed in §4.4. Now using the previous results we 
shall study the thermodynamics of this model. 

This  section is written for a reader who has already studied the previous sections. 
Therefore,  we change the traditional scheme and start our consideration from finite 
temperatures. The  integral equations describing the system at T:~0 are cumber-  
some. Even for T =  0 we succeeded in finding the analytical expression for zi(H) only 
for n = 3 (J = 1). If n = 3 the system of Wiene r -Hopf  equations with arbitrary Nj  
seems to be unsolvable in an analytical form. Thus ,  most mathematical problems 
formulated in this section should be solved numerically. 

At low energies the reliable Fermi-liquid approach, which is not related to the 
possibility of an analytical solution, becomes adequate. 

The  results of the present section were obtained by Tsvelick and Wiegmann 
1981, 1982a) and Rasul (1982). 

7.1. Basic equations 

1. T h e  spectrum of the hamiltonian (4.4.1) is described by the Bethe-Ansatz 
hierarchy (4.4.A)-(4.4.C). The  solutions )~J) of eqns. (4.4.B) lie in a complex plane. 
In the thermodynamic limit they are grouped in strings (Takahashi 1974 b) 

)~5)-p.k: ~ -  - 2~J:)~ + i(P + 1 ,  - 2k)/2; k = l , .  .. ,p. (7.1.1) 

2. From (4.4.A)-(4.4.B) and (7.1.1) we obtain the integral equations for the 
distribution functions p(j) and p(j) of particles and holes in strings for the 
thermodynamic limit as follows: 

~JJ(,).)+Apr*C'ik*l'k)(,~)=..'zllp~jl(S(.~)-[-l~S(}~'+'l/g)), (7.1.2) 

p , r = l , 2  . . . .  ; j , k = l , . . . , n  ( n = 2 J +  1). 

The  matrix A coincides with (6.1.24) and C Jk is given by the formula 

CJk(2) = 6jk6(;~) _ S(2)(6j, k + I + 6j. k- 1). (7.1.3) 

It is interesting that elements of the matrices A-  ~ and C are proportional to each 
other. The  energy of the system and the length of a column in the Young tableau are, 
respectively, equal to 

~ E = E  ( ° ) - -  ~ d20~1)(2) + t a n  -1 , (7.1.4) 
p = l  

N =1 p (p~j ~-  1)(X))d2' (7.1.5) 

where E t°) is the ground state energy. 

3. The  entropy is given by 

pp --pp lnop ]d2, (7.1.6) - - =  ln(pp +pp )--pp In (j) ~(J) ~(J) N [(P(PJ) -[- f i( j))  (J) ~(J) (J) 
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642 A . M .  Tsvelick and P. B. Wiegmann 

Minimizing the free energy 

o~ = E - -  T S  -- ~ h °) N j  
J 

with respect to p(j)  we obtain the following non-linear equations 
0)-  T h-, a(J)la (j). 

~ p  - -  - - -  r ' p  I r ' p  • 

for 

TIn n( - dj)(2)) - A sk * Cp, * T In n(e~k)(2)) 

[ sinnj/n ] 
--¢$p126Ftan-ln e x p ( - - 2 ~ 2 ~ - c o s n j / n  =0,  (7.1.7) 

where 

ASk(2) = - ~o ~-~ exp (-- leo2) s-~nh n ~  slnn ~ (e-max 0 ,  k)) 

x s i n h [ 2 m i n ( j , k )  1.  

The impurity part of free energy and the free energy of the host metal are given by 

~ i =  d2p(~)(2 + l/g) lnn(e~J)(2)), (7.1.8) 
j = l  

Z292 n- 1 f 
~ - b -  126F ~- T j=l ~ jd2p~)(2)In n(e(/)(2)), (7.1.9) 

pO)(2) = 1_ sin (njfn) 
n cosh (2n2/n) -- cos (nj/n)" 

(7.1.10) 

where 

The first term in (7.1.9) is the contribution of charge excitations. 

4. Universality. If  T<<eF, the main contribution to all integrals in eqns. (7.1.7)- 
(7.1.9) comes from the region 2 << --(n/2n)In 6v/T. Therefore, one should keep only 
the asymptotics of the free term in (7.1.7): tan-  1 [ . . .  ]__ sin (nj/n) exp (2n2/n). 
Introducing the dimensionless functions 

s,, , - ->v  \ ~7'nT~J 

we obtain the following universal integral equations: 

A jk * Cp, * In (1 + exp (~ff)(2))) - In (1 - exp ( - ~p~J)(2))) 

where 

= • p l  sin (n j/n) exp (2nit/n); lim @J)/p = h (J ) /T ,  
p + o O  

.1 I ~ i  = - -  T ~ d2p~)(2 + n/2n in T~ TK) In (1 + exp (~0]J)(2))), 
j = l  

(7.1.11) 

(7.1.12) 

(7.1.13) 

(2;:) TK= 2EFexp - (7.1.14) 
7g 

is the Kondo temperature. 
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Exact results in the theory of magnetic alloys 643 

Equations (7.1.12)-(7.1.14) completely describe the thermodynamics of the 
n-fold degenerate exchange model for arbitrary h t j). 

7.2. Low-temperature thermodynamics 
It follows from (7.1.12) that 

lim ~0]J)(2) exp (-- 2~2/n) < oo 

and, therefore, all integrals 

f + exp (27r2k/n) (1 +exp (q~i)(2))) In d2 

converge. Thus if T, h(J)<< T K the impurity part of free energy is expanded in power 
series in T/TK: 

f f i = - - T ( 7 - ~ T  + ~ b, (7.2.1) 
\ 2  TK ,=1 \ TKJ ' 

at zero temperature the entropy being zero. The impurity ground state is a singlet. 
Using the Fermi-liquid speculations it is easy to find the impurity part of the 

specific heat and magnetic susceptibility Z j = ONfl~h (j) at T =  0, hj = 0. According to 
(7.1.9) and (7.9.11) we have, at T-~0, 

1 u2 T 2 • T z .~1 ~ + 
f i b -  12ev + - -  ~ sin (~j/n) j exp ( - 27r2/n) In n(q~]J)(2)) d).. 

•F j = l  -oo 

Comparing it with (7.1.13) one finds at T ~ 0  

2Ev ( 1r'ZTZ ~ 
~ = nTK \ N -  tomb+ ~ ] .  (7.2.2) 

We already know the left-hand side of eqn. (7.2.2). (We may prove it using the 
relation 

1 ~e~J)~2~ . 
p~J)(2) = 2eF~n(e~J) (2 ) )  (7.2.3) 

as has been done for the s-d exchange model (see §6.1.4)), 

1 n2T2 1 
h 2 (7.2.4) 

Therefore, the specific heat and partial susceptibility are 

Ci/C h-  ( n - -  1) 2@ ] 
n TKTg ' 

(7.2.5) 
2EF zl/z{- 

and 

T 
Ci = ~(n- -  1)--TK , (7.2.6 a) 
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644 A . M .  Tsvelick and P. B. Wiegmann 

1 
Zl j ) -  . (7.2.6b) 

2~TK 

7.3. Magnetic susceptibility 

I t  follows f rom eqn. (7.2.3) that e~J)(2) monotonously  decreases. Equation (7.1.7) 
states that all the e~J)'s except the e]J)'s are positive. T h e  functions e] j) change sign at 
some - Bj's: 

eli)( - -B  j) = 0. (7.3.1) 

In other words, the ground state is formed only by real solutions of eqns. (4.4.B). 
For  T ~ 0  one has the following system of linear integral equations: 

e~J)(2)-- Rjk(2-- 2')e~k)(2')d2 ' = 2eF sin ~3 exp (2rc2/n) 
_~ rc \ n / 

I [. n . 
+2n j - -  

(7.3.2) 

where 

Rjk(2) = ~exp(--io92)(AJk(o9)--6Jk)/( l+exp(--[o91)) .  (7.3.3) 

A length of column in the Young tableau is 

X j ~ -  l n j_  1 --  lnj ,  

N j -  p~)(2 + 1/g)e~k)().) d2. (7.3.4) 
Oh(j) k= l -oo 

The  W i e n e r - H o p f  system (7.3.2) with arbi trary values of the Bj 's  (h(J)'s) can hardly 
be solved analytically. However ,  we shall show below that for 

h O) = H sin xj /n  (7.3.5) 

all the B / s  are equal to each other and the system (7.3.2) may be easily solved. 
T h e  'magnetic susceptibility'  z (H)=--~2Ei /OH2 has the following form 

z (H)  = 2 ~ H  sm 2nn do9 F 2n 2 

x F  1 2n 2 exp iognln ' (7.3.6) 

TH _ 4~ cos ~ (ne)- 1/2 
TK 2n nF(1/n) " 

The  analytical properties of this expression are analogous to those of (5.1.33) for 
n = 2. I t  is easy to check that expression (7.3.6) for n = 2 coincides with the expression 
for the magnetic susceptibility of the s-d  exchange model  with S =  1/2. 

I f  H>> T H we obtain, f rom (7.3.6), a power-series expansion in z (H) ,  the invariant 
charge z (H)  being defined as follows: 

1 1 H 
- -  - -  - I n  z ( H )  = l n - - .  ( 7 . 3 . 7 )  
z( H)  n Tn 
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Exact results in the theory of magnetic alloys 645 

The  first te rm of that expansion is 

z2(H) 
)~(H>> TK) = H (7.3.8) 

I f  H <  T n the function z(H) is analytical with respect to H: 

n ( U V "+1 
z ( H ) =  (7.3.9) 

4nT~ ,,=,2" a, t ~ )  " 

When H + 0  the susceptibility remains finite and a complete screening of an impuri ty  
magnetic m o m e n t  takes place. 

Let  us assume that the crystal field splitting is negligible compared with T K. 
Then,  generally speaking, one should write the Zeeman term as follows 

- #B(giJ z + ge(2S z + Lz))D, (7.3.10) 

where jz is a projection of total impuri ty  momen tum,  and S:, L:  are spin and orbital 
m o m e n t u m  operators of the conduction electrons. This  te rm does not commute  with 
the hamil tonian (4.4.1) and breaks the integrability. However,  we can neglect the 
remagnetization of an impuri ty  caused by the conduction electrons and rewrite the 
Zeeman terms as 

-#agiI)J = -#.giD ~ \/n+l ) =_ ( m s _ l - - m j ) { ~ -  - - j  , (7.3.11) 
j = l  

where J= represents the total m o m e n t u m  of the whole system. Indeed, any electron 
te rm in (7.3.10) gives small corrections of the order of g compared with the impuri ty  
term. 

T e r m  (7.3.11) commutes  with the hamiltonian. Expressing the quantities h (j) in 
terms of I) we find: 

h(J) = #BgiD ( ~ -  - j  ) . (7.3.12) 

and 7.3.5) coincide only for J = l / 2  (#BgiI)=H) and Conditions (7.3.12) 
d = 1 (gi#BI) = x / 3 H ) .  

I f  J =  1/2 or J =  1 formula (7.3.6) determines the impuri ty  magnetic suscepti- 
bility as a function of the magnetic  field, the crystal-field splitting being small 
compared to #BgiD. Nubsti tuting (7.3.12) into (7.2.6b) we obtain 

s J (J+l ) (2J+l )  
Zi (0)= E J2ZIJ) (0)= (#Bgi) z. (7.3.13) 

S= - s 3nT K 

Compar ing  (7.2.6 a) and (7.3.13) we have the expression generalizing the Wilson 
formula: 

2n z 
l ira ( # B g i ) 2 C i / Z z i  = . (7.3.14) 
T~0 n 2 --  1 

This  result was obtained by Nozi~res and Blandin (1980) f rom the phenomen-  
ological theory, discussed in § 3.1.3. 

As for n = 2 the first terms of the per turbat ion theory expansion for H, T>> T K and 
arbitrary n may be derived f rom eqn. (7.1.12) by iterations, but  the corresponding 
calculations are too complicated. 
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646 A . M .  Tsve l i ck  and P. B. W i e g m a n n  

7.4. Discuss ion  

A n u m e r i c a l  inves t iga t ion  of  eqns .  (7.1.12) m a y  be used  for i n t e r p r e t a t i o n  of  
e x p e r i m e n t a l  data.  T h e  re la t ion  (7.3.14) is ve ry  s i m p l y  ver i f ied.  H o w e v e r ,  the  
necessa ry  cond i t i on  for  the  va l id i ty  of  the  p r e s e n t  t h e o r y  is t ha t  the  K o n d o  
t e m p e r a t u r e  exceeds  the  m a g n i t u d e  of  the  crys ta l  field. T h e  au tho r s  do no t  know of  
any e x p e r i m e n t s  wi th  r a r e - e a r t h  a l loys for wh ich  this  c o n d i t i o n  is satisfied.  

Recent ly ,  H e w s o n  et al. (1982) n u m e r i c a l l y  ca lcu la ted  the  i m p u r i t y  m a g n e t i z -  
a t ion  as a func t ion  of  the  m a g n e t i c  field for the  n = 4, 6 case. T h e  resul t s  are  d i sp l ayed  
in fig. 7.1. T h e  co r rec t ion  to the  l inear  t e rm  for H<< T K is pos i t ive  b o t h  for n = 4 and  
n = 6. Th i s  cont ras ts  wi th  the n = 2 case, where  this  cor rec t ion  is negat ive.  One  can 
expec t  the  m a x i m u m  on the m a g n e t i c  su scep t ib i l i t y  curve  at H ~  T K at large n. 

Fig. 7.1 

2,0 

1-0 

Hirnp 

1-5 

0-5 

0 I ~ I ) 
0 2-0 2'5 0.5 10 H/T I 15 

The impurity magnetization in the  n = 4 and n = 6 degenerate exchange model. The arrows 
denote their respective saturation values. The  scale T 1 is defined by T 1 = H e x p  (2nB1) 
(after Hewson et al. 1983). 

§ 8. EXACT SOLUTION OF THE ANDERSON MODEL 

8.1. I n t r o d u c t i o n  

In  th is  sec t ion  we p r e sen t  in de ta i l  the  exact  resu l t s  f o u n d  for  the  n o n - d e g e n e r a t e  
A n d e r s o n  mode l .  T h e  m o s t  i n t e re s t ing  p h e n o m e n a ,  such  as local  m o m e n t  f o r m -  
at ion,  the  K o n d o  effect, the  m i x e d - v a l e n c e  p h e n o m e n o n ,  can be  d e s c r i b e d  b y  the 
A n d e r s o n  mode l ,  the  m a t h e m a t i c a l  d e s c r i p t i o n  of  wh ich  is the  sub jec t  of  the  p r e s e n t  
sect ion.  T h e s e  are o b s e r v e d  in the  s t r o n g - c o u p l i n g  reg ion  and,  there fore ,  canno t  be 
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Exact results in the theory of magnetic alloys 647 

studied in the f ramework of per turbat ion theory with respect either to U o r  to F. The  
results of per turbat ion theory lead either to singularities in each te rm of the 
perturbat ion theory expansion or to diverging series~. This  points to the fact that the 
ground state of the impuri ty  is essentially non-perturbat ive.  The  most  reliable 
results in the Anderson model  obtained by phenomenology,  numerical  and scaling 
approaches have been discussed in § 3.2. 

In §4.5 we demonstrated that the Anderson hamiltonian (4.5.1) and (4.5.2) is 
completely integrable, and diagonalized it assuming the Fermi  energy to be the 
largest of the energy scales. The  relevant spect rum of the Anderson  hamiltonian is 
described by the Bethe-Ansatz equations (4.5.A)-(4.5.C). In  this section we employ 
these equations for a detailed discussion of the Anderson model. The  mathematical  
procedure and technical details relevant to the Bethe-Ansatz equations have been 
borrowed f rom the preceding sections on the exchange models.  The  results to be 
presented below were obtained in a series of papers by Kawakami  and Okiji 
(Kawakami and Okiji 1982a-c,  Okiji and Kawakami  1982a, b) and by Filyov, 
Tsvelick and Wiegmann  (Wiegmann et al. 1982,  Wiegmann and Tsvelick 1982, 
1983, Tsvelick and Wiegmann 1982 b, 1983, Filyov et al. 1982). Our  presentation 
follows that of Tsvelick and Wiegmann  (1983) and Wiegmann and Tsvelick (1983). 

8.2. Physical properties at zero temperature 

8.2.1. The Bethe-Ansatz equations for a large number of particles 
In § 4.5 we have shown that all eigenstates of the Anderson hamiltonian (4.5.1) 

and (4.5.2) are described by the set of,charge {k j} and spin {~,} rapidities, which are 
restricted by the periodic boundary  condition (the Bethe-Ansatz equations): 

exp (ikjL + i6(kj)) = 
g(kj) 2, + i/2 

~= 1 g(kj) - 2 , -  i /2 '  (8.2.A) 

f i  2~--g(kj)+i/2 = - -  f i  2 , - - 2 ~ + i  (8.2.B) 
j= 1 2~--g(kj) -- i/2 p=l 2~-- 2~-- i '  

where N is the total num be r  of particles and M is the total number  of the spin-up 
particles: 

S Z - N / 2 - M .  (8.2.C) 

The  eigenvalues of the hamiltonian (4.5.1) are given as follows 

N 

E =  kj. (8.2.D) 
j=l 

Here  g(k) and 6 (k) are defined by eqns. (4.5.16), (4.5.13) and (4.5.2 5). We shall obtain 
below a continuous form of eqns. (8.2.A)-(8.2.D) for the ground state of a system 
with given spin and number  of particles N. We take that N , L ,  S ~ o o ,  then 
N / L  = E~/rr, S~/L being fixed. 

In the light of recent work this statement and a similar one by Okiji and Kawakami 
(1982b), should be modified. In the symmetric model it has been shown by Zlati~ and 
Horvatid (1983), for the susceptibilities, and by Ueda and Apel (1983), for the ground-state 
energy, that there are no singularities in these quantities and a perturbative approach around 
U/2A =0 is justified. 
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648 A . M .  Tsvelick and P. B. Wiegmann 

As before let us be convinced that eqns. (8.2.A)-(8.2.B), with the accuracy 1/L, 
describe the free Fermi gas with the constant density of states p~(k)= 1/2re. The  
factor exp (i6) in eqn. (8.2.A) corresponds to the impurity. Neglecting this term and 
multiplying eqns. (8.2.A) and (8.2.B) by each other, we get 

exp (iEL) = 1. (8.2.1) 

Equations (8.2.A) and (8.2.B) without the impuri ty factor in (8.2.A) describe free 
particles fairly specifically. The  description of free particles with spin in terms of 
charge and spin variables is more complicated than the conventional description in 
terms of particles with up and down spins but, yet, is natural and adequate for the 
problem with a magnetic impurity (for a discussion see, §4.6). 

It is clear that the energy of free particles with a constant density of states 
is unbounded from below. This  factor has been taken into consideration when 
the model of (4.5.1) has been formulated. Momenta  of spin excitations 
p(2) = (2/L) ~v= 1 t an-  1 ( 2 2 -  2g(kj)) and the energy associated with them, as follows 
from (8.2.A) and (8.2.B), are bounded: [p(2)] ~<EF. Th e  fact that the total energy is 
unbounded from below is related to the fact that the charge excitation momenta  are 
unbounded.  Therefore,  one should cut all kj by the conduction bandwidth D, i.e. to 
add to (8.2.A) and (8.2.B) the condition 

kj>~ --D. (8.2.2) 

Solutions of eqns. (8.2.A) and (8.2.B) as usual lie in the complex plane of the 
rapidities k I and 2,. They  are grouped into series called 'spin' and 'charge' 
complexes. The  classification of these equations at large N and 8 z is of the form: 

(i) n spin rapidities 2= may form a spin complex with an equidistant imaginary 
part 

", /'n+ l ) 
2 ~ " ' J ) = x , + i ~ T - j  ; j = l , . . . , n .  (8.2.3/ 

Here 2"~ is a real rapidity of the complex centre, n is the order of the complex, an 
arbitrary positive integer (n<<N). 

(ii) With each spin complex a charge complex consisting of bounded rapidities 
k~ +) and k~ -) may be related: 

g(k~+'"'m)=2:+i(2 + l - p )  , ( p = l , . . . , n ) .  

(8.2.4) 

g(k(-'n'P))= ~ q-i( 2 - p  ) 

Except the complex with k + =qT-iF. 
The  simplest bound state of charge exmtations corresponds to the real spin 

rapidity 

g(k~ +-)) = 2~, +_ i~ 2. (8.2.5) 

(iii) Finally, there are real (unbounded) rapidities kj. The  above classification is 
valid with the exponential accuracy in the continuous limit. Its proof is given in the 
Appendix to 8.2.1. The  wavefunctions of (4.5.21) with the parameters k and J, 
defined according to the above classification form a complete set. 
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Exact results in the theory of magnetic alloys 649 

The  character of the ground state with a given projection of spin S z depends on 
the sign of U. Only the case when U >  0 is physically interesting. T h e n  it is shown by 
Kawakami and Okiji (1982 a) that the ground state is formed by real 2~ and the bound 
charge states associated with them (8.2.5). Yet at U <  0, the ground state is simpler: 
all k and 2 are real. Both assertions will be proved in what follows. 

We shall deal below only with the repulsive case U <  0. Yet, besides the direct 
calculation at U < 0  there is another technically different and sometimes simpler 
method based on the following symmetry .  Let  E(A, S~/L, U, ca) be the energy of the 
system with a given projection of spin S ~ and the number  of particles N. Here  
A = n N / L - - D  is a difference of the chemical potential f rom the bandwidth.  Then ,  

E(A, S~/L, U, ed)=E(SZ/L, A, - U, Ed+ U)+ Ncv +e d. (8.2.6) 

This  relation results from a replacement of particles with up-spin by holes: 

C+T---,. c , ,~,  at-.-,d,, y_, CZ,  C,~ r --,. NE~ - -  .y__, C~-.r Ck. r , nl.----1 - -  n. r . 
k k 

Therefore,  if we wish to study the case U>O, we can study the case U < 0  in eqns. 
(8.2.A) and (8.2.B), subsequently replacing S~/L by .4 and E a by E a + U. This  method 
is convenient  to compare  direct calculations for U >  0. Therefore,  we shall consider 
both approaches below. 

8.2.2. The continuous limit 

As has been s a i d  above, in the ground state all 2, are real and kj for 
j = N -  2M + 1, . . .  , N form bound states 

g(k(~ +-)) = g(x(2~) ~ iy(2~)) + 7(~ +-), ~ = 1 , . . . ,  M,  (8.2.7) 

where 7(~ -+)= O (exp (const L)). Then  according to (8.2.5) we have 

x(2) = ea + U/2-- (UF) u2(2 + (2 2 -~ 1/4) 1/2) 1/2, 

y(2) = (UF)1/2( _ 2 --]- (22 -4-1/4) 1/2)1/2. 
(8.2.8) 

The  remaining unbounded k l , . . .  , kN_au are real. Insert ing (8.2.5) and (8.2.7) into 
(8.2.A) for j = N - - 2 M +  1 . . . . .  N we get 

exp(ik(+)L+i6(k(+)))= f i  2 ~ - 2 p + i  
p=l 2~-2~ +7(~ +)' 

exp(ik(-)L +iS(k(~-))) = f i  2~-2P+7(~-) 
p=l 2 ~ - 2 ~ - i  

(8.2.9) 

and eqn. (8.2.B) thus takes the form 

- 2M 2~--g(kj) + i/2 
11 s=l 2~--g(kj)--i/2 = x 2~ - 2~ - 7~ + )" ( 8 . 2 . 1  O) 
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650 A . M .  Tsvelick and P. B. Wiegmann 

To  exclude from the quantities 7 (-+) from (8.2.8)-(8.2.10) we shall multiply eqns. 
(8.2.9) by each other. Then,  employing (8.2.10), we have 

exp [2ix(2=)L + 2i Re 6(k(+)(2=))] 

=N~U 2=_g(kj)+i/2 f i  2=--2p+i (8.2.11) 
j=l 2~--g(kj)--i/2 e=l 2 ~ - 2 e - - i '  

Equation (8.2.11) with eqn. (8.2.A), for j = l  . . . .  ,N--2M, forms a complete 
system of equations for the rapidities 2= and ky. Logari thmization yields (Kawakami 
and Okiji 1982a) 

M 

kjL + 6 ( k  j )  : 2ztNj- ~" 01 (g(kj) -- 2~), (8.2.12) 

M N - 2 M  
2g J=+ E 02(2=--2~)+ E 01(2~--g(kJ)) 

~=1 j=1 

= -- 2x(2=)L-- 2 Re 6(x(2=) -- iy(2=)), (8.2.13) 

where 0 , (x )=2 t an  -1 2x/n and Nj, J= are in tegers - -quantum numbers  of the 
system.eThe energy of the system is 

N - 2 M  M 
E= ~ kjq-2 2 x(2e). (8.2.14) 

j = l  ~ = 1  

As has been said in § 5.1.1 the quantities 2=, kj and, consequently, Nj, J~, cannot 
be identical--  in this case the wavefunction (4.5.21) is zero. 

Function x(2) and quantities J= are not bounded from below and may generally 
acquire any value. Therefore,  one should manually restrict the energy by the 
bandwidth, assuming that 2<Q1  so that x(Q1)=-D and J(Q1)>J~. At 
D + q + U/2 >>( UF) 1/2 

Qt " ( D + q  + U/2)2/2UF. 

By virtue of the monotonic dependence of the energy on 2 the quantities J ,  
subsequently occupy the interval from J ( Q a ) - M  up to J(Q1), and the rapidities 2 
occupy the interval from Q to Q1 (where Q is a so far unknown quantity). Th e y  are 
described by the distribution 

1 
6(2)= lim 

M ~  L(2,,+ 1-2~,) " 

If  M =  0 and all the spins are up-spins, the energy is determined by the first term of 
(8.2.14). In this case the energy is determined by a large negative kj. Th e y  also should 
be restricted by the bandwidth (8.2.2). By virtue of the monotonical dependence of 
the energy on k and the dependence of k on Nj the integers Nj subsequently occupy 
the interval from - DL/2= to -- DL/2~ + N-- 2M and kj are densely distributed in 
the interval ( -D,  B) with the density p(k). 

Differentiating eqns. (8.2.12) and (8.2.13) in the standard way we pass over to the 
integral equations for the distributions p(k) and a(2): 

p(k)= 27 + ~A(e,k)+g'(k) al(g(k)-2)a(2)d2 , 
Q 

(8.2.15) 
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Exact results in the theory of magnetic alloys 651 

a(2) + az(2-- 2')fi(2') = -- 1-- x'(2) + 7~(2) -- al(X--g(k))p(k ) dk. 
(2 7~ o0 

Here 

a,(x) = 2n(nZ+4x2)-l; 7~(2) = 1 8 
n n a2 Re 6(x(2) -  iy(2)). 

The limits B and Q are determined by the conditions 

p(h) dk, S S L =  ~ -D 

;: NIL = 2 cr(~) d2 + p(k) dk 
B 

and the energy by 

(8.2.16) 

(8.2.17) 

(8.2.18) 

(U<< Iq], F). (8.2.21) 

-- = kp(k) dk+ 2 x(2)a(2) d2. (8.2.19) 
L -D Q 

In eqns. (8.2.15)-(8.2.17) we have deliberately replaced the limits D and Q1 by 
infinity, retaining them in (8.2.18) and (8.2.19). Since a(2--+oo)~2 -1/2 all the 
integrals of 2 in (8.2.15) and (8.2.16) converge. Finite limits of QI yield small 
corrections of the order of ( UF)II2/D. This is the accuracy to which we have studied 
only the states in the vicinity of the Fermi surface and regard the spectrum as linear. 
In the symmetric case the applicability condition of the basic eqns. (8.2.A) and 
(8.2.B) is 

(UF)I/2<<D (U',~ - 2 q )  (8.2.20) 

and in the asymmetric case 

U<<D 

On the other hand, in (8.2.18) all the integrals are determined by a region of large 
momenta and thus one cannot set Q1 = co. Furthermore,  it is not difficult to prove 
that p(k) ~ exp (~k2/2 UF)  at k ~  - oo. Therefore, to retain the limit - D  everywhere 
in (8.2.15)-(8.2.19) as finite, would lead only to exponentially small corrections at 
D >> (UF)  1/2. This is associated with the fact that p(k) describes excitations above the 
ground state S ~= 0 and is not related to divergencies on the bandwidth. 

8.2.3~ The particle-hole symmetry 
Let us now study the ground state of the system at U <  0 and then employ the 

symmetry (8.2.6) to resume the case we are interested in, i.e. U >  0. 
In this approach, as we have already mentioned, all solutions of eqn. (8.2.B) are 

real. Logarithmizing eqns. (8.2.A) and (8.2.B) we get 

M 

kjL = 2nNj-- ~ O,(g(kj)--2=)--a(k), (8.2.22) 

N M 

..~ 01(2~-g(kj))=2rO=+ ~ Od2~-2p). (8.2.23) 
j = l  ~=1 
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652 A . M .  Tsvelick and P. B. Wiegmann 

It is convenient to replace the variables in eqns. (8.2.22) and (8.2.23) by changing the 
signs of k j -  q and Nj, ,a,~. Then  U can be regarded as positive everywhere. Th e  result 
of this replacement is 

N 
E = -  ~ kj. (8.2.24) 

j = l  

Then  the energy is not bounded from below since the numbers  are not limited. 
Therefore,  all kj are sensitive to the bandwidth and must change in the interval 

(B, D). Th e  energy is still a monotonic but  restricted function of 2 so that ),¢(O, oo). 
Introducing distributions pi(k) and al(), ) (we differentiate them from p(k) and 

a(),) in (8.2.5) by the subscript (1)) instead of (8.2.22) and (8.2.23) we have 

where 

Pi(k)+fil(k)= 27 + A(k)+g'(k) ai(g(k)-2)ai(2)d2, 

f f a,(2-g(k))m(k)dk, 

1 8 
A(k) = ~ ~ 6(k). 

(8.2.25) 

(8.2.26) 

We have written down the equations so that they are defined over the whole real axis 
and not only in the intervals (Q, oo) and (B,D).  For  this purpose we assert that 
outside these intervals Pl = a l  = 0 but  the 'hole' distribution functions fil and ai ,  
determining the right-hand sides of (8.2.25) and (8.2.26), are defined (for details see 

§5.1.1). 
Similarly the right-hand sides of eqns. (8.2.15) and (8.2.16) determine the 

functions fi and c~ in the intervals (B, oo), (-- oo, Q). For  instance, eqn. (8.2.15) is of 
the form 

1 1  f p(k)+fi(k)= ~ + A(k)+g'(k) a~(g(k)-2)a(2)d2. 

Further,  the symmetry (8.2.6) brings us back to the appropriate sign of the 

interaction U >  0 

DL 
2S z+-+N- - - ,  

therefore, we have 

6(2) = ol(.~), g ( 2 ) = , h ( 2 )  

p(k) =il l (k) ,  fi(k)=p~(k). 

It is easy to make sure that 

L - 2 L  ~ pl(k) d k -  al(2) d2. 
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Exact results in the theory of magnetic alloys 653 

For  this purpose  let us express Pa in eqns. (8.2.25) and (8.2.26) in terms of  Pl- 
Apply ing  (8.2.26) we have 

+ ff1(2)+ . fa2(2--  2')o't (2') d 2 ' =  - . f a l ( 2 - g ( h ) ) ~ t ( h  ) dk Crl(~) 

('+~o / 1 

and 

L - 2 Pl(k) dk; 

(Here we have used the fact that  

f + o~ dk O. f(g(k))g'(h) 

Therefore ,  compar ing  (8.2.25) and (8.2.27) with (8.2.15) and (8.2.16) we see that  this 
cor respondence  is established if the fol lowing relations hold 

dx(2) lf+  
d2 - 2 _ a l ( 2 - g ( k ) ) d k ,  (8.2.28) 

1 d Rec~(x(2)- iy(2))= a~(2-g(k))A(k)dk ,  (8.2.29) 
~'~d~ -oo 

1 F 
A ( k )  - 7~ (h -- ga) 2 -+- F 2 

Relations (8.2.28) and (8.2.29) are actually valid and play an impor tan t  role later on. 

8.2.4. Ground state of the symmetric Anderson model 
Equat ions  (8.2.18) and (8.2.19) can be wri t ten in a more  convenient  fo rm 

involving no integrals over  2 diverging at the bandwidth .  T h e n  it is necessary to pass 
over to the equat ion for the 'hole '  d is t r ibut ion funct ion  •A). In tegra t ing  (8.2.16) 
over 2 in the range - oo to Q1, instead of  (8.2.18) and (8.2.19), we have the condi t ion  

~(2)d2 = (Q + U / 2 -  A). (8.2.30) 
- - o 0  

T h e  energy  of  the g round  state is 

f° E~°~, -- ~h~'~°) -~- ~i~'(°) + s(2)ff(2) d2, (8.2.31 ) 
- - o o  

where  

E(o) (2UF)I/a f °° do) ( c o s h c 0 / 2 ) - 2 f  +°° 
i 16~1/2 -oo i c o + ~  ( i o ) - 0 )  1/2 -oo exp(icog(h))A(k)dk. (8.2.32) 

It  follows f rom (8.2.17) that  at S z = 0  the limit B =  -- oo and at ca+ U/2 = 0  the limit 
Q = - oo. Therefore ,  in part icular,  the quant i ty  E(h °) is the energy of  the g round  state 
of  the free Fe rmi  gas with the densi ty  of  states 1 / 2re and E (°) is the impur i ty  par t  of  the - - i  
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654 A . M .  Tsvelick and P. B. Wiegmann  

ground-state  energy of the symmetr ic  Anderson model  at S ~ = 0  (Kawakami and 
Okiji 1982a). The  numerical  calculation of E~i °) together with the per turbat ion 
calculation up to (U/F)  4 by Yamada (1975) are shown in fig. 3.7. 

8.2.5. Basic equations 
I t  is convenient to pass over the functions p and ff in eqns. (8.2.15) and (8.2.16). 

Then ,  per forming a Fourier  t ransformation of eqn. (8.2.16) let us express the 
function a by ff and insert it into (8.2.15). Toge ther  with conditions (8.2.17) and 
(8.2.30) we then obtain the basic set of equations: 

p(k) +g'(k) R(g(k) -g(p))p(p)  dp 
- - o 9  

1 . (O)tk ~ ,rk ~ fQ =p, )(k)q_Lr, i ~o _ t J--r,t J s(g(k) - 2)6(2) d2, (8.2.33) 
3 - - o 0  

= s()~--g(2)) ~ + d k -  s(2--g(k))p(k) dk, 
- - ~  - - o o  

where 

R(x) = exp ( - ienx)(1 + exp ([o~1)) - ldo~, s(x) = (2 cosh nx) - 1, 
- - o 0  

p~0)= 1 +g'(k) R(g(k)-g(p))  , 
- -  oO 

p~°~(k) = A(k) +g ' (h)  R(g(k) -g(p) )A(p)  dp. 
- - o 0  

T h e  limits B and Q are determined by the conditions: 

2n p(k) dk, (e a + U/2) if(2) d2 (8.2.38) 
- -  o0  - - o 0  

and the energy is 

E(H, E a + U/2) v- E(O, O) = d°)(k)p(k) dk, 
- - o 0  

where 

(8.2.34) 

(8.2.35) 

(8.2.36) 

(8.2.37) 

(8.2.39) 

I 
+ c ~  

e(°)(k)=k-Ea - U/2 + R(g(k)-g(p))pg'(p) dp. (8.2.40) 
- - o 0  

Equations (8.2.33)-(8.2.40) completely determine propert ies of the Anderson model  
at T = 0  (Kawakami and Okiji 1982a, b, Wiegmann  et al. 1982). 

8.2.6. Valency of an impurity ion 
In  the following we shall use the trick described in § 5.1.2. In the r ight-hand sides 

of (8.2.33) and (8.2.34) it is convenient  to distinguish between the terms of the order 
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Exact results in the theory of magnetic alloys 655 

of unity and of the order of 1/L. By virtue of the linearity of the equations, solutions 
will also involve two terms 

1 1 
P = P h  + ~-Pi; a = ~ h +  ~ a i  (8.2.41) 

corresponding to the host metal  and the impurity,  respectively. As we have already 
ment ioned in § 8.2.1 the functions Ph and ah with the conditions (8.2.36) and (8.2.37) 
describe a free Fermi  gas. The  functions Pi and ai together with (8.2.40) determine 
the impuri ty  part  of the energy. Thus ,  the limits B and Q can be found only if 
solutions of (8.2.33) and (8.2.34) are applied in the leading order with respect to 1/L 
and the impur i ty  part  of the energy can be found if solutions of these equations are 
used in the next order with respect to 1/L. The  values of B and Q should not be 
calculated with a great accuracy since this leads to corrections to the energy of the 
order of 1/L 2. 

T h e  impuri ty  parts of the magnetic momen t  M i and the number  of particles 
(valency nd) can be easily calculated without  minimizing the thermodynamic  
potential E-- HS ~ - AN by directly calculating contributions of the functions Pi and 
ai into the total spin and the num ber  of particles 

1 /" 
Mi = 2 J - oo Pi(k) dk, (8.2.42) 

f ° na = -- ~i(2) d2. (8.2.43) 
- - o 0  

The  simplest problem associated with the investigation of eqns. (8.2.33) and 
(8.2.34) is a problem of calculating the valence at H= O. In  this case S z = 0, therefore 
B =  - o o  and p = 0. There  is only one equation left for a: 

~(2)- fQ R()'-2')f(2')d)"=f +~ s()'-g(k)( l + k ( k ) )  L -  (8.2.44) 

solved explicitly by the W i e n e r - H o p f  method (see the Appendix to 5.1.3). Let  

G {+)(co) = x/(2rt)(( -T- io~ + 0)/2rt) -+ i~/2= 

be familiar analytical functions having no zeros in the upper  (lower) half-plane 
factorizing the function 

(1 - R(co)) - 1 = G { +)(co)G {-)(Co), (8.2.45) 

where R(~o) are the Fourier  t ransforms of the function (8.2.35). The  Fourier  
t ransform of the r ight-hand side of (8.2.44) has the form: 

(2cosh2)-*f :exp(i og(k))( + a(k))dk. 
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656 A . M .  Tsvelick and P. B. Wiegmann 

According to eqn. (6) from Appendix 5.1.3 the solution of (8.2.44) is 

1 f+oo 
8(2) = ~ J _ o~ exp ( --io9(2 -- Q))a (-)(co) &o; 

__i f + oo do)' exp ( -- ioo'Q - leo'l/2 ) 
O - ( - ) ( ( D )  = 

2 n G(-)(e)) j -~o  co-  co'-- i0 G(-)(o) ') 
(8.2.46) 

x - 27zico' + 0 + exp (io)'g(k))A(k) dk 
- -  o D  

Inserting 8h(2) into (8.2.36) we get a condition for Q 

U/2+ea i f+oo do) exp(-[oal/2-irnQ) 1 
( 2 U F )  1/2 - ~ ~ -oo <o+i0 G(-)(oa) (_io9+0)1/2, (8.2.47) 

and ~/a according to (8.2.43) is 

x/~_~Tf +°° &o exp(-Io~l/2) f +~ n a = 1 exp (iro(g(k) - Q)A(k) dk. (8.2.48) 
- oo oa + i0 G ~ -  ) ( e ) )  - ~o 

Formulae (8.2.47) and (8.2.48) parametrically set n a as a function of F, q,  U 
(Wiegmann et al. 1982). In the symmetric case n a = 1. Let us now study the two limits 
( U/2 + q) << ( UF) 1/2 hnd ( U/2 + Ea) >> ( UF) 1/z. 

(a) The symmetric limit (U+2Ea)<<(UF) 1/z. In this case Q < 0  and closing the 
integration path into the upper half-plane we have 

(UF)  a/2 = x n=o (2 7- 12 G(+)(iTz(1 + 2n)) exp (rcQ(1 + 2n)). (8.2.49) 

The valence is also exponential with respect to Q 

n a = l  - x / 2  ~ (--1)" G(+)(in(2n+ l) e x p ( - n ( l + 2 n ) ( g ( k ) - Q ) ) A ( k ) d k ,  
rt ,=o 2 n + l  

(8.2.50) 
i.e. is expanded in powers of (U+2q)/(UF)I/2:  

\ 

The charge susceptibility in this case equals (Kawakami and Okiji 1982c) 

~ c h  gd ~--- - -  &'a ,a=-v/2 -(2U-I") 1/2 -oo exP t ~ F -  ) A(k) dk" (8.2.52) 

At U>>F 

Zch( U )  - - 4 F / 1  / , =  

At ca+ U/2~(UF)  1/2 but U>>F 

1 - -  n d ~ ( F / U )  3 / 2  . 
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Exact results in the theory of magnetic alloys 657 

(b) Th e  most interesting is the asymmetric limit U+2ea>>(UF) i/2. In this case 
Q > 0 and moreover Q >> 1. Closing the integration path into the lower half-plane and 
integrating around the cut, we get, from (8.2.47), 

£d-+- U/2 
_ql,/2+ f C,q£,-1/2 (8.2.53) 

(2UF)  lm .=1 

where q, is related to Q as 

1 
Q = q , +  ~ l n  (2neq,). (8.2.54) 

In the interesting case U>>F (8.2.48) is significantly simplified. Actually, 

f + ® (icog(k))A(k) dk " ( -Icol/2 + iU/8Fco). (8.2.55) exp exp 
- - o 0  

Therefore t ,  
i f+o~ dco 

na=l x/~ J_~ ~o+iO 

(Wiegmann and Tsvelick 1982), where 

exp ( --I~1 + ico/I*) 
G ( -)(06 

(8.2.56) 

1 U  ea(Q + U) I ( U F  ) 
I * - 8 F  Q =  2 U F  2nln(2neq,)+O (Q+U/2)2 . (8.2.57) 

In (8.2.56) and (8.2.57) the quantities Q and U can be of the same order. A certain 
simplification is observed in the intermediate valence region ]ea]<< U. Th e n  the 
quantity 6" = - 2F/ I*  can be regarded as renormalization of the level ca. According 
to (8.2.53) and (8.2.54) we have 

F /neU'~ 
e~=ea+ - n ln~-~F-- ) . (8.2.58) 

Formula (8.2.58) is well known. It has been derived in the framework of the 
perturbation theory, with respect to F, and the scaling approach used by many 
authors (Barabanov et al. 1974, Varma and Yafet 1976, Haldane (1978 a, b) and has 
been discussed in § 3.2.4. 

We repeat the discussion of §3.2.4 in more detail below. The  sign of I*  
substantially affects analytical properties of the integral (8.2.56). Th e  point 1" = oo 
may be regarded as the boundary between regions with a localized moment  and the 
intermediate valence region. 

At 1* < 0 the integration path in (8.2.56) can be closed into the lower half-plane. 
Integrating around tire cut of function exp (-[co[), we get 

1 f ]  sin2nt [ 2 n t )  ( t )  -t 
na=~7~ dt t exp ~ ~ -  F(1 /2+  t) (8.2.59) 

t Note that (8.2.56) coincides with the magnetic susceptibility for the Kondo model with 
the impurity spin S = 1 with the replacement of In HI Tn by n/l* (see § 5.1.3). The reader may 
probably find in this coincidence a deeper physical analogy. 
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658 A . M .  Tsvelick and P. B. Wiegmann 

At I*  > 0 the integration path can be closed into the cut of the integrand in the upper  
half-plane. T h e n  with exponential accuracy we get 

n d = 1 - ~ dt exp . (8.2.60) 0 t ~ - - / F ( 1 / 2 + t )  + O exp ~ -  

T h e  formulae (8.2.59) and (8.2.60) are both expanded in powers of the ' invariant 
charge'  I**  determined by the equation (compare with (2.4.22)): 

I £  t + In (lI**[/e) = 2~rI*- 1. (8.2.61) 

At [E*[ << U condition (8.2.61) determines the 'effective level' (Barabanov et al. 1974, 
Haldane 1978 a, b): 

E** = - --  I£ 1, 
7~ 

Q** -- ~- In ~ = q,  

(8.2.62) 

in inverse integer powers of which the physical quantities are expanded. 
At [I*[<< 1 f rom (8.2.59) and (8.2.60) follow the known asymptotics,  

na=-21**+.. .  ( I * < 0 ) ,  l (8.2.63) 

n~= 1 - I * * + . . .  ( I * > 0 ) ,  

obtained previously in accordance with the per turbat ion theory (Tsvelick and 
Barabanov 1978, Haldane 1978 a, b). T h e y  have already been discussed in § 3.2.4. 

I t  is interesting to note that it is possible to calculate the physical quantities on the 
boundary of the regions of the intermediate valence and localized momen t  (E* = 0, 
I * =  ~ )  and to construct  the expansion over i . - 1 ,  

~ I * -  1 + 0 ( I . -2 ) .  (8.2.64) n ~ = 2 _ x / 2  + n 
3,/2 

The  calculations are given in the Appendix  to § 8.2.6. Note that  at q = 0  the valence 
n e -  0-58 not 2/3 as usually expected. Expansion (8.2.64) can be obtained only f rom 
the exact solution. A numer ica l  calculation of function na(1/I* ) is presented in 
fig. 3.11 (Melnikov 1982b). 

8.2.7. Magnetic susceptibility of the symmetric Anderson model in an arbitrary 
magnetic field 

I t  follows from (8.2.38) that in the symmetr ic  limit U =  - 2q, Q = - ~ and ~ = 0. 
In this simple case instead of tWO coupled equations, (8.2.33) and (8.2.34), there is 
only one linear equation 

k B k 2 _p2  \ 
P(k) + ~ F  f _~o R ( -~u~ ) P(p) dp + p(k) 

(8.2.65) 
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Exact results in the theory of magnetic alloys 659 

According to the method described in § 8.2.6, let us single out from (8.2.65) parts 
corresponding to the host metal and the impurity: p = Ph + (1/L)p i. From (8.2.36) in 
the leading order with respect to 1/L, i.e. employing function Pa, we shall find the 
relation of B with the total, spin of the system S z, which for free particles equals 
SZ/L =H/4n (set # n g i  = 1 ) .  Therefore, 

H/2n=f~ph(k)dk. (8.2.66) 

The impurity magnetic moment,  according to (8.2.36), is 

1 (' 
M i = ~ J _ 0o pi(k) dk. (8.2.67) 

Equation (8.2.65) is reduced to an equation with a difference kernel and is solved 
by the Wiener -Hopf  method. However, it is necessary to distinguish between the 
two cases: B < 0 and B > 0. We understand that B(H)  is a monotonically increasing 
function of H. Therefore, the point B(Ho)=O separates the region of low fields 
H <  H0 from the region of high fields H >  H 0. In eqn. (8.2.65), where the impurity 
parts involving the factor 1/L are omitted, there is only one parameter of the 
dimension of the energy, i.e. (UF)  1/2. Therefore, H 0 ~ (UF)1/2. If  the magnitude of 
the magnetic field exceeds this value, the intermediate regime occurs. At very high 
fields we can neglect either the mixing F, if F<< H<< U, or the Coulomb repulsion, if 
U<<H<<F, or both, if H>>max (U, F) (see fig. 3.5). The same takes place for the 
temperature. Let us stress that the intermediate regime takes place at H ~  (UF)  1/2 
and not at H.-. max (F, U) as is usually thought. We shall see below that when T and 
H cross T o and H 0 analytical properties of the thermodynamic functions change. 
The transition displays itself in the fact that at Re T =  T o and Re H = H  0 in the 
complex plane of T and H there are complex singularities of the physical quantities. 
Yet, on the real axis, all physical quantities are infinitely differentiable at any Tand  H 
as should be the case in low-dimensional systems. 

We shall study below two individual cases: H<~H o and H > H  o. 

(a) Low magnetic fields H <~Ho=const(UF) 1/2 
At B < 0  in the interval ( - o o ,  B) the function g(k)= k2/2UF is monotonous.  

Equation (8.2.65) becomes an equation with the difference kernel at the replacement 
of the variables: 

z =g(k); 

Ph, i(z) = - Ph, i(k)/g' (k) tk = - (2 vrz),/2, (8.2.68) 

(0) _~ Ph, i(z) - - P~°l(k)/g'(h)lk = -(2 vr~),/2. 
We have: 

f 
c~o 

Ph(z) -- R(z- -  z')ph(z' ) dz' =p(°)(z), (8.2.69) 
b 

p i ( g )  - -  - -  ~ , ' ) p i ( ~ : ' )  dz' =p~°)(z), (8.2.70) 

where b = B2/2 UF. The Wiener -Hopf  method enables us to find solutions to both 
equations. It is then convenient to take advantage of the following integral 
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660 A . M .  Tsvelick and P. B. Wiegmann 

representations of the right-hand sides of (8.2.65), (8.2.66), (8.2.69) and (8.2.70). In 
view of the great importance of this representation we give the proof of it in 
Appendix A to 8.2.7. 

p~°)(z) = d o e x p ( - i z o ) t a n h ~  (z>0) .  (8.2.71) 
-oo  

p l 0 ) ( Z )  = ( 2  c o s h  7g(2~ - -  l / I ) ) -  1 - I -  ~i f + o o  d o  exp (-- ioz)  tanh ~_ 
-oo  

x dkA(ik) exp ( -- iog(k)) (z > 0). (8.2.72) 

Using (8.2.69), (8.2.71) and (8.2.72) we get 

i f + ~  f + ~  Ph, i(Z) = ~ doG(+)(o) exp ( - i o ( z - b ) )  do' exp ( - io'b) 
- -  - - o 9  

G(-) (d)  
x ~p(hol(o'), (8.2.73) 

O - -  O '  -f- ttt 

where G(+)(co) are defined in (8.2.45). 
Inserting (8.2.73) into (8.2.66) and (8.2.67) we have the formula determining the 

dependence of b on H: 

H 2 ~ Gt+)(in(2n+l)) 
(FU) 1/2 - n ,=0 ~ (2n+ 1) 3/1 exp ( - n b ( 2 n +  1)); (8.2.74) 

and the formula for the impuri ty part of the magnetic moment  

M i = M~o,a o + m. (8.2.75) 

Here 

i I+°~ d o ) G ~ - ) ( o ) e x p ( _ i o ( b  1 
MKondo(b) = 2xf2 n j _ ~ o _ ~ 0  2 eosho /2  ~ ) ) ,  (8.2.76) 

where 1 / I=  (U 2 - 4F2)/8 UF  is the Schrieffer-Wolf exchange constant 

1 ~ G(+)(in(1 + 2n)) 
m(b) -  x/2 7~,=0 2 n + l  exp ( - n b ( 2 n +  1)) 

x dpexp 2 U F  

Formulae (8.2.74)-(8.2.77) parametrically determine the dependence of the impur-  
ity magnetization on the magnetic field at H <  H 0 and arbitrary U, F and Ea = - U/2. 
The  value of H 0 is determined by the series (8.2.74) at b = 0  

H 0 i ~'+~ do  GC-I(o) 
tanh 2 • J (8.2.78) 

(UF)  1/2 - 2~/n -o~ co-iO (io+O) a/z 

It follows from (8.2.74)-(8.2.77) that, independently of the relation between F and 
U, the magnetic paramagnetism at H--*0 vanishes. Actually, at H<< H 0 the value b >> 1 
and we can confine ourselves to only the first terms of the series (8.2.74) and (8.2.77) 
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Exact results in the theory of magnetic alloys 661 

and the integral (8.2.76) to take into account only the pole in the lower half-plane 
adjacent to zero. Therefore,  2) 

-- n ~ - ~ /  , (8.2.79) 

MKondo(H) = exp + O(H3), (8.2.80) 
2(2 UF)  ~/2 

re(H) - dpA(ip) exp + O(H3). (8.2.81) 
2(2UF) */e _ \ 2 U F -  ] 

Combining (8.2.80) and (8.2.81) we get M i ( 0  ) = 0 and the magnetic susceptibility is. 

1 +o0 

exp 2Ul-" ) )  (8.2.82) 

(Wiegmann et al. 1982, Kawakami and Okiji 1982c). At U<<F the first term in 
(8.2.82) is exponentially small. The  magnetic susceptibility is determined by the 
resonance level width Z~p~ 1/F. This  regime is usually called non-magnetic (see 
fig. 3.5). The  susceptibility is expanded in series over U/F 

where 

Z~p- 2rrF C. ~ , n=O 

C2 n ~ ~ 2m .. C2, ( -  1)n+m2m(2m - 1)", 
m = 0  

n + l  

C 2 n + l  = 2 
m = l  

c2m 3 m r  1),+,,,+1(2m_1)!!. 2 n + l  z" k - -  

(8.2.83 

The  first four terms of this expansion have been calculated in Yamada (1975) 
according to the perturbation theory. Note that the exponential term in (8.2.82), as 
indicated in the footnote on p. 647, is cancelled by higher-order terms and a 
particular approach still holds for the susceptibility. 

At U = 2F we can observe a sharp change in magnetic properties. The  magnetic 
susceptibility becomes exponentially large, then the main role is played by the term 
originating from MKondo. The  point U =  2F does not coincide with the boundary of 
the non-magnetic region in the Har t ree-Fock  approximation (Anderson 1961). 

(b) The strong-coupling limit F>> U, H<<H 0 
In fig. 3.5 this region is divided into two parts by the curve H =  TK, where TK is 

the Kondo temperature.  As above we shall stick to the definition of the Kondo 
temperature given in § 5.1.2: 

T K = (2n~(~p(0))- 1 (8.2.84) 

According to (8.2.82) at U>>F we have: 

Zsp(0)=(2x/(2UF)) -1 exp ~ -  , (8.2.85) 
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662 A . M .  Tsvelick and P. B. Wiegmann 

- n U )  Z K -  (2UF)1/2 exp (8.2.86) - W - "  

At H < T K the susceptibility is exponentially large in comparison with the value at 
U ~  F. This  region is called the strong coupling region in fig. 3.5. In this limit in the 
frame of the Har t ree-Fock approximation (Anderson 1961) there should be formed a 
magnetic moment.  Yet, thanks to a strong correlation between conduction electrons 
and impuri ty spin (Kondo effect), the localized moment  vanishes at the decrease of 
the magnetic field. The  fields H >  TK already break this correlation. In the region 
TK<<H<<H o we can speak of the localized moment.  

The  first term in (8.2.75) is marked by the subscript 'Kondo '  because at U>>U, 
H<<H0, where the Anderson model is equivalent to the s-d exchange model, the 
impurity magnetization is determined by the term MKond o (8.2.76) only. In this 
region all physical quantities, in particular the magnetization, must be universal 
functions of H I T  K and T / T  K. In the strong-coupling region we have (8.2.79) and 
employing the definition (8.2.86) we get the familiar universal function (see § 5.1.3): 

i f +~ d~° c~-)(~°) (.~, ~_~) MK°"d°(H)- 4£27z _o~co-i0 ~ e x p  z~-,n , 

= - -  r , ~ .  ( 8 . 2 . 8 7 )  

We then observe that in the region F<<U, H<<H 0 universal properties of the 
symmetric Anderson model and the s-d exchange model are identical. 

We have already considered the function (8.2.87) in § 5.1.3. We repeat that at 
H<< T K the integral (8.2.87) is expanded in series in integer powers of H I T  n and at 
H >> T k the inverse In H~ Tu (see (5.1.36 ) and (5.1.74)). Thus ,  at H << Ho, F << U eqns. 
(5.1.36) and (5.1.74)). Thus ,  at H<<H0, F<< U eqns. (8.2.69)-and (8.2.70) should 
describe the s-d exchange model. This  fact is easily verified without solving eqns. 
(8.2.69) and (8.2.70). Indeed, according to the representations (8.2.71) and (8.2.72) 
the right-hand sides of eqns. (8.2.69) and (8.2.70) at 1 << z ~ I - 1  have the asymptotic 
form 

p~O)(z ) = (2 U F )  1/2 exp (-- zcz) + . . .  (z>> 1), 
2n 

pl°)(z) = (2 cosh 7z z- -  + . . .  (1 <<z,-~I- 1). 

Due to these relations eqns. (8.2.71) and (8.2.72) coincide with (5.1.20) at b>>l, 
0<I<<1.  

(c) High magnetic fields H >  H o = const (UF) 1/2 
At B > 0 it is convenient to rewrite (8.2.65) using the distribution function of the 

'holes' whose rapidities change in the interval (B, ev). In this interval g'(k) does not 
change its sign and the replacement z=g(k),lS(z)=~(k)/g'(k) makes the kernel 
difference. 

Let  us insert into the integral SR((k 2 -p2) /2  UF)p(p)dp the quantity 

p(k)= -p(k)- -g ' (k)  _ ~ p(p)dp+(r.h.s, of eqn. (8.2.65)) 
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Exact results in the theory of magnetic alloys 663 

Th en  bearing in mind that 

f ~f(k2) kdk=O 

we obtain the equation 

k f °R(k2- -p  2) 1 A(k) (8.2.88) 
p(k)+~(k)- uF,J r \ 2UF fi(p) dp= ~-4 L 

which, after the above-mentioned replacement, becomes the kernel difference 

( UF ~I/2 ( 1  1 
[5(z)- fb R(z-z')[~(z')dz'= \ ~  } \ ~  + ~A(x/(2UFz))) (z>0). 

(8.2.89) 

Th e  impuri ty spin and magnetic field are expressed by the following: 

X 1 1 ffi(Z) dz, 
M i - 2  2 b 

(8.2.90) 

H N f'" - -  [Sh(z ) dz, D'-  c2 
2n L b 2 U F  " 

The  solution of eqns. (8.2.89) is given in Appendix B to 8.2.7 and leads to the 
following expressions for H and Mi: 

H - - H  o =(2n)_l/2 f~  dt (t/e)t (8.2.91) 
(2 UF)  1/2 J o  ~ (1 -- exp (-- 2nbt)) F (½ + t) '  

1 1 f~ dt (t/e) t 
Mi ~n J o ~ exp ( -- 2rcbt) F (½ + t) 2 

x dkexp(_nk2/UF) A ik . (8.2.92) 
- -  o 0  

Formulae (8.2.91) and (8.2.92) at b>> 1 allow for an expansion in half-integer inverse 
powers of the parameter z defined as 

1 
z--  ~ - l n  (2nez) =b. (8.2.93) 

zT~ 

Differentiating (8.2.91) in b and employing (8.2.93) we get 

i.e. 

f f dt t t/z 
~H~z = (4 UFTc)I/2z - 1/2(1 - (27~z) - 1) ~ exp ( - 2nt) F(1/2 + t/z) 

= ( 2 U F )  1/2 ~ ~n Z-1/2-n, e o = l , e l = 0 ,  
n = O  

H--Ho ~, ~n -n+l/2 
( 2 ~ 7 2  -- -- 2 ,~0 2n-- 1 z (8.2.94) 
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664 A. M: Tsvelick and P. B. Wiegmann 

Similarly for Mi: 

/3 2"+1 1 Mi= ~ (2g)n_l/Z_n_l/2 
2 .=o "(2~i)!! 

x t"-l/z+t/Zexp(-2nt)F(1/2+t/z), 

where/3,  are the expansion coefficients 

/3.= (2UF).+1/2 

At higher fields 

(8.2.95) 

(8.2.96) 

H ~  2(UFz) 1/2, 

therefore, the expansion in (8.2.96) is performed in powers of the quantity 
[(max (U, F)) /H] 2. At F, H>> U it follows f rom (8.2.94) and (8.2.95) that 

)~sp(H) = A(H/2) + A( - HI2) (8.2.97) 

as it should be for the non-interact ing resonance level. 
Combining  the results of the preceding sections let us describe the behaviour of 

the impuri ty  magnetic m om en t  in the entire region of the parameters  H,  F, U. 
Despite the fact that the function M i ( H  ) is smooth at any F, U, H it has a different 
character in various regions of fig. 3.6. 

The  simplest behaviour is discovered at U<< F. At H<< H 0 there is a non-magnetic 
regime: M i ( H  ) ~ H/F. At the increase of the field there is a smooth transition to the 
free-orbital regime; at the increase of U the system transfers into the strong-coupling 
regime. The  magnetic m om en t  is expanded in powers of H/TK and H/(UF)1/2, then 
at F ~  U the quantities TK and ( 2 U F )  1/2 are of the same order. At low fields 
( temperatures) the impuri ty  is described by the Fermi- l iquid theory (Yosida & 
Yamada 1970, 1975, Yamada 1975). 

The  increase of the magnetic  field leads to the regime of localized moment: 
(UF)I/2>>H>>TK. In this region the magnetic momen t  differs f rom 1/2 by 
logarithmical corrections. A further  increase of the field breaks the localized 
moment .  All four states with n a = 0, 1, 2 make an almost identical contr ibution and 
again the free orbital regime arises. A qualitative picture of the magnetic momen t  
variation is presented in fig. 8.1. 

In conclusion to this subsection let us discuss the limit U-*0,  H,  F = const. Th is  
limit is the zeroth approximat ion of the per turbat ion theory over U. As we see, 
per turbat ion theory corresponds to the 'high fields' region. T h e  entire region 
H<<(UF) 1/2, together with the Kondo  effect, is outside the application of the 
per turbat ion theory. In  the limit of high fields (or small U) f rom (8.2.88) we get a 
linear relation between the Fermi  point and the magnetic field corresponding to the 
constant density of states. In other words at U ~ 0  eqn. (8.2.88) brings us back to the 
conventional description of free particles, in terms of spin and charge variables. 

At U ~ 0  the function 

k R(k2-p2  1 (k2 p2). 
u r  \ 2 u r  / 
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Exact results in the theory of magnetic alloys 665 

Fig. 8.1 

Mi 

1 

M i  

1 

U>>F 

MI= 1/2(1_ 1/LnH/Tk +.,,) 

/ Strong 
/ coupling 

/ region 
¢ Mi= H/2TrT k 

Tk 

Free orbital 
region 
Mi = 1/2(1-2F/~-H+...) 

I I 
(UF) v2 u ~H 

u ~ r  

Free orbital 
gion 
i =I/2(1-2F/TrH+...) 

/ region 
M i = H / F + - .  

(U[') 1/2 H 

(a) 

0) 

Schematic sketch of the impurity magnetization M i versus H for the symmetric Anderson 
model for (a) U>>F and (b) U ~ F .  The dashed curves correspond to the universal 
Kondo magnetization. For U>>F there is a well-developed local-moment regime, 
whereas for U ~  F there is direct transition from the non-magnetic regime to the free- 
orbital regime. 

Therefore ,  eqn. (8.2.88) becomes  

1 1 1 
p(k) + p(k) + ~- (p(k) + p( - k)) = 2nn + L A (k) at k > 0. 

Hence  we have 

p(k)=O + A(k) = o= '~1/2--_ p~(k), 

where  p~(k) = O(aH- k)(1/2rr + A(k)/L) is the densi ty of  particles with spin a = + 1/2. 
So, for instance, the impur i ty  magnet ic  susceptibil i ty is given by (8.2.97) as it should  
be at U =  0. 

8.2.8. Magnetic susceptibility at H = 0  and arbitrary Ea+ U/2 
At a finite magnet ic  field H and an arbi t rary  value of  cd+ U/2 the p rob lem of 

invest igation of  eqns. (8.2.33) and (8.2.34) becomes  complicated.  I n  any case the 
sys tem (8.2.33) and (8.2.34) could hardly  be solved analytically at arbi t rary  B and Q. 
We can cons t ruc t  an i teration scheme enabl ing us to determine the terms of  the series 
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666 A . M .  Tsvelick and P. B. Wiegmann 

over exp (--nb) at b--+ oo and fixed Q, i.e. series in powers of the magnetic field. In 
other words, magnetization of the impuri ty and the magnetic field, like the functions 
b and Q, are expanded in powers of exp ( - r ib )  and exp (--n(b--Q)) :  

H =  ~ ~,m(O) exp ( - T c n b - n m ( b -  Q)). (8.2.98) 
. , m  

The  coefficients ~,,~ can be determined by iterations. Perturbation in the 
iteration scheme is the integral with p in eqns. (8.2.34). At a low magnetic field 
H<< H I = min ((UF)1/2, F U / (  U- } -2 Q) )  the function g(k) at k < 6 d "~ U/2 is monotonical 
and we can perform the familiar replacement of the variables 

z =g(k), Ph, i(z) = --Ph, i (k) /g '(k) lk  = -Ea - U/2 + ( 2 c r z W  2. 

Let  us rewrite eqn. (8.2.33) as 

P h ,  i ( Z )  __ R ( z _ z , ) P h ,  i ( z , ) d z , = r h ,  i (z)  + ~(0) )L S(Z--~)((~h,i(/~ ) - - O - h , i ( ) )  d~,  
b -(~ 

(8.2.99) 

where 

and the functions 
Equations (8.2.34) make it possible to express ~ by p. We have 

• I -l- oo ~(2) , ; ( o ) ~ _  ~ dcoexp(_ie)(2_Q))G(-:)(co) 
~'~J- -  4 n 2  -oo  

f+o~ ~ G(+)(c#) 
x d c ° ' e x p ( - i d ( Q - b ) ) c o - c o  - iO  2 coshco'/2'  -oo 

where 

fQ  (o) z ~(o) fl~ ru, i(z)=ph, i( )+ S(Z--2)ah, i( )d,~ (8.2.100) 
- o o  

if(o) the 'hole' distributions in 2 at H = 0  (see (8.2.46)). h,i are 

(8.2.101) 

p(+)(co)=f]exp( ia)z )p(z+b)dz .  

The  right-hand side of (8.2.100) is expanded in series in powers of exp ( - n z )  at 
z ~  oo. With it the solution of (8.2.99)Ph, i(z) is also expanded in powers of exp ( -- nz) 
and it means, in its turn, that the functions H(b) and Mi(b) are expanded in powers of 
exp ( - n b ) .  The  principal term of this series is obtained if the second term in the 
right-hand side of (8.2.100) is neglected. According to (8.2.101), rY(2) -- rY(°)(2), has an 
additional small quantity with respect to exp ( - n b )  since p(z),,, exp ( - n z )  at z>> 1 
and p(+)((o) is the analytical function in the upper half-plane. Therefore  

f e x p  (n2)(cY(2) -- ~Y(°)(2))dZ ~ p(+)(in) ( - n(b - Q)). exp 

The  subsequent terms of the expansion are obtained by iteration of eqns. (8.2.99) 
and (8.2.101). 

We shall calculate the magnetic susceptibility at H = 0 .  For  this purpose let us 
neglect ~Y--~(o) in (8Z2.99) and with the same accuracy replace r(z) in (8.2.100) by its 
asymptotics at z--*oo. 
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Exact  results in the theory of magnetic alloys 

ph(z) -- R ( z  -- z')ph(z' ) dz '  = A exp ( - zcz), 
d b  

p i ( z )  --  R ( z  -- z ')pi(z'  ) dz'  = a exp ( -- nz).  
b 

T h e  quantities A and a according to (8.2.71) and (8.2.72) are 

( 2 U F )  ~/z 
A - + exp (nQ)6h( - in), 

2n 

F f +~ dk e x p ( - - n k 2 / 2 U F )  +exp (nQ)~ i ( - iT r ) ,  
a = e x p  (n / I )  + - ~o (ik + U / 2 )  2 + F 2 

667 

(8.2.102) 

(8.2.103) 

(8.2.104) 

where ah, a are given by eqn. (8.2.46). Below, we use the Fermi-l iquid approach 
considered in §5.1.3 for the s-d  exchange model. It  follows f rom (8.2.102) that 
M i / S Z = a / A .  Therefore ,  according to (8.2.35) and (8.2.41) 

H a 

M i  = 4-x A- 

and the magnetic susceptibility at H =  T =  0 is 

{ i 4F2,1+exp  Q  i  Zsp F ' F  = exp x 8 U F  

+ - -  2(2UF)1/a n _ ~ (ik + U/2) 2 + F z + 4n exp (nQ)ffh(-  ix)}- 1. (8.2.105) 

Formula  (8.2.105) is easily simplified in the limits of the symmetr ic  and asymmetr ic  
models. 

8.2.9. Magnet ic  susceptibility of  the asymmetric Anderson model 
In  the vicinity of the symmet ry  case the coefficients of the series (8.2.97) are 

expanded in powers of exp (nQ). This  gives rise to the fact that the magnetic 
susceptibility (8.2.105) is expanded in series in powers of ( Q +  U / 2 ) / ( U F )  1/2. This  
expansion can easily be derived f rom (8.2.105) and (8.2.49). In  the limit Q + U/2 = O, 
i.e. at Q = - ~  formula (8.2.105) coincides with (8.2.82). 

A different picture is observed in the asymmetr ic  case Ea+ U/2>>(UF) 1/2. 
Now the coefficients ~,,~ in (8.2.98) are slow functions of Q (in comparison 
with e x p ( - x Q ) ) .  We shall see below that at Q - - , + o %  for instance, 
a0m(Q) ~ q *  t /z+  0 ( q .  3/2). Therefore ,  in the asymmetr ic  case with the exponential 
accuracy one should retain in (8.2.98) only the terms with n = 0. Th is  will become 
evident by the fact that in (8.2.100) and (8.2.103) we should neglect the second term 
in comparison with the first term. In the asymmetr ic  limit 

A =  2n \ neq* J exp (nQ), 

a = exp 8F- + exp (nQ)~Yi(- ix). 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

hi
ca

go
 L

ib
ra

ry
] 

at
 1

8:
11

 1
8 

A
ug

us
t 2

01
5 



668 A . M .  Tsvelick and P. B. Wiegmann 

The  criterion of this approximation is the condition Q>> 1 or, according to (8.2.53), 
Ea + U/2 >> (U[ ' )  1/2. The  following simplification occurs at U>> F. Then,  according to 
(8.2.55), 

(2~e)1/2 (2EaU U )  [ ( ~ )  i f  +md~Oexp(-'CO[+i~O/I') ] 
Z~P= 8F - -  exp ~** + 2w/(zce) -~o irE+a~ G(-)(¢o) " 

(8.2.106) 

This  formula describes the universal dependence of the magnetic susceptibility 
on the coupling constant I* (8.2.57). The  second term in (8.2.106) is a slow function 
of I*  resembling the function nd(I ~) from (8.2.56). Yet, the first term in (8.2.106) 
points to an essential difference of the phenomena observed in spin and charge 
channels. In the region of the formation of the localized moment  0 < I * << 1 the first 
term is exponentially large and the Kondo effect is observed 

Zsp = (2re Tk)- 1, 

where the Kondo temperature in the asymmetric limit is 

[Ttq(q+U) l 2(2~ */z FU TK= (2UF)al2 exp = - -  x exp (--=/I*) .  
2 U F  ~ \~ee}  U + 2 q  

(8.2.107) 

The  second term in (8.2.106) is of the order of I'/E~ "*z at [I*[ << 1 and in the Kondo-  
effect region is negligibly small in comparison with T~ 1. If  II*l ~ 1 then the localized 
moment  gradually vanishes and both the terms are of the same order. At a further 
increase of I * the first term in (8.2.106) is exponentially small.  

On the boundary of the intermediate-valence region 0 < - I *  << 1, the magnetic 
susceptibility has previously been studied within the framework of perturbation 
theory with respect to F/E~*. Formula (8.2.106) makes it possible to calculate the 
terms of this series. For  this purpose the integration contour can be closed into the 
cut of the integrand in the lower half-plane of co in (8.2.106): 

I f °° dt [27tt, ( e t ) - ' F ( 1  ) X'P=8-~ o 1/2-texP~ Ig-) sin2rct ~+t . (8.2.108) 

At I*--+0 the integral (8.2.108) is expanded in series in powers of/** (see (8.2.61)). 
The  first term of the expansion 

X~p = 12/8z~F +- • • 

has been calculated in (Haldane 1978 a). 
Like the valence, the magnetic susceptibility can be expanded in powers of I * -  1 

inside the region of the mixed valence. Applying the results obtained in the 
Appendix to 8.2.6 we have 

xsp= + °  U ; "  (8.2.109) 

The  numerical calculation of gsv(I*) of (8.2.106) is presented in fig. 3.12 (Melnikov 
1982b). 
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Exact results in the theory of magnetic alloys 669 

8.2.10. Localized-moment regime 
Formula  (8.2.106) determines the first term of the expansion of the magnetic 

susceptibility in powers of the magnetic field H. In  the asymmetr ic  case there are two 
parameters  of this expansion. T h e  first te rm is associated with the expansion 
(8.2.97). Its estimate can be obtained f rom (8.2.53) and (8.2.104). Actually, at O>> 1 
the expansion parameter  in (8.2.97) is exp ( - n ( b - a ) ) .  From (8.2.104), (8.2.53) and 
(8.2.54) it follows that 

(HI2 U F)1/2 = exp ( -- n(b - -  Q ) ) / 7 [ e q  1/2.  

Therefore ,  the expansion is per formed in powers of H/H 1. 

H 1 = ,-~ F - - .  (8.2.110) 
U+ 2Q 

The  terms of this series are determined by iterations. Another  parameter  arises in 
the region of the localized moment :  1t /T  K. In  this region, with the exponential 
accuracy, one can neglect corrections of the order of H/F. The  dependence of the 
magnetization on H I T  K is universal, in other words, all the physical quantities 
depend on the parameters  Ea, F and Uon ly  through T K. Therefore,  the universal part  
of the magnetization is given by the function MKo,ao(H/TK) calculated previously for 
the s-d  model (see § 5.1.3). T o  obtain this function it is sufficient to retain the whole 
term s ( z - 1 / I )  in formula (8.2.72). 

Equations (8.2.99) with accuracy up to O(H/F) coincide with (5.1.20). Per form-  
ing the replacement  ph(z)---+Aph(z) according to (8.2.71), (8.2.72) and (8.2.99) we 
have 

1(1) 
ph, i(Z) -- R ( z - z ' ) P h , i ( z ' ) d z ' = e x p ( - r c z ) + [ s  z -  , 

b 

where H/2nA = p h ( Z )  dz. 
b 

An important  difference arises on comparison of the functions b(H) in the 
Anderson and s-d  exchange models. All the integrals for the Anderson model  are 
normalized with respect to ( U F )  1/2, and with respect to eF for the s-d  model. This  
circumstance together with formulae (8.2.86) and (8.2.107) solves the problem of the 
pre-exponential  mult ipl ier  in the dependence of T K on I which we have discussed. 
Remember ,  that despite the results of the per turbat ion theory (see §5.1.5), on 
solution of the s -d  model  we have obtained TK = 2eF/n exp (--1r/I) (see eqn. 5.1.23) 
instead of T K = eF I1/2 exp ( -  re~I). As has been assumed this divergence is an artefact 
of the linear spect rum and the point-like potential approximations.  A consequence of 
these approx imat ions - -an  independence of the scattering phase of the scattered 
particle energy-- leads  to an incorrect pre-exponential  dependence of T K on I.  In the 
Anderson model,  even in the linear spect rum approximation,  the scattering phase is 
a function of the energy, which leads to a correct pre-exponent  

g 1,2 /z exp,-/). (8.2.111) 

The  pre-exponential  dependence of the magnetic susceptibility and the dependence 
of T K on F and U has been found numerically by the renormalization group 
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670 A . M .  Tsvelick and P. B. Wiegmann 

procedure (Kr ishna-Murthy et al. 1980 a, b). Th e  numerical result for the magnetic 
susceptibility is 

0"103 U_I(nU)Z/2  (rcU) 
Xsp = 0"18~ ~F- exp -SF ' 

which, with brilliant accuracy, coincides with the exact value of (8.2.85): 
0-103/0-82 -~ n -  1/2 

8.3• Thermodynamic properties of the Anderson model at finite temperatures 
8.3•1. The theory of a finite but large system 

Previously, in §8.2.1, we have given a classification of solutions of the Bethe- 
Ansatz equations (8.2.A) and (8.2.B). Let  us stress again that this classification is 
valid with accuracy up to O(exp ( - 6 N ) ) ,  where 6N is the number  of excitations 
above the ground state. This  is the accuracy that is required for the thermodynamical  
limit 6N/N = const at N--* ~ (see the Appendix to § 8.2.1). At finite temperatures we 
must take into consideration all types of excitations• Then ,  above all, we must  
express eigenvalues of the hamiltonian in terms of rapidities of possible types of 
excitations• Let  us assume that in the system there are N - 2 M '  unbounded charge 
particles with rapidities kj ( J =  1 , . . . ,  N- -2M' ) ,  M,  spin complexes of the order n 
with rapidities 2~" and M', bounded spin complexes of the order n with rapidities 2~ 
which are related to 2M', pair charge complexes (see (8.2.4)). 

The  numbers  M', M', are explicitly related as 

M'= ~ nM',. (8.3•1) 
n = l  

Equations (8.2.A) and (8.2.B) in terms of kj, 2~, 2~" are 

exp (iksL + if(k j)) = ~ e,,(g(kj)-2~) f i  [-[ em(g(kj)-2'pr"), (8.3.2) 
Mn Me,, 

n=l ~=I m=l /7=i 

exp iL 2 k~ ""'')+i 6(k~ "'''0) 
p = l  p = l  
~=--+i r_+l 

N - 2 M '  M ~  

= H e,(2"~'-g(kj)) ~ H E,,,(2~'-2~"), (8.3.3) 
. /=1  m = l  f l = l  

N - 2 M "  

H e.O"-g(k))=- M. H E,,,(2"~- 2~'), (8.3.4) 
1 = 1  m = i  # = 1  

where e,(2) = (4 + in/2)/(2--in/2); 2 2 E,m = el,-mleln-m[ + 2 • Logarith- • . en+rn-2en+m • 

mizing eqns. (8.3.2)-(8.3.4) we have 

k~L + 6(kj) = 2nNj-  
M. 

-- ~ Om(g(kj)- 2~), (8.3.5 a) 
. = 1  ~ t=l  m = l  f l = l  

- 2L(2UI')I/2 Re ( ,~'n + 2 )I/2-- 2 Re ~[(2UF)I/2(2~ + in[2)I/Z ] 

N -  2M" ~ Mm 
tn ~ tn trn =2nJ~"+ Z 0,(2, -g(kj))+ Z --nm(2, - -2 f l  ), (8.3.5b) 

j = l  m - 1  f l = l  

N - 2 M "  
Z O,(2~--g(ki))=ZnJ~+ ~ M,. "~ . E - -nrn (2" - - i f l  ) '  (8.3.5 c) 

j = l  m = l  f l = l  
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Exact results in the theory of magnetic alloys 671 

where  

and 

0,(2) - i In en(2) = 2 t a n -  1 (22/n) 

r a i n  (n, m) - 1 

~,m(2) = i In Enm(2  ) = 0in _ mf(2) + 2 ~ 01, - ml + 2k(2) + 0n + ,,(2). 
k = l  

T h e  integers 2Nj, 2J~ and 2J~ are q u a n t u m  number s  of the system. 
T h e  energy and the project ion of the spin are 

E= ~ kj+2(2UF)l/zn~=a 2 Re(2~+in/2) / +n ~e+~ , 
j = l  = ~ = 1  

SZ=N[2 - ~ n(M'n+Mn). 
n = 1  

(8.3.6) 

(8.3.7) 

8.3.2. Integral equations 
In the limit N,  L ~  or; N/L, M,/L, M',/L = const  solutions of  eqns. (8.3.5) kj, 2~, 

2~" should be descr ibed by  the dis t r ibut ions of  part icles p(k), a,(2), a',(2) and the 
appropr ia te  'holes '  ~(k), ft,(2), ~',(2). 

Equat ions  (8.3.8) relate the dis t r ibut ions  of particles and 'holes '  as 

! A(k} 
2n + ~ -  =~(k)+p(k)-g'(k) ~ a,(g(k)-2)(a',(2)+a,(2))d2, (8 .3 .8a)  

n = l  

A,m * am(2) = f a , ( 2 - g ( k ) ) p ( k )  dk, (8.3.8 b) 6,(2) + 
m = l  3 

A,m • 6m(2 ) + f a , ( 2 - g ( k ) ) p ( k )  6',(2) + dk 
r a = l  3 

(2UI')a/2Re(2+in) -~/2 1 d [ ( 2 )  ~/2] 
-- 2n ~ nLd2Re6 ( 2 U F )  1/2 2 +  . (8.3.8c) 

Here  the sign • means  a convolut ion,  

a,(2) = (1/2~z)(d/d2)On(2), and Ann(X) = fin,,, + (1/2n)(d/dx)~nm(X ) 

is the same matr ix  that  arose in s -d  model  the rmodynamics .  T h e  useful formulae  for 
the Four ie r  t ransforms  of Anm and the inverse opera tor  (A-1)n ~ which we shall 
r equ i re  below are wri t ten  in § 6.1.2 (eqns. (6.1.24) and (6.1.25)). 

Fo r  fu r the r  t ransformat ions  of  eqns. (8.3.8) the formulae  for the r igh t -hand  side 
of (8.3.8 c) generalizing the relations (8.2.28) and (8.2.29) are of  great use. It  is easy to 
check that  

-(2UF)l/2Re(2+in/2)-l/z= an(2-g(k))dk , (8.3.9) 

- - ~ - R e 6 ( ( 2 U F )  / 2 +  = an(2-g(k))A(k ) dk, (8.3.10) 
?'~ - - c o  

where  A(k) = df(k)/dk. 
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672 A . M .  Tsvelick and P. B. Wiegmann 

8.3.3. Thermodynamic equilibrium 
To  find the equilibrium values of particle-hole distribution one should, 

according to the statistical mechanics principles, find the min imum of the 
thermodynamical  potential 

{] =E-- TS-HSZ--AN,  (8.3.11) 

where H i s  a magnetic field, A is the chemical potential calculated with respect to the 
bandwidth and the entropy S is 

S= f {(p+fi)ln(p+fi)-plnp-filnfi+(~.+~.)ln(a.+~.) 

- ~n In ~ , -  ~n In ~n + (z'~ + ~'n) In (~'n + ~'~)-- G'n In ~',-- ~'n In ~'~} d,~, (8.3.12 

The  condition 

bp fia~ ba'~ 0 

with (8.3.8) gives an equation for the energy of elementary excitations. (All algebra is 
quite analogous to that of § 6.1.3.) 

e ( k ) = k + H + D - - A +  T 
n = l  

In n(~,(2))-- ~, Anm • In n ( -  ~m(2)) 
m = l  

where 

In n0c'n(2)) -- 

' I n [  -n(-  ~c~(2)) Ida, 
ao(2-g(k) )  L n(--  ~'~(2)) 

_ n•T fdkg'(k)an(2-g(k)) In n( -e (k) ) ,  

2n [ U ) 
n.~* lnn(--~(~))= -- T ~ +  T + D - n  

m = l  

+ an(2-g(k))g(k)dk- dkg'(k)a~(2-g(k))lnn(-e(k)), 

(8.3.13 a) 

(8.3.13 b) 

(8.3.13 c) 

g = T l n  flip; ~:,, = T l n  fin/an; ~',, = T l n  ~',,/a',, 

and 

n(e) = (exp (e/T) + 1)- 1 is the Fermi distribution. 
The  thermodynamical potential in terms of e, ~c n and ~c' n is of the form 

= ~h + Qi, 

where ~h is the thermodynamical  potential of the host metal and Y~i is the impuri ty 
part of the thermodynamical  potential. 

dk oo ndL=Tflnn(--~(k))~--Tf~fd'~nE an(,~--g(k)) 
x Inn(--  ~'n(2)) , (8.3.14a) 
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Exact results in the theory of magnetic alloys 673 

~i= Tfln fleA(k) n(-~(k) )A(k)dk-T dk d2,~i 

x an(2-g(k)) Inn(-- ~c',(2)). (8.3.14 b) 

It is possible to derive another form of eqns. (8.3.13) and (8.3.14) which is sometimes 
more convenient. It is then necessary to vary the thermodynamical with respect to 
the 'hole' distributions fi, 3", and ~',. Using the explicit form of the matrix A-  1, we 
have 

Tjs(g(k)-4) In [n(Kt(2))/n(K'~(2))] d2, (8.3.15 a) ~(k) ~ l~0(k ) + 

~c,(2) = - Ts • In n(~cn- l(2))n(~c,+ 1(4)) 

T fs(2-g(k))  Inn(-- ~(k))g'(k) dk, (8.3.15 b) + 

~c'~(2) = - Ts * In n(~,_ l(2))n(~:', + 1(2)) 

T f s (2 -g (k ) )  in n(~(k)g'(k) dk, (8.3.15 c) + 8,1 d 
with the conditions 

, _v 
~Co=IC 0 --oo; lim ~ " = H ,  lira ~c, =ca+ - A  (8.3.15d) 

where 
f + ot) 

eo(h)=k--ca-- U/2+ R(g(k)--g(p))pg'(p) dp+D--A,  
-oo 

Then there occurs another form of the thermodynamical potential 

flh/ L = E~ °~ + T. f  P~°)( k ) In n( - e(k)) dk 

+ ~  dk d2s(g(k)--2)lnnOc'l(2)), (8.3.16a) 

(o7 f (o) ~'~i -~" Ei + T Pi (k) tn n(-- ~(k)) dk 

+Tfdkfd2zX(k)s(g(k)-2)lnn(~c'l(2)), (8.3.16b) 

where p~°)(k) and pl°)(k) are determined by the right-hand side of formulae (8.2.36) 
and (8.2.37) and E~ °), El °) are the energies of the ground state of the host metal and of 
the impurity, respectively. 

Equations (8.3.15) and (8.3.16) completely describe thermodynamical properties 
of the Anderson model at arbitrary U, F, ca, H, T<<@. They have been obtained by 
Kawakami and Okiji (1982 c) Okiji and Kawakami (1982 b), Filyov et al. (1982) and 
Tsvelick and Wiegmann (1982). Therefore, (8.3.15) and (8.3.16 a) describe the free 
particle gas. Therefore, 

f~b H2 nTZ AZ 
- (8.3.17) 

L 8~ 12 8n " 
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674 A . M .  Tsvelick and P. B. Wiegmann 

As for the s-d models (see § 6.1.4) (Filyov et al. 1981) there is a relation characteristic 
of free particles between the distributions p, an, a', and the elementary excitation 
energies e, ~n, tc'n in the leading order with respect to 1/L. It  is the consequence of the 
linear spectrum E =  P. Comparison of the results of (8.3.15) and (8.3.8) yields, for 
the host parts of the distributions: 

1 9e(k) 1 9e(k) 
p (k ) -  2n 9k n(e(k)); fi(k)= 27c 9k (1--n(e(k))); 

1 9K,(2) 1 9K,(2)(l_n(~,(2))) ;  
a , (2)= 2n 92 n(~,(2)); 6 , (2)= 2n 9~-- 

1 8~;(2) 1 8~c;(2) (1 -n(~c',(2))). 
a',(2)= 2n 92 n(~;(2)); 8',(2)= 2n 8 ~  

(8.3.18) 

By means of these formulae, as for the s-d model, one can make sure of the 
validity of (8.3.17) through a direct calculation which we do not give here. 

In Appendix B to 8.3.3 we have studied low- and high-temperature limits for a 
specific case and have shown how eqns. (8.2.33) and (8.2.34) follow from (8.3.13) 
(8.3.16) for T/H---~O, T/F~O. 

In the high-temperature limit T>>F it is evident that 

~ i = _ T l n ( l + 2 c o s h H / 2 T e x p ( - - e a / T ) + e x p ( - ( 2 E a + U ) / T ) .  (8.3.19) 

This  formula is derived from (8.3.13)-(8.3.16) in Appendix A to §8.3.3. In the 
asymmetric case one should also bear in mind the renormalization of ¢aoc~* 
(Appendix to § 8.3.7). 

8.3.4. Symmetries of charge and spin excitations 
The  symmetry discussed in §8.2.3 manifests itself most explicitly in eqns. 

(8.3.15) and (8.3.16). To  make sure of it let us transform (8.3.16). According to 
(8.3.15 a) we have 

TIn  n( -- e(k)) = e(k) + TIn  n(e(k)) = TIn n(e(k)) + k + Y(g(k)). 

Inserting it into (8.3.16) we get another formula for ~h: 

f ~h/L = T pch°)(k)lnn(e(k))dk+ ~ dk d2s(g(k)-2)lnn~cl(,~))+ E',. 

Similarly, for the impurity part we have 

~i=Tfpl°)lnn(r,(k))dk+Tfdkfd,~A(k)s(g(k)-2)lnn(tq("]'))+E'i " 

Hence, it becomes clear that the replacement 

U o  - U, HoEu+ U/2--A, k - e  a -  U/2~ --k+Ea+ U/2 

(~ .  --~ ~'~, ~ ( k ) - *  - ~(h))  

does not affect eqns. (8.3.15) (8.3.17). 
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Exact results in the theory of magnetic alloys 675 

8.3.5. Low-temperature thermodynamics 
T h e  free energy  at low tempera tures  is expanded  in series over integer powers  of  

T. Outs ide the region T ~  TK<<min((UF) 1/2, F(U/(U+ 2Q)), where the K o n d o  
effect is observed,  this expansion is pe r fo rmed  in powers  of  T/(UF) 1/z in the 
symmet r i c  case and in powers  of  T((U+2Q)/FU) in the asymmetr ic  case. In  the 
K o n d o  region at T<< T K the terms T~ T K are exponent ia l ly  large in compar i son  with 
T/(UF) 1/2 or T( U+ 2Q/FU). In  the following, we shall obtain the linear term in the 
heat capacity, with respect  to t empera tu re  at T ~ 0 ,  outside the K o n d o  region and in 
the K o n d o  region we shall obtain the entire universal  dependence  on T~ T K as well as 
the non-universa l  l inear cont r ibu t ion  with respect  to t empera ture  (at a rbi t rary  
F,  ea, U). 

In  the low- tempera tu re  limit the main  cont r ibu t ion  comes f rom the region 
e0(k)~ T, i.e. the region of  energies near the Fe rmi  level. T h e n  certain simplifi- 
cations arise. Above  all, it is sufficient to confine ourselves only to the leading 
asymptot ics  of  the terms related to charge degrees of  f reedom in the r igh t -hand  side 
of  (8.3.15 a) 

-- T fs(g(k)-- 2) In n(~' 1(2)) d 2 =  T e x p  (--rcg(k))~¢, 

d = ~- exp (zc)0K] (2)d2 - exp (n2) In n(-1K'1(2)]) d2. 
oO - - o 0  

(8.3.20) 

J 
T o  preserve the principal  te rms with respect  to T suffice it to take d ( T = 0 )  in 
(8.3.20). T h e  value of  d ( 0 )  coincides with the one calculated in (8.2.103). T h u s  at 
T ~ 0  the principal  cont r ibu t ion  comes f rom the m o m e n t a  at which  

A exp ( - ng(k)) ~ T. 

Therefore ,  the accuracy  of  the approximat ion  (8.3.20) is O(T/A). 
T h e  region k > Q +  U/2 leads to exponent ia l ly  small correct ions  to the free 

energy.  Outs ide  this region g(k) is monoton ica l  and it is possible to pass over to the 
variable z =g(k)  and, with the indicated accuracy,  to extend the integral  over z on the 
whole  real axis. W i t h  the same accuracy let us, according to (8.2.71) and (8.2.72), 
replace in (8.3.16)pl°)(z) and p~°)(z) by their asymptot ics  at z ~  + ~ :  

p~O~(z ) _ (2 UF) m 
2n exp ( -- nz) + . . . .  (8.3.21 a) 

- 1  

I 1 
In  (8.3.21a) along with the second term ~ e x p ( - n z )  we have deliberately 

retained all the terms ~ exp ( - nzn) (n = 1,2 . . . .  ) with the coefficients exponential ly 
large with respect to U/F at U>>F. T h o s e  terms are responsible for the universal  
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676 A . M .  Tsvelick and P. B. Wiegmann 

behaviour of the physical quantities in the Kondo effect region U>> F, T<< (UF)  1/2. 
After these simplifications eqns. (8.3.15) and (8.3.16) acquire the form 

g(z) = 2A exp ( - - n z )  + Ts * In n(K1, (z)); 

~:.(2) = -- Ts * In [n(t¢._ 1 (2))n(~c,,+ 2(4))] - 6.1Ts * Inn(--  5(2)); 

(8.3.22 a) 

lim tc./n = H; 

(8.3.22 b) 

r 
~c'0(2) = - Ts * in [n(~c'._ 1(2))n(~c" + 2(2))] + •nl [ r $  * in n(/3(,~)) 

- 2  fs(2-g(k))g(k)dk];  .~lim~c'n/n=qWU/2; (8.3.22c) 

~ -O~P4-O TM (8.3.23 a) i----i  ----i 

~ P = T  s ( z - 1 / I ) + e x p ( - n z ) ( F / n )  dpexp(-np2/2UF)  

[( ip+U/2)2+F2]- l} lnn(-e(z))dz;  (8.3.23 b) 

f~h=Tfd2fdkA(k)s(2-g(k)lnn(~c'l(2)).  (8.3.23 c) 

Note that eqns. (8.3.22 a, b) now completely determine the functions e and ~c~. 

8.3.6. The Kondo limit 
At U +  ca >> F, - q > >  F and T<<A one should neglect the contribution of charge 

fluctuations and the non-universal contribution of spin fluctuations, i.e. retain only 
the first term in (8.3.23 b). Thus ,  we neglect the terms of the order (T/A) 2 in the free 
energy in comparison with (T/TK) 2 a t  T<< T K or in comparison with (In T/TK)-1 at 
T>> TK. Thus ,  eqns. (8.3.22 a, b) determine the universal behaviour of the physical 
quantities in the Kondo limit. Introducing the dimensionless quantities 

~p,(x)= -- ~ s  --z + --lnn ' 

1 ( 1 2A \ ~o.(x)=~._l -4+Tin-y-), 

we have 

~p,(x)= --s ,  ln[n((p,_l(x))n((p~+l(x))]--~5,1exp(nx); lim q)n/n=H/T. 
tl ~ oo 

(8.3.24) 

(8.3.25) 

Then  

f~ i=T  s x + - l n  ~T lnn(q~l(x))dx, 
~ rK 

where TK is defined by (8.2.107). 
Equations (8.3.25) have been derived in §6.1.5 for the s-d model. It has been 

shown that these equations also determine the thermodynamics of free electrons 
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Exact results in the theory of magnetic alloys 677 

with a constant density of states and the bandwidth TK/n. This  circumstance makes it 
possible to assert that 

- -co exp (Trx)In n((pt(x ) dx= ~ + ~ n \ T ]  ' (8.3.26) 

which has been rigorously proved in § 6.1.6 by direct calculations. This  result will be 
used below. 

8.3.7. Specific heat at T<<q+  U/2, F, U 
We shall calculate below the specific heat at T-*0, T<<Eaq- (_7/2. The  method of 

calculation enables one to subsequently find the coefficients of the expansion in 
powers of T/a;(Q).  If  q +  U/2<<(UF) 1/2 then a'l(Q)~-Ea+ U/2. Therefore,  this 
method is formally inapplicable to the symmetric case. However,  the expression 
obtained for the specific heat 

C i f(F/U, (Ea+ U/2)/(UF) 1/2) 
T q + U/2 

is regular at q -*  - U/2. At q = - U/2 this formula gives an expression for the specific 
heat of the symmetric model. To  make sure of the validity of this assertion we 
propose in § 8.3.8 another method of calculation suitable for the symmetric case and 
show that, as should be expected: 

lim lim = lim lim (8.3.27) 
Ea+U/2-+O T"+O T-+O Ea+U/2--+O 

To  derive the formula for the specific heat it is convenient to use the Fermi-liquid 
approach already used in the analogous situation for the s-d exchange model 
(§ 6.1.5). The  other trick relating to the commutativity of limits T-*0 and H -* 0  was 
used by Kawakami and Okiji (1982 b) for the symmetric model. We considered it in 
§ 6.1.10 for the s-d exchange model. Above all, let us calculate the contribution 
of spin excitations at T-*0. Retaining only  the principal terms with respect to 
e x p ( - n z )  in eqn. (8.3.23) we have 

~ P = 2 - j _ o o  exp(nx) lnn(q)l(x)) / )  + ~- j_~o dP 

U 2 
x e x p ( ; U P ; ) [ ( i p + ~ - )  + F 2 ]  - * )  

or, according to (8.3.26), 

A-1  

12){ 
~ P  --"-= - -  A - 1  ~ T 2 + ~ H  exp (re/I) + dp 

oo 

x exp U 2 ~, (8.3.28) 
2 U F  J 

where A is given by (8.2.103). 
Let  us now take the charge part of the thermodynamieal  potential. It follows from 

(8.3.22) that at q+U/2>>T, n > l  at x',>(n-1)(q+U/2). Therefore,  with the 
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678 A . M .  Tsvelick and P. B. Wiegmann 

exponential accuracy O(exp ( -  (e a + U/2)/T)) in eqn. (8.3.13) one should neglect all 
to'. except ~c]. Designating t¢'1(2)= 4(2) we have 

4(2) + T n(4(2')) d2 '= e a + U/2 

-- dkg'(k)s(2-g(k))(k-- rlnn(--e(k))). (8.3.29) 

The function ~(2,) monotonically decreases and turns to zero at the point 2 = Q. 
Let us expand 4(2) in powers of T2: 4(2)=4o(2)+ T241(2). For this purpose it is 
convenient to rewrite the second term in the left-hand side of (8.3.31) as 

f° TR*lnn(~(2) )=-  R(2-R')4(2')d2'+ rR*lnn(--14(2)l). (8.3.30) 
- - o 0  

At T ~ 0  

nZT 2 R ( 2 - O )  
- TR * In n(-[{(2)[) = t- Q(T4). 

6 [a4(2)/O2]a= o 

Retaining only the linear terms with respect to T in the right-hand side of (8.3.29) we 
get 

T_fs(2-g(k) In n ( -  g(k) )g'(k) dk 

"~exp(n2) Tfexp(--ng(k))lnn(--~(k))g'(k)dk. (8.3.31) 

Taking into account (8.3.26) we get the linear equation for ~1: 

f° 41(2) -- R(2-- ),')41 (),') d),' 
- - c c  

/t 2 R().-- Q) +exp (/t2) ( n 1 (H'~Z'~A_~. (8.3.32) 
= 6- 1~4o(,a.)/,%a,l.~=~ ~- + 8 7 \ T ]  ] 

The function 

,f° #(z) d2', 

where ff satisfies eqn. (8.2.44). 
Let  us represent the solution of (8.3.32) as 

4'() ')=f1( ) - ~ + 8 r c \ T ]  A - l + f 2 ( 2 ) 1 2 1 5 ( 0 ) ] - l '  

wherefl(~ ) andf2(~ ) satisfy (8.3.32), in the right-hand side of which there are either 
exp (7r2) or R(~,-O). The function f l ( )  0 can be defined from formula (8.2.46) 

f1(2)= 2#~ f +~_~ exp ( --/o~(2 -- O))G(-)(~) d/~--rc exp (gO). 
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Exact results in the theory of magnetic alloys 

Let  us now take the thermodynamic  potential. At T--*0 we have: 

~ h ( T , H  ) ch T~ T2 ( f~cod,~ao(;Ofd,~)) - ~ i  (0,0)= 12 8(Q) % ( 0 ) -  

_co a°(2)fl(2) \ 12 H2 -1 

679 

(8.3.33) 

f 
+co  

a0(2) = dkA(k)s(g(k) -- 2). 
- o 0  

T h e  last te rm in (8.3.33) has been calculated above- - i t  is the non-Kondo  part  of the 
magnetic susceptibility (8.2.106). 

T o  calculate the first te rm in (8.3.53) we apply the technique proposed by 
Takahashi  (1973). Let  us study the equation: fo 

T(2) -- R(2 -- 2') T(2') d2' = ao(2) - s (2-- g(k))A(k) dk. 
- c o  - c o  

I t  is easy to check that 

; f° e ao(2)f2(2)d2= R(2-Q)T(2)d2= T(O)-ao(O). 
- c o  - c o  

Therefore,  

f~ ~h(T, H) ch -f~i  (0,0)= n T(Q) T2 
12 e(O) 

Making use of the relation 

we have 

[ x T2 H 2 Q 

- ~ - i 2  + - ~ n ) A - l f _ c o  a°('~)fl(;Od;~ (8.3.34) 

T(O)/47zo(O) =Z~h, 

where ;(oh (see (8.2.52) or (8.2.56)) is the charge susceptibility. 
Combining  (8.3.28) and (8.3.34) we get 

T27~ 2 H 2 
Di(T'  H ) -  Di(0' 0) = 3 (Zsp + X~h)- -~ -  Zsp, (8.3.36) 

where Zsp is the spin susceptibility. This  almost explicit Fermi-l iquid formula 

Ci 2n z 
lim -- (g~p -~- Z c h )  ( 8 . 3 . 3  7) 
r~0 T 3 

is obtained for the symmetr ic  Anderson model by Yamada (1975) (see § 3.2.2). I t  
holds for arbi trary H and e d + U/2. 

T ( Q ) =  lim i(oT(o~) (8.3.35) 
~o--* oo 
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680 A . M .  Tsvelick and P. B. Wiegmann 

8.3.8. The specific heat of the symmetric Anderson model 
It  is useful to derive (8.3.36) for the symmetric case. If  Q +  U / 2 = 0  all the 

functions ~c', are essential. At T<<(UF) 1/2 the main contribution comes from the 
region A~ - oo: 

s (2-g(k))  In n(g(k))g'(k) dk "" exp (n2) exp ( - rig(k)) In n(e(k))g'(k) dk. 
- o o  

When calculating this integral at T--*0 one should take into consideration only the 
region k >> (UF)1/2 where e(k) "- 2k. Therefore,  

f+oo foo (2UF)1/2 
- T exp ( - ng(k)) In n(e(k))g'(k) dk-~ 2 exp ( - zrg(k))kg'(k) dk = 

- o o  O 7~ 

Equations (8.3.22 c) rewritten in terms of the dimensionless function 

1 ,(2+ (2ur)1/2 ~.(t)= 

coincide with the universal eqns. (8.3.25), where H is replaced by Q + U/2. 
Therefore,  the charge part of the thermodynamic potential may be written 

(2 UF)  1/2 exp ( -- ng(k))A(k) dk exp (n2) In n(((),)) d2 
oo - o o  

= - -  _oo(2U~)t/2 (k)exp(-ng(k)) T 2 + ~ Q + 5 )  ) 

=-x°h( 1 ) ~- T2+  ~-(£a+ U/2) 2 . (8.3.38) 

Combining (8.3.28) and (8.3.38) we have (8.3.36). 
Note, in conclusion, that as we have already discussed in § 2.3 the condition for 

the application of the non-degenerate Anderson model AcF >> (2J + 1)F is not usually 
valid for alloys which exhibit mixed-valence behaviour; the crystal field splitting is 
more than the resonance width. Therefore ,  the degenerate Anderson model is more 
realistic. The  solution of this model is the subject of the following section. 

Appendix to §8.2.1. Solutions with complex rapidities for the Bethe-Ansatz equation 
for the Anderson model 

(a) Let  us consider the accuracy of the string (8.2.7) forming the ground state of 
the Anderson model: 

k(~ -+) -- x(2=) -T- iy(2=) + 2(-+)(2~). (1) 

At T = 0  from eqn. (8.2.9) we have 

]y(-+)(2)] = exp (--Ly(2))  l~ 12-- 2p+i  
e=l 2 - 2 p  " (2) 

Passing to the continuous limit, we have 

[y (+)( ,~) l=exp{LI fa (2 ' ) ln f (~-2 ' )2+l )d2 ' -y (2) l }  \ (3) 
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Exact results in the theory of magnetic alloys 

Using  the explicit  fo rm of ~r(~.) in the g round  state 

a ( 2 ) = ~ f s ( 2 - g ( k ) d k  

eqn. (1) yields 

where  

17(-+)(,~.)1 = exp { -- L(UF)*/2 , (2)} ,  

681 

(4) 

(5) 

f + o0 do) exp ( - -  Io) l -  io)~.) 1 
T(2) = (6) 

-oo o ) - i 0  2 cosh o9/2 ( - i o ) +  0) l/z" 

T h e n  the s t r ing solut ion (1) is valid wi th  accuracy  O(exp (-L(UF)t/2)).  
(b) N o w  let us consider  the s t r ings (8.2.3). Repea t ing  the calculat ion of  A p p e n d i x  

A to §6.2.1 we obta in  

I~.1--o exp + L T  2 s i n h ~ ( 2 - J , ' )  

T h i s  es t imate  p roves  the s t r ing hypothes i s  (8.2.3) in the  t h e r m o d y n a m i c  l imit  
limL-. ~ T, = 0. 

Appendix to §8.2.6. Evaluation of the magnetic susceptibility and the occupation 
number in the mixed-valence region ([ 6~1 << F)  

T o  evaluate  the integrals  (8.2.57) and (8.2.106) for 16ffl<<F let us t r ans fo rm the 
in tegrands  using the relat ion 1 + exp ( - ]o)])  = G ~ +)((o)G {-)(co). At I *  < 0 

n a = l +  _ ~ o ) + i 0  G(-5(O)) G(-)(0)  e x p - - ~ g -  . (1) 

At I * > 0  

n a = 2 - ~  - ~ o o ) + i 0  ~ " 

Similar ly  at I *  > 0 

x/(2=e) 2 q  exp ~ -  2x/(=e ) o ) + i g  
Zsp = 8F - 

1 exp (3) 
x G{_)(o) ) G(_)i_i~) -i~ , 

and at I* < 0 

x / ( 2 r c e ) ( 2 q + U ) [ 2 ~ ( ~ e ) f  +~° do) G,+)(o))exp(io))] 
Zsp = 8F U _ o0 co + i~ ~ -  . (4) 

Le t  

1 f+~o f(+)(x) = ~ exp ( -  io)x) f( +- )(o)) do9, 
- - o o  
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682 A.M. Tsvelick and P. B. Wiegmann 

where )~+)(co) is an analytical function in the upper (lower) half-plane. Then the 
following relations exist: 

lim f(+)(x)= -T- lim icoa~+)(co), 
x ~ + 0  co--+ m 

(5) 

lim df(+)(x)=-T-limcoZ(f(+-)(oo) - i -  lim f(+)(x)) 
x~_+O ~o~oo \ (22 x _+0 / 

and so on. Applying these relations to (1)-(4) it is easy to obtain eqns. (8.2.64) and 
(8.2.109). Note that using this trick one may expand the magnetization of the S=  1 
spin impurity in the s-d exchange model in powers of In H~ T n. 

Appendix A to §8.2.7. Proof of the relations (8.2.71) and (8.2.72) 
(a) Let us calculate the Fourier transform of the function 

2z J _ R(z-g(k))dk l: 

, ( f ;  , exp(z~oz)-~-z) dz l+exp(]co]) exp(io~g(k))dk =2~n 
- o o  - o o  

(12 l+exp([co[)l ) + ( 2 U F ' ~  "l/2im_0i# x exp(icog(k))dk = tanh 2 .~  (A1) 

(b) The Fourier transform of the impurity part of the right-hand side of 
eqn. (8.2.70) is 

lea+U~2 1 f+~ 
exp (ie~g(k))A(k) dk 1 + exp (1~ol) exp (i~og(k))A(k) dk. (A 2) 

- o o  

One can rewrite the integrals as follows: 

ffa+v/2 ( i i  ) • f-o~ i? (icog(k))A(k)dk=exp - 2 + -  - 2n signc° e x p  

× exp(-icok2/2UF)[(ik+U/2)2+F2]-ldk+f(-)(co), (A3) 

where f(-)((o) is the analytical function in the lower half-plane. 

f:[exp(ioog(k))A(k)dk=exp(-~+s)-isigncoFf: [ 
( i c 0 k 2 ) [ (  U)2 ] -a  

x exp 2UF ik+ ~ +F  2 dk. (A4) 

Summing up expressions (A 3) and (A 4) one obtains 

60 -1 tanh f +oo (A 2)= (2  cosh~-) e x p ( 7 )  - iF co 
eqn. ~-~ 2- 3 - o~ 

ic~k 2 
x exp(  2 U F ) I / /  g'~Z -]-1 / (AS) 

and after inverse transformation we have (8.2.72). 
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Exact results in the theory of magnetic alloys 683 

Appendix B to §8.2.7. Expansion in inverse powers of the magnetic field at H>> (UF)  1/2 
Let  us study the host part  of eqn. (8.2.89): 

[~(z)-- o R ( z - z ' ) [ J h ( z ' ) d z ' = ~  2 ( ~ + b ) ]  O(z+b). (B1) 

We find the solution in the following form 

1 ( U F ~  1/2 

For ~ we get 

f: ~(z)  -- R(z- -  z ' )~(z ')  dz' - - -  

where 

O(z+b) O(z) 
(z + b) 1/2 z 1/2 

I 
o0 

~(z) = O(z)z- 1/2 _ 2 R(z  - z ' )z ' -  1/2dz'. 
do 

~(z), (B 2) 

The  function 

f 
oo 

fl(co) = exp (icog(h))A(k) dk 
o 

has a cut in the lower half-plane. T h e  discontinuity on this cut is 

and can be expanded in powers of t: 

Discfl(-- i t )= ~, fl,t"+ l/2F(--1/2--n). 
n = O  

Closing the integration path in (B 4) and (B 5) into the lower half-plane we get 
(8.2.91) and (8.2.92). 

Let  ~ o ( z ) - - a  b- independent  funct ion--sa t is fy  eqn. (B 2), the r ight-hand side of 
which contains only ~(z). For  the function X ( z ) =  ~ ( z ) - - ~ 0 ( z )  we have 

X(z ) - -  o R ( z -  z ')X(z')  d z ' -  O(z + b) O(z) 
( z ~ i 7  2 zl /2.  (B 3) 

Solving this equation we get 

X ( z ) d z =  i +co do G(_)(~o~ ex_p(-ioob)-I  (B4) 
o 4 (2r0  -oo c 0 - i 0  " " ( - i ( o + 0 )  1/2 " 

Let  us close the integration path into the lower half-plane where (--leo + 0)1/2 has a 
cut. Then  we obtain eqn. (8.2.91). 

The  solution of eqn. (8.2.89) gives the following expression for the impuri ty  
moment :  

1 
M,= i f+°°G(-)(°))f l(co)exp(-icob)dw. (B5) 

2 23)-27z .) oo- co -- i ~  
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684 A . M .  Tsvel ick and P. B. Wiegmann  

Appendix A to §8.3.3. High-temperature limit (T>>F) 
W h e n  F tends to zero one should consider  the kernels in eqns. (8.3.13) and 

(8.3.14) as del ta-funct ions.  T h u s  one obtains: 

and 

~r~i = T I n  [n( - 13(e.a))n(l¢' 1 ( U/8F))] 

t/~,z = (1 + q'. + 1)(1 + tf,_ 1), n = l , 2 , . . . ,  

with the bounda ry  condi t ions  

_ U  1 l+r/~=exp( ~ ) ( + ~ ) ,  

lim 1 In 11', = q + U/2 
n~oo n T 

and 

q,z = (1 + q,+ 1)(1+ r/,+ 1), n = 0 , 1  . . . .  , 

with the boundary  condi t ions  

r/0=~; 1 +r/_~ =(1 + r/'~) -~, 

lim 1 lim qn = H 
n~oo n T" 

Here  ( = exp ( -- 8(Ea) / T),  t/' n = exp (K'n(U/8F)/T), and r/n = exp (I%(U/8F)/T).  
T h e  general solutions of eqns. (A 2) and (A 5) are 

(A 1) 

(A 2) 

(A 3) 

(A 4) 

(A 5) 

(A 6) 

(A7)  

1 + ~. = p L  1 + . ' .  = q.~ 

sinh (c% + fl) sinh (?, + 6) p ,  -- , q. -- 
sinh (x sinh 

(A 8) 

F r o m  (A 4) and (A 6) one obtains 

H 6a+ U/2 
= ~ ,  v T (A 9) 

Condi t ions  (A 3) and (A 7) give us the equat ions for the unknown parameters  fl and 3: 

sinha 
• , {'6a+ U/2"~ = e x p  - ~ s i n h H/ T ;  

s l n n [  -~ ) 

sinh 6a + U/2 
T 

. , [ q + U / 2  + 3 "  ~ 
) 

sinh (fl-- H~ T) 
sinh H~ T 

(A 10) 
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Exact results in the theory of magnetic alloys 685 

The solution of this system is 

exp (2fl) = exp z_ ' 

s i n h 6 = e x p ( - U / 2 T ) s i n h ( e a ~ / 2 )  

x (2cOshH/2T+exp(ea/T)+exp(-~(ea+U)/T) ; 

z _+ = exp ( _+ HI2 T) + exp (ca~ T) + exp ( -- (ca + U)/T). 

Using formulae (A 1), (A8) and (A 11) we obtain formula (8.3.19). 

( A l l )  

Appendix B to §8.3.3. Low-temperature limit (T<<F, H, %+ U/2) 
It follows from eqns. (8.3.15) that the functions K,(2) and ~c'(2) (m¢1)  are 

positive and finite at T/H, T/(ca+ U/2)--*0. Therefore,  at T ~ 0  all the terms in eqn. 
(8.3.13) which contain exp (-- K,/T) or exp (-- ~c'/T) (m ¢ 1) vanish and eqns. (8.3.13) 
become linear: 

e (h)=k- -  al(g(k)-2)~c'l(2)d2; (B 1) 
Q 

~i(2) + a2(2- 2')~ci(2') d Z =  2x(2) + a l (2-g(k))e(k)  dh. (B 2) 
Q - c o  

Remember  that t¢' 1 (2) is a monotonously decreasing function, to' 1 (Q)=  0, and e(k) is a 
monotonously increasing function, e (B)=0.  Differentiating (B 1) and (B 2) with 
respect to k and 2 and using (8.3.18) we obtain eqns. (8.2.15) and (8.2.16). 

Appendix to §8.3.7. Thermodynamics of the asymmetric Anderson model 
Th e  thermodynamics equations (8.3.13) become simpler in the asymmetric limit 

U>>]Eal , F, T,H. In this regime K'n~(n--1)(Ea+U/2), consequently one should 
replace all terms T ln  n(--~:'n) by 0 except for n =  1. The  equation in ~:'1 = 4 has the 
form (see also eqn. (8.3.29)) 

f° 4(2)-- R(2-2')4(2')d2'=~a+ U/2-2  s(2-g(k))g(k)dk 
- c o  

-Tfs(2-g(k))lnn(-~(k))g'(k)dk-TR*lnn(-14(2)l) .  (1) 

The  integration limit Q is very large: Q ~  U/8F>>l. The  main contribution to Q 
gives the first term in the right-hand side of eqn. (1). Let  

4(2) = 40(2) + 41(2-- O), (2) 

where 40(2) satisfies the equation: 

f0 4o(2)-- R(2-Z)4o(2')d2'=%+ U/2--2 s(2-g(h))g(h)dh. (3) 
- c o  - ~  
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686 A . M .  Tsvelick and P. B. Wiegmann 

A similar equation has been solved (see eqn. (8.2.44)). Using the functions 6(2) and 
a(2) one can find the solution of eqn. (3): 

f 
Q 

4o(2) = 2~ if(2') d2' (4 < O), 

(4) 

4o(2) = -- 2~ a(2') d2' (4 > O). 
Q 

Taking into account eqn. (8.2.57) and (2) we have the following equation in Q: 

U ea 1 rceU 
Q -  8F - 2F + 2~ l n ~ F  - +4i (0) '  (5) 

where ~i(2) is the solution of the equation: 

f° i t (2) - -  R(2-- 2')Ii(2') dZ = --TR*lnn(--141(2) 
- 0 o  

+ ~o (2+Q) l ) -  T s(2+Q--g(k))lnn(--e(k))g'(k)dk. (6) 
- o o  

Now we are ready to perform the limit U ~  oo. First, the main contribution to the 
second integral in the right-hand side of eqn. (6) is due to the region g(k)~ Q or 
Ik-Q] << U. In this region one can replace 

k 1 ~eU 
g(k)-Q--* l n ~ F -  - i t ( 0 ) .  (7) 

2F 2~ 

Second, only the region 2 ~ 1 is essential for the first integral in the right-hand side of 
eqn. (6). Therefore,  one can restrict oneself to asymptotic behaviour 

where 

Io(2+ Q) ~2"(2)  (Q--, oo), (8) 

l l n ~  = 2 .  (9) 
2 " +  27~ 2he 

In approximations (7) and (8), after inserting the new variables, we obtain the 
universal thermodynamic equations, which contain only the renormalized quantity 
e~ as a parameter: 

f 
O 

I~ (2 ) -  R ( 2 -  2')4~(2') dZ = --TR*lnn(--14~(2)+2*(2)[) 
- o o  

- - T  s ( 2 - k ) l n n ( - e ( k ) ) d k ;  
- o o  

(lO) 

f 
O 

~(k)= -- 2F~oo(k)- s (k- -2) i i (2)d2+Ts*lnn(-]41(k)  
- t ~ o  

+ 2*(k)[) + Ts * In n(tci(k)); (11) 
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Exact results in the theory of magnetic alloys 687 

K.(2) = -- Ts * In [n(~c. _ 1 (2))nQc. + 1 (2))] - b. 1T s(2 - k) In n( - g(k)) dk 
-oo 

(12) 

f +~ d¢o G(-)(°°) exp (-- i~ok). 
~°°(k) = - ~o (co-  i0) 2 cosh co/2 

The  universal form of the thermodynamical  potential in the asymmetric case is: 

T s e~(T) ~, 0 ~o R f l i ( T , H ) =  h + ~ - j m n ( - e ( k ) ) d k -  2 +  {,(2) d2 

+ T  -ooR Z + ~ - - ] l n n ( - l g x ( Z ) + i . * ( 2 ) l d 2 + f ~ , ( O , O ) ,  (13) 

where we introduced 

Ea~(T) = E~ + ~ (0 )  (14) 

and ~i(0, 0) is the ground-state energy. 
The  universal equations (10)-(14) describe 

asymmetric Anderson model completely. 
the thermodynamics of the 

9 9. I N T R O D U C T I O N  TO T H E  EXACT S O L U T I O N  OF T H E  

DEGENERATE A N D E R S O N  MODEL 

Th e  degenerate Anderson model, as has been explained in 9 2.1.3, describes the 
rare-earth alloys in the mixed-valence region. In this region the crystal field splitting 
should be compared with a large quantity ( 2 J +  1)1" and prescribes the impuri ty 
atomic shell as degenerate. 

We give below the solution of the Bethe-Ansatz equation (4.6.A)-(4.6.C) at zero 
temperatures for the model 

~tf = y, qC[Ck~ + V Z (ck+~Xo~ + X ,  oCk~) + Z EyX~. (9.1.1) 
k,?  k,~ 

In particular cases the hamiltonians reduces to the non-degenerate asymmetric 
Anderson model (n = 2), or to the degenerate Kondo model ( -  ef >> F), the solutions 
of which are presented in 99 7 and 8. We assume that the reader is acquainted with 
these sections, which we shall often refer to. The  present section is based on the 
results obtained by Scblottmann (1982, 1983) and Ogievetskii and the present 
authors (1983). 

9.1. Basic equations 

The  Bethe-Ansatz equations obtained in 9 4.6 have the form (Schlottmann 1982) 

~-A ~j _ { k=/2F + 2~- i /2  ) 
exp(ik=L)= \ ~ 2 p + i / 2  exp ( - i~(k=)) ,  (9.1.2) 

mI~"/~o)_~O+~)a_;s') ) [ "'= "~b' - -  o / ~  

z = ± l  f l = l  \ " ~ a  --"~fl  --*'1 ~ 

/ 2o) 2o) a_ i \ 
= - I ' =  - ^ P  -'-~ I .  ~=1 \ , ~ ( j ) - 2 ( j ) - i ]  ' j = l , . . . , n - 1 .  (9.1.3) 
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688 A . M .  Tsvelick and P. B. Wiegmann 

The  energy of the state {k=, 2}i),.. .  ,-~J("- i)$j is 

N 

E =  E k,. (9.1.4) 
a = l  

n = 2 J + l ,  the quantities rnj=~__-)Nk,  where N k is the number  of particles with 
momen tum projection J- -k ,  m o = N  is the total number  of particles m , = 0 ,  and 
2~ m= - k J 2 F .  T h e  Bethe-Ansatz equations (9.1.2) and (9.1.3) for the host metal  are 
just  the same as the Bethe-Ansatz equations for the one-dimensional  n-colour Fermi  
gas with the'(%function attractive interaction. T h e  Bethe-Ansatz equations for the 
ground state of this problem were obtained by Takahashi  (1970 a). He showed that in 
contrast  to the repulsive case the rapidities of the ground state are grouped in 
complexes of a special type. This  result also holds for the Anderson model  
(Schlot tmann 1982). 

Let  us describe the space of the solutions of eqns. (9.1.3) and (9.1.4). As in the 
SU(n) Kondo model (§ 7) the spin rapidities 2 (J) ( j =  1 . . . .  , n - -1 )  are grouped into 
spin complexes or 'strings' .  

(J) --](J) " a - i ( P 2 1 - - k ) "  k = l  ,p, (9.1.6) 
p ,  k ;  • - -  * ~ p ,  k ;  • ~ ~ ~ " " " 

but, in addition, the rapidities with neighbouring colours j and j +  t can form the 
bound state 

2°)=2{J+i)+_-i/2; j = O , . . .  , n - - l ,  (9.1.7) 

where 2 (0) = -- k/2F. 
T h e  fact is that paired rapidities prove to be energetically favourable compared  to 

unpaired rapidities, and the degrees of pairing is m a x i m u m  in the ground state. 
Let  us define the numbers  r k (k = 1 . . . .  , n) 

mk_l=rk+2rk+x + . . . + r , ( n +  l - -k) ,  (9.1.8) 

which is illustrated by fig. 9.1. I t  is expected that in the ground state the pri+p_ i 
rapidities ).{J,)_>r.+ 2 + i , ' ' ' ,  20) form the p complexes with the 

• e . , :  p -  " +  ( p - - 1 ) r j + p - z + p r j + p - 1  

centres 2~ j+v-1,  ,20 p- i )  
• " " j + p - 1  

( p -  1 ) r j + p  - 2 +  p k - q - -  " ~ k  - -  , • " • 

Let us illustrate, according to Takahashi  (1970 a) the structure of the ground state in 
the case n = 3. In  this case 

N = r l  + 2r2 + 3r3; mi =r2 + 2r3;  m2=r 3. 

All 2(12),. )12) are real• Among the 2(1)'s only • ( 1 1 J ,  ~(1) are real, the remaining . . , -~ r  3 . . . , - v r  2 

2(2)'s form the complexes of the order 2: 

(i) ~(1) = 2(i2) + i/2, (2) • 
r 2 + l , " "  ' ,  " r 2 + 2 r 3  . . . .  • r 3  ___*/2. 
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Exact results in the theory of magnetic alloys 689 

Fig. 9.1 

h // 

r 2 

Young tableau which corresponds to the irreducible representation [n ~", . . . ,  2 r2, 1"]. 

T h e  rapidi t ies  2 (0) are d iv ided into three  groups:  2~ m, 3(o) are real 

2(0) ~(o) _ ~(t) _L ;/') ,~(1) + i/2, 
r l + l ~  " " " ~ * ~ r l  + 2 r 2 - - * ~ 1  I ~ . / ~ )  . . . ~ . . r 2  - -  

(o) ., (o) / i, 
2 r l  + 2 r 2 _ 1 ,  . . 2rl+2r2+3r3=2(12)+ O, 

[ - - i ,  

T h e  scheme  is g iven in fig. 9.2. 

i, 

3(°)+ O, 
• • " ,  " ' r 3  

- - i ,  

Fol lowing  T a k a h a s h i  (1970 a) one can easily der ive the Be the -Ansa tz  equat ions  
for  the i n d e p e n d e n t  real rapidi t ies  2tl j), 2 (j) ( j '=  0, .,  n - 1 ) .  H e r e  we omi t  the 

• " " ~ r j  " " 

calculat ions which  are convent ional  bu t  cumber some•  As a result  we have 

/ r to) .(], =a 

(9.1.10) 

where  

2 n 
an(2) = (9.1.12) 7r 4 2 2 + n  2 '  

exp i ~L2 ( j ) ( j+ l )  = H H ~ ,~o) ~ti), j = o , 1 ,  , n - 1 .  ~ i +  j - -  2 k k * ~ t  - - * ~ f l  ] ,  • • • 
k = 0  i=k / / = 1  

As usual,  we define the d is t r ibut ions  of  part icles and holes descr ib ing  the sys tem in 
the con t inuous  l imit  p j(2) and fij(2), respect ively.  T h e  integral  equat ions  are 

- ( j + l ) +  2+ 

j n - i  

=f i j ( 2 )+  ~ ~ ai+i_2k*Pi(2),  j = 0 , 1  . . . .  , n - - 1 .  (9.1.11) 
k = 0  i=k 
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690 A . M .  Tsve l i ck  and P. B. W i e g m a n n  

Fig. 9.2 

I ' 

xcl/ 

xc2) 

l i  
, Ti/2 

I " , r  

.L I " - i / 2  
",F I 
I ~ . - i  

I I I 
I I I 

I i / 2  

' o 6 6 , J 

c o 

A A m 
v v v 

Distribution of rapidities on the complex plane. In this case r 1 = 6, r 2 = 2 and r 3 = 3. 

or,  in a more  c o m p a c t  fo rm 

F(j+l)+n la j+  l )'+ ~ =PJ('~)-b'~Jk * Pk(~) 

with  the  ma t r i x  

i f  +~ O~Sk(2) = ~ dcoexp(--ice2)o~j,(co); 
-ao 

(9.1.13) 

where  

"~Jk(m)- sinh(min(j'k)+ l)c°/2 ( [°~[ ) 
s inhe) /2  exp - ~ - m a x ( j , k )  . (9.1.15) 

T h e  energy  of  the  s ta te  is 

- 2 F " £  ~ f E =  ( p + l )  2pp(2)d2. 
p=0 

(9.1.16) 

In  all the  p r o b l e m s  we have cons ide red  in th is  ar t ic le  the  ene rgy  of  the  hos t  me ta l  is a 
m o n o t o n i c  func t ion  of  the  rap id i t ies .  As  a consequence ,  in the  g r o u n d  state all 
pa r t i c les  occupy  h a l f - o p e n e d  in terva ls ,  i.e. 

pj(),) = 0 at B j < 2 <  c~; fi/(),) = 0 at --  o0 < ) , < B j ;  1 
(9.1.17) 

a ( 2 ) = 0  at - o o < 2 < Q ;  i f ( 2 ) = 0  at Q < 2 < o o .  

j,k=O,...n-1, (9.1.14) 
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Exact results in the theory of magnetic alloys 691 

Here  we set p,_ 1 = a, ft,_ t = # to distinguish between the spin and charge variables. 
T h e  parameters  Q and Bj are determined by the conditions: 

r.= fa(~)dZ; r~= f&+l(2)d2. (9.1.18) 

In the true ground state all r l ,  . . . ,  rn_ 1 are zero, Bj= oo. The  integral equation for 
this case is 

- - +  ~-( ~ a ,  2 +  =e(2)  + ~ ,  a(2), (9.1.19) 

= n f a ( 2 )  d2; (9.1.20) N 

here we set o~._ x , , - ,  = o~. 
The  latter equations were obtained by Schlot tmann (1982). As previously it is 

convenient  to describe the system in terms of excitations under  the true ground state. 
We shall use the functions {P0, . . - ,  ,o,-2, a}. Excluding a(2) f rom eqn. (9.1.14) and 
redefining pj"'+pj+ I w e  have 

1 
fij(2) + Dik * pk(2) = s3 * e(2) + ~ s,_j(2 + Q/2F),  (9.1.21) 

sinh [ (co/2)(n-max (j, k))] sin [(.o/2 min (j, k)] 

Djk(¢°) ---- sinh a~/2 sinh n¢o/2 exp (10)1/2) 

-- 1 +a2(m) Ajk(c°) (see (7.1.7)). (9.1.22) 

Here  

sinh coj / 2 
st(c°) = sinh o~n/2 ; (9.1.23) 

~(~)= °~-l*e('~)+F ~ - ( Cs) 
-- --+n o~-1*a .  2+~-~ --Sk*Pk (9.1.24) 

and we have used 

+ ~  (~)d~ n - 1  ~ J "  

Note that we have met  the matrix Djk above- - i t  is the kernel of the integral equations 
(7.1.7) and (7.3.2) for the degenerate Kondo model. 

T h e  r ight-hand side of eqns. (9.1.22) according to expressions (9.1.22) and 
(9.1.23) are exponentially small at ) .~  + oo. I t  also means that 

pj(2)=constexp(--  2n2/n) (2 -++oo)  

and all integrals involving pj in eqns. (9.1.15) and (9.1.16) converge. Quite a different 
situation is obtained with the function a(),). According to (9.1.21) a ( 2 ) ~ F / n  at 2 ~  ~ ,  
therefore, the integrals are not well defined. The  divergence of the integrals is a 
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692 A . M .  Tsvelick and P. B. Wiegmann 

consequence of the initial linear spectrum approximat ion which leads to an 
unbounded spectrum. Therefore,  one should treat all k 's  as restricted in the interval 

D ~-) 
_ _ _  < 2 ( . -  a) < D ( + ) / 2 F ,  ( 9 . 1 . 2 5 )  

2F 

where D ~ -+) are edges of the energy band. By virtue of this the density of states of the 
host metal, which, far f rom the band edges, is given by 1-'/n in eqn. (9.1.24), should be 
treated as zero beyond the interval (9.1.25). T h e  lower edge D (-) is related to the total 
number  of particles with the given colour filling the reservoir: 

2nN 
D ~-)= (9.1.26) 

nL 

In §8 when we have dealt with the non-degenerate  problem it has also been 
necessary to cut off at high negative energy. In fact, let us compare  eqns. (8.2.34) and 
(9.1.24). T h e  te rm 

2 ~ f  + ~o s(2--g(k)) dk 

in eqn. (8.2.34) plays the role of the term F/Tz in eqn. (9.1.24). The  first te rm becomes 
equal to the second after the substi tution g(k)--* -k/2F. Both lead to a(2)-~ const, at 
2--*oo. However ,  there is a difference between these terms. T h e  point is that the 
high-energy processes at the positive energy (2-+oo) are cut off at 2 = U in the first 
term, i.e. when the channel [nd= 2) starts participating in the real processes. Now 
we deal with a quite different positive high-energy cut-off. As we have assumed 
(§ 4.6) the Coulomb energy in our system is infinite compared  with the conduction 
band width. So we cut off the positive energy processes like the negative energy 
Processes by the band edges (9.1.25). Let  us then replace the te rm F/n in eqn. 
(9.1.24) with some realistic density of states t/0(2 ) 

1 
a(2) + ~ - 1 ,8 (2)  + S, * p,(2) = t/o(2 ) + ~ x ~ - 1 ,  an(2 + e/2F), (9.1.27) 

where ~1o(,;.)--+0 at ,;.>>D (+1 or 2<< - D ( - ~ / 2 F .  
Integrat ing eqn. (9.1.27) and using the condition 

N= ~ prp ( 9 . 1 . 2 8 )  
p = l  

and (9.1.17) and (9.1.7) we have 

f nD~+ ~ ~(2) d 2 -  2n (9.1.29) 

Equations (9.1.21) and (9.1.27) together with the conditions (9.1.17) and (9.1.29) 
describe the properties of the degenerate Anderson model at T = 0 .  
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Exact results in the theory of magnetic alloys 693 

9.2. Universality 
The universal property of the asymmetric Anderson model is well known: all 

physical quantities depend only on the renormalized parameters: 

F D (+) 
e~=ef+(n-- 1 ) - - l n - -  (9.2.1) 

F 

instead of on the bare parameters el, D. Here we prove the universality properties in 
the framework of eqns. (9.1.17), (9.1.21), (9.1.27) and (9..29). For this purpose we 
take the limit D--+oo. 

Let  us decompose the functions 0-, 8 into two parts: 

~(2) = Go(2) -- ~1(2-  Q); 8(2) = 80(2 ) -- a1(2-- Q), ((9.2.2) 

where the functions a o and 8 o are the densities of particles and holes in the true 
ground state: 

f° 0-0(2 ) -- K , ( 2 -  2')8o(2' ) d2 '= r/o(2 ) (2 > Q) (9.2.3) 
- - o o  

80(2)-  (Q K,(2-2 ')8o(2 ')d2 '=qo(2) (2<Q),  (9.2.4) 
d -  o0 

where K , ( e ) ) = l - ~ - - a ( o ) ) .  To solve eqns. (9.2.3) and (9.2.4) according to the 
Wiener-Hopf  method (see the Appendix to § 5.1.3) one must factorize the kernel 

sinh nco/2 s~nh ~-72 _ f -- ~ ( n - - 1 ) )  (9.2.5) ~((0)------ exp~ = G(+)(~o)G(-)(og), 

where G(+)(co) is an analytical function in the upper (lower) half-plane. We easily 
find: 

(io9+0~ i'°("-l)/z~ / co ) , F(l+ico/2n) 
G(-)((°)=G(+)(-o))= \-2~-~e ] exp~i27nlnn x~/nF(l+in~/2)" 

(9.2.6) 

Using these functions we have: 

I +~ do)' 
6o(~) = -- G(-)(~o)exp(i~oQ) o~_o),_ioeXp(-i~o'Q)qo(e)')G(+)(o)'), 

Z 7 [  ~ - m 

(9.2.7) 
where 

qo(co) = exp (ie)2))qo(2) d2. 
- - o c )  

To find the quantity Q first note that, as we shall show below, Q is a large positive 
value. Using this fact it is easy to find the asymptotic behaviour ffo(2 ) at 2--*oo. We 
have 

8 ° ( 2 ) = ~ (  1 n - 1  1 ) D(+) 
2~ 121 + " "  at - ~ - -  >>[21 >> 1, 

D (+) 
#o(2)=0 at [2 I>> 2~- 

(9.2.8) 
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694 A . M .  Tsvelick and P. B. Wiegmann 

Inserting (9.2.8) into (9.1.29) and using (9.1.15) we obtain the renormalization of the 
resonance level: 

where 

( n - - l )  D (+) 
Q 2 ~ l n  T + O ( 1 ) + q ,  (9.2.9) 

2 ,0 ,  

It is understandable that in the absence of the magnetic field q = 0. 
Consider now eqns. (9.1.21). The  term s j*6  o in the right-hand side of eqn. 

(9.1.21) converges without any cut-off. Therefore,  in eqn. (9.1.21) one can use (9.2.7) 
with ~/0(2)= F/n. Shifting the arguments of the functions pj(~), ~(2) in eqn. (9.1.21), 
for the host part of the distributions, we have: 

Rjk(), -- 2 + b j-- bk)Pk(2 ) d2' 

;o 
= f j ( X + b j ) -  , ~h , , s j ( 2+ b j -2 )a l (2 )d2 ;  (9.2.11) 

- - o O  

;o f: ~ ( 2 ) - -  R,(2--  2')ffh~ (,F) d2' = , h , Sk(2--2 --bk)Pk(2 ) d2', (9.2.12) 

where 

and 

f j ( , ~ )  - 

R~k(O9 ) = 1 -- Djk(~O), 

i nF~  °° sinhflo/2 G(-)(co) 1 
d~exp  (-i(.o2) smhn~/2  G(-)(0) ~ - i 0  2n2 J -  0o 

Rn(c0) = 1 - - i f -  a(co); b j = B j - Q  

depends on e~/2F, H/F. 
In the presence of the magnetic field the host part of the numbers r k have the form 

(see § 7) 

HL 
rk-- 2n ( k = l , . . . , n - - 1 ) .  

Therefore,  the quantities b k are determined by the conditions 

f~P j (2 )  d 2 = H  2~" (9.2.13) 

Now we shall study the impurity part of eqns. (9.1.21) and (9.1.24). They  are 

p}(,~)_ ['~Rjk(,~_)J +b j_  bk)Pk()~i ,) d)~' 

fo =s, - j (2+~f (H) /2F+bj )+ sj(2-2'+bj)~i(2')dZ, (9.2.14) 
- - c o  
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Exact results in the theory of magnetic alloys 695 

I 
0 

(~ i ( ,~)  __ R n ( , ~  - -  2 " ) t T i ( 2  ' )  d 2 '  
- o o  

= __ sk(2 _ ), __bk)Pk(, ' )  d2 '+ ~ - 1 • a,(2+e~(H)/2F),  
o 

where we put  

(9.2.15) 

E~(H) = E~ + q(H)2F. (9.2.16) 

The  impuri ty parts of the magnetization and the occupation number  are given by 
the integrals: 

1 "-1 fo~0 M i =  ~ j~ l j (n - - j )  p}(2)d)~, (9.2.17) 

f0 ns=  1 - #i(2)d2. (9.2.18) 
- o o  

The  universal equations (9.2.10)-(9.2.18) completely describe the equilibrium 
properties at T =  0 of the degenerate Anderson model. At n = 2 we come back to the 
equations for the asymmetric non-degenerate Anderson model. 

9.3. The occupation number 

Here we shall derive the dependence of the valence of the impuri ty ion on the 
renormalized level position at H = 0 .  From eqns. (9.2.13) and (9.2.15) we have at 
H = 0 ,  b k = ~  and ;o 

ffi(2) -- R,,(2-- 2')~i(~') d2' = ~ - 1 .  a,,(2 + e~/2F), 
--GO 

(9.3.1) 

f 
0 

nf = 1 -- ~i(2) d2. 
- o o  

Using the Wiene r -Hopf  method and functions (9.2.6) one can easily find the solution 
of eqn. (9.3.1): 

_ i G  (-  ~(~o) ~ + ~ do)' exp  ( - -  ( n l d l / 2 )  - ie)'e~/2F) (9.3.2) 
#i(o9) 

2n J _~ og--~o'--iO G(- ) (d )  

and obtain the valence in the explicit form: 

i f + ~  d~ F(l+ic~n) 
n f = l - ~  d _ ,  c9+iO F(I+i~o) exp ( -n lml )  

× exp ~ - - , ~ o ~ -  + n l n n  . (9.3.3) 

This  formula generalizes expression (8.2.56) for arbitrary n and describes the 
smooth transition from the localized moment  regime (ny = 1) to the fulfilled shell 
(n f = 0 )  via the mixed-valence regime. Deforming the integration path in the 
upper (lower) half-plane if e~ < 0 (E~ > 0) one obtains the asymptotic behaviour at 

IEyI>>F. Let  

_ _  ( l E V I )  
E~* + (n-n l )F  In \ 2Fn./._l = ~"  (9.3.4) 
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696 A.M.  Tsvelick and P. B. Wiegmann 

At e~<0 

l f ~  dt sin(2nFt~F(l+_(2Fn/e~')t_) nf - - - -  1 + - exp ( -- 2nt) 
n t \ e~*  ] F( l+(2F/e~e) t )  

x ( ~ ) [ - ( z r ( " - 1 ) / q * ) ' l + O ( e x p ( n e ' * ' ] )  nF J ' (9.3.5) 

F 3 
n f = l + ~  

At ~ > 0  

lf° dt t exp ( -  2nt) sin (2nnF ~--g~- / ' F ( l + ( 2 F n / E ' * ) t ) ( t - )  -(zr("-l)/q*)'" 
n f ~  o ~j t / r ( l  +(2F/E~,) t) \ e  

(9.3.7) 

Both the asymptotics (9.3.6) and (9.3.8) were obtained by the perturbation theory of 
Tsvelick and Barabanov (1978) and Bringer and Lustfeld (1978). 

9.4. Magnetic susceptibility and the Kondo limit 

Like all the problems solved in this paper we apply the Fermi-liquid approach to 
calculate the magnetic susceptibility. 

This approach is based on the comparison of the host part, eqns. (9.2.11), and the 
impurity part, eqns. (9.2.14), at H--+0. At H--+0 one must confine oneself to only the 
asymptotic behaviour at b--+ o0 in the right-hand side of eqn. (9.2.11 ) and (9.2.14) and 
neglect the terms with (~ in (9.2.11) and the term with p~ in (9.2.15), which is 
proportional to H2: 

pl](,,~) _ R j k ( ~ _ _  ~ ,  h , , + b j -  bk)Pk(2 ) d2 
0 

-= exp  /g 2 G ( - ) ( 0 )  ' 

p}(k)- ' ' ' ' Rik(2-- 2 + b j-- bk)Pk(2 ) d2 
0 

=exp(--2--nn ( 2 + b j ) ) 2 s i n ' ( ~ J ) F e x p ( - - T t e ' ' ] + a i ( i ~ ) ] n  \ n  / L  ~ - j  . (9.4.2) 

Comparing these equations we obtain at H =  0 the partial magnetic susceptibility 
Zk = ark~OH, where r k related to the impurity occupation number with the projection 
of the total moment ((n-1)/2-- j)  by eqn. (9.1.8) has the form 

Z (i) e x p  (-- nE~/nF) + O~(co = -- i2n/n) 
)~(k h~ = (FnZ /2n2)( G(- )( -- i2n/n)/G (-)(0) ) " (9.4.3) 

The total magnetic susceptibility according to (7.3.13) is 

n(n 2 -  1) g (i) 
Z = 2 4 ~  Z (h)" (9.4.4) 
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Exact results in the theory of magnetic alloys 697 

Using the solution (9.3.2) we come to the explicit expression for the generalized 
magnetic susceptibility eqn. (8.2.106), 

n ( n : - - l ) [  (en) ̀"-')/" exp(_TcE~' ]  

+ 2~ _ ~ 1 -  i~ r(1 + ico/n) 

, , . , -  
x e x p ~ - - z m ~ n - n  + l n n  -- . (9.4.5) 

In the localized-moment regime - ~ > > F  the Kondo effect takes place and 

where 

n ( n 2 - 1 )  
X = - -  (#Bg) 2 , (9.4.6) 

12nFT K 

.~r ., / 15 / n q 5  
T K = ~ e ( e n ) ~ / " F ~ l + n ) e X p ~ -  ) .  (9.4.7) 

Defining the exchange coupling as 

I = - F / n c f  (9.4.8) 

we have the expression for the Kondo temperature 

/ D  "~("- 1)/, 
TK = const F ~ - )  exp ( -- n~ ) . (9.4.9) 

The  pre-exponential numerical factor in (9.4.9), in contrast to the factor in 
(9.4.7), exceeds the logarithmic accuracy with which we have found the renormaliz- 
ation of the resonance level (9.2.1). However,  the pre-exponential behaviour 
F(D/F)(,- 1)/, is true and corresponds to the perturbation theory result. In the non- 
magnetic regime c~ >> F, the magnetic susceptibility is 

n(n 2-1) t / F F 2 
z= ~ , , 1 ~ /  o . 

There  is a smooth transition between the regimes (9.4.6) and (9.4.10) via the mixed- 
valence regime leVI ~ F. 

In conclusion let us show that eqns. (9.2.11)-(9.2.16) coincide with eqns. (7.3.2) 
for the degenerate Kondo model if -E~ >> F. The  procedure for the nondegenerate 
Anderson model has been described in detail in § 8.2.10. In the Kondo limit one must 
neglect all terms of the order of H/F compared with H/T K. Therefore,  omitting the 
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698 A . M .  Tsvelick and P. B. Wiegmann 

terms ~) and ai in the right-hand side of (9.2.11) and (9.2.14) we obtain the 
equations: 

pj(k)_ f ~ R j k ( 2 _ 2 , + g j _ ~ k ) p ~ ( Z ) d Z = s , _ j ( 2 + ~  n H \  ~-n In ~H ) ' 

p~(2) -- njk(2-- 2' + gj-- ~)p~(2') d2' = sin exp -- - -  (2 + ~)  ; 
n 

1 =  p~(x) a~, 
0 

(9.4.11) 

where T n = TK/2nn , ~ = bj + n/2n In H/ T H are just numbers  which coincide with the 
analogous equations for the degenerate Kondo model after replacing Pk-+Pk with the 
Kondo temperature given by (9.4.7). 

Finally, let us discuss the limit n ~  oo. Keeping the parameter c~/nF finite we have 

n~= l - -~ - r c J_oo  co+i~ e exp --,CO~n j .  

The  transition from the localized-moment regime to the mixed-valence regime 
sharpens as n increases. At n =  oo the power corrections at -e~>>F disappear: 

k=l k! \ e J  e X P \ n F  ] (Ey < 0). 

On the other hand the transition from the unfilled-shell to the mixed valence regime 
remains smooth 

n~= f ] dt (t/e) f Tce~Xl ~ e x p  ~-- ~f-t ) . 

So in the limit n-+ o0 the dependence of the physical quantities on e~/nF is still 
rather complicated. Therefore,  the possibility of constructing the n-expansion 
without applying the exact solution seems rather doubtful. 

Unfortunately dilute magnetic systems in the mixed-valence regime have been 
poorly studied experimentally. We stress only the recent experimental study on the 
problem of the role of single impuri ty versus collective contributions to the mixed 
valence phenomena (Luszik-Bhadra et al. 1981). 

Intermediate-valence dilute Ce ions in thorium have been investigated. Th e  
observed magnetic susceptibility shows a transition from magnetism to non- 
magnetism of the Ce ions and has a characteristic maximum. Th e  behaviour of the 
magnetic susceptibility is like the well-known behaviour of concentrated Ce alloys 
which are ordered intermetallic compounds.  Th e  strong similarities make it possible 
to assume that valence transitions in the concentrated Ce systems are governed by 
the single Ce ion behaviour at least at a not very low temperature.  Microscopic 
measurements of the single-ion behaviour in the intermediate-valence regime 
provide one of the best tests of the theory discussed here. 
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Exact results in the theory of magnetic alloys 699 

SUPPLEMENT 

Exact  solution of the resonant-level model 

We expound below the Bethe-Ansatz technique for the resonant-level (RL) 
model. 

U 
~,~RL = ~, EkC[ Ck + V ~, ( c~ d + d + Ck) + -~ ( d + d -  dd + ) ~ ( C~ Ck, -- CkC~, ), (S 1) 

k k k ,k '  

where CR + and d + are creation operators of a spinless fermion with momentum k and a 
spinless fermion on the local resonant level, respectively. The RL  model is 
equivalent to the anisotropic s-d exchange model in the long-time approximation. 
This connection has been discussed in § 3.1. 

We shall compare the Bethe-Ansatz equations for the R L  model with those for 
the anisotropic s-d exchange model (5.2.5 and (5.2.6) and show how the equality 
discovered by Anderson et al. (1970) displays itself in the framework of the exact 
solution. Here we follow the papers of Filyov and Wiegmann (1980) and Wiegmann 
1981). 

1. The Be the-Ansa t z  technique 
In the same manner as for the Kondo hamiltonian (see §4.2) it is easy to see that 

(i) the RL  problem is one-dimensional and 
(ii) for small U and V2/er one can neglect the states lying far from the Fermi 

surface. 

Hence 
ek ~ CF + vv(k- -  kF). (S 2) 

Then  in the space representation 3tfRL has the form 

a/fRL = dx -- ic + (x) dx c(x) + V6(x)(c + (x)d + d + c(x)) 

U 6(x)(d + d -  dd + )(c + (x)c(x) - c(x)c + (x)]. + 
4 

This hamiltonian conserves the total number  of particles: 

M = .fc + (x)c(x) dx + d + d. 

Therefore, its eigenfunctions are obtained in the form 

[ ~ ) u  = g ( x l , . . . , x u )  c+(xi)dxi]O)+ e ( x t , . . . , x u - , ) d +  IJ  c+(xi)dxilO), 
i=1 i=1 

where the vacuum is defined as follows: 

d[O)=c(x)[O)=O. 

At first we construct the solution for U = 0. In this case the solution is a product of 
one-body functions: 

lu?)M= =~ ( f go(p~,x)c + (x) dx + e(p~) d÷ ) lO ). ($3) 
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700 A . M .  Tsvelick and P. B. Wiegmann 

The  functions go(Plx) and e(p) satisfy the Schr6dinger equations: 

i~xg°(plx) } -- + Ve(p)(~(x)=pgo(P]x), 
(S 4) 

Vgo(P[O) =pe(p), 

where pa are the arbitrary unequal parameters-momenta of the particles. Th e  energy 
of the state is 

M 

E= • p,. (s s) 
ac= l  

The  solution of (S 4) is 

go(plx) =go(p[0) exp ipx+ }-6(e) s ignx , (S 6) 

where the phase shift is 

6(~) = 2 tan-  1 (V2/2p). (S 7) 

Now we can consider the two-body state for U-~0: 

The  Schr6dinger equations for the functions g(xl, x2) and e(x) are 

-- (~Xl + ~x2 )g(xl ,x2)+ ~ V(e(x2)5(xl)--e(xl)6(x2)) 

1 
2 V[6(Xl)Tr~(x2)]g(xl'x2)=Eg(Xl'X2)' ($9)  

0 1 
-- i ~x e(x) + 2 Vg(O, x) + ~ US(x)e(x) = (E + gd)e(x), (S 1 O) 

where 

gd= U<c + (O)c(O) ) 

is the shift of the level. 
Using the property of the kinetic energy operator 

for an arbitrary f(x), we look for the solution of eqns. (S 9) in the following form: 

2! g(xi, x2) =g(PllXl)g(p2[x2)f(xl - x2)-g(p[xz)g(pz[xt)f(xz- xt), 
($11) 

e(x) = e(p 1)g(p2[x) f( -- x) -- e(p2)g(p l l x ) f ( x ) ,  

where g(plx) =go(Plx) exp (i(U/4) sign x). 
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Exact results in the theory of magnetic alloys 701 

The  energy of this state is E =P l  +/)2. The  first equation in (S 9) is satisfied for an 
arbitrary f(x) and the second one defines f(x): 

e(Pl )g(P2] x) dr( 4 x) e(P2)g(Pl I x) 
df(x) 

ax dx 

= -- Ub(x)[e(pt)g(p2lx)f(-x)-e(P2)g(pl]x)f(x)].  (S 12) 

The  right-hand side of eqn. (S 12) is badly defined. Therefore,  we spread the ~5 
function. Then  we get 

f ( x l , x2 )= f (O)exp[  _ i _x2)  ] ,  (P l 'P i ) s ign(x l  

( U p l - p 2  ) 
O)(px,pz)=2tan -1 t a n 2  pl +P2 + 2ga " 

(s13) 

Before constructing the M-particle eigenstate let us consider the two-particle 
solution (S 11) and (S 13). Putting V = 0 in (S 11) we obtain the wavefunction of two 
free particles: 

g(xl, x2) 
( i ) 

gm~(xl, X2) = exp iplxl + iP2x2 + ~ ( P l , P 2 )  s i g n  (X 1 --  X2) 
V-*0 

+ i  --exp(iplx2+iP2Xl ~ (Pl,P2)sign(x2--Xl)) 

Note that the wavefunction of free particles includes the two-particke scattering 
phase. This  phenomenon has been discussed in § 4.6. 

Now consider the solution of the M-body  problem for U P  0. The  wavefunction 
of our problem is factorized in a product  of two-body ones. It is the Bethe Ansatz: 

N! g(xl, . . . , xM)= ~ ( -  1)Qg(pq,]xl) . . . g(pa~[xM) 
Q 

{io } x 1~ exp -- (Pqj, Pqk) sign (x j-- Xk) 
j>k 2 

M 
E =  ~ p j .  

j = l  

(s 14) 

The  summation in (S 14) extends over all permutations Q = { q l , . . . ,  qM} of integers 
1 , . . . ,  M. One can easily verify by direct substitution that Bethe-Ansatz is valid. The  
eigenfunctions (S 13) are de'fined by the set of parameters {P l , . . .  ,PM}. To  study 
(S 13) are defined by the set of parameters {Pl ,- . . ,PM}. To  study the spectral 
properties of the system, we must impose boundary conditions in the wavefunction 
(S 14). Let  us impose the periodic boundary conditions putting the system in a 
sphere of radius L/2 around the impurity site: 

g(x I . . . .  , Xj = - - L / 2 , . . . ,  xiu) =g(xx, • - -, xj= L / 2 , . . . ,  XM). (S 15) 
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702 A . M .  Tsvelick and P. B. Wiegmann 

Equation (S 14) leads to a system of algebraic equations which define the values p~ 
(Filyov and Wiegmann 1980): 

M 

Lp=+a(p=)+ U/2=2nI'~+ ~ Og(p=,p¢), (S 16) 
p = t  

where the I'= (c~ = 1 , . . . ,  M) are integers. They  are the quantum number  of system. 
Note that due to the boundary conditions the shift of the level energy (S 10) is equal 
to ga = ea + MU/2L. 

2. Comparison with Bethe-Ansatz equations for the anisotropic exchange model 
(§§5.2.5 and 5.2.6) 
Firstly, let us find the rapidity variable 2 = 2(p) in terms of which the two-particle 

phase is the function of the difference particle rapidities: 

• (p(2), p(2')) = @(2-  2).  

The  two-particle phase (I)(p, q) is a uniform function. Therefore,  one can choose the 
rapidities as follows 

p(2) + gd = -- D exp (2#2), (S 17) 

where D is an ultraviolet cut-off and we put  

c o t # =  -- tan U/2. (S 18) 

The  linear spectrum approximation (S 2), which was an important  step towards the 
integrability in the RL model, is valid for U<< 1 and for the low-energy processes 
with the energy p<< vZ<<D. Tha t  is why only the linear term in p/V 2 in the one- 
particle scattering phase shift on impuri ty (S 7) is universal 

In this approximation the replacement (S 17) and (S 18) leads to tile Bethe-Ansatz 
equations for the RL model at --2>>1 

where 

DL exp (2#2) + exp (2#(2 + f/#)) + MU + U/2 

M 

= 2 n i ' + 2  ~ tan-~(cot#tanh#(2=--2~)) ,  (820) 

g 2 

- -  exp (-- 2f). (S 21) 
2D 

Now let us compare eqn. (S 20) with the Bethe-Ansatz equations for the anisotropic 
s-d exchange model (5.2.5-6). Recall that the mission of the RL model is to describe 
equivalently the spin subsystem of the s-d exchange model (see § 3.1). Therefore,  it 
was expected that the coordinate Bethe Ansatz for the RL  model must be equivalent 
to the spin Bethe Ansatz for the s-d exchange model (Wiegmann 1981) (see also 
§4.3). In fact eqns. (5.2.6) and (S 20) are just the same in the limit -2>> 1. In this 
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Exact results in the theory of magnetic alloys 703 

limit the momentum of the spin-density wave and the scattering phase of this wave 
on impurity (the left-hand side of eqn. (5.2.5 b)) has the form 

p(2) - 2 tan - 1 (cot #/2 tanh #2) ~ - n/2 + U/2 + 2 sin # exp (2#2), ~(S 
22) 

~(2) =- 2 tan-  1 (cot #/2 tanh #(2 +f/p)) ~- - n/2 + U/2 + 2 sin # exp (2/*(2 +f/p)). 

Comparing (S 22), (S 20) and (5.2.5) we see that the number  of particles M in the RL 
model is equal to the number  of the spin-down particles in the s-d model, and the 
cut-off D = 2 s i n # ( N / L ) .  Equations (S18), ($21) and (4.3.8) give the relations 
between the parameters Ill, I± and V, U of the models. Note that these relations are 
not universal. 

CONCLUSION 

The reader who has followed the development of the problem from the 
interaction of one bare particle with a magnetic impurity to the solution of the many- 
body problem and the derivation of concrete physical results should note the 
adequacy of the Bethe method for application to the problems concerning magnetic 
impurities. 

The  method has enabled us to reduce the thermodynamics of the many-body 
problem to a system of integral equations. Yet these equations are non-linear and the 
number  of them is infinite. However, this does not prevent us from getting the 
necessary data on the analytical character of particularly interesting limit cases 
leaving the crossover region in temperatures open to numerical calculations. 

We do not think that a numerical solution of eqns. (8.3.15) which describe the 
thermodynamics of the Anderson model will be too complicated. Most  likely a small 
computer will manage to do it as in the case of the Kondo model. At T = 0  it is 
possible to obtain the explicit dependence of the magnetic and charge susceptibilities 
on parameters U, F, e d for the Anderson model and also the explicit dependence on 
the magnetic field for the symmetric Anderson model. Looking back we may 
construct a very simple physical picture. This picture corresponds in many respects 
to the Anderson-Nozi~res ideas. We emphasize that not only is the physics simple in 
the vicinity of fixed points at low and high energies and may be describable either by 
perturbation or phenomenological theories, but various crossover regimes which are 
not controlled by qualitative arguments are not very complicated and are described 
by simple mathematics. 

In the 1970s one had to hear many times that ' the Kondo problem is solved'. It 
really was for those interested only in the impurity ground state and the qualitative 
behaviour at low temperatures. Those who wished to know something about the 
analytical structure of crossover between the weak and strong-coupling regions can 
only now get the solution to the Kondo problem. 

However, the exact solution derived above has a limited domain of application. It 
describes the thermodynamics of magnetic alloys, but, apart from not-yet resolved 
problems within the model itself, it does not enable us to extend a new style of theory 
to numerous interesting and important applications of the Kondo effect. Finally, we 
do not analyse the experimental situation in detail. Thus  we cannot say that the 

problem is completely solved. 
We enumerate some unsolved problems below. The  Bethe-Ansatz approach is 

extremely sensitive to the choice of the quantity to be calculated. Within the 
framework of the Bethe Ansatz it is relatively easy to calculate a thermodynamic 
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704 A . M .  Tsvelick and P. B. Wiegmann 

potential. The  situation is different for the kinetic coefficients and dynamical 
characteristics. Therefore ,  we now know only the kinetic coefficients related to the 
equil ibrium quantities. For  example , such a quanti ty is resistivity at T = 0  and 
arbitrary H.  I t  is given by eqn. (3.2.11). 

However,  the temperature  dependence of the electrical resistivity is still 
unknown except for the Fermi-l iquid T2-term.  This  is just  as in the case of the 
thermoelectric power and other kinetic coefficient. T h e  thermoelectric power S, 
Hall coefficient RH, and thermal  conductivity k for T--*0 and arbitrary values of 
magnetic field and the parameters  U, e a and F, have the forms: 

S = ~ C i sin rend(cos 2riM i -- cos nna)" 

e 1 -- cos zcn a cos 2 n M  i ' 

2 F (cos 2rcM i -  cos nna) 2 
RH= 1 - - - - - -  ; 

eric k 2(1 - cos nn a cos 2nMi) J 

n2T 
k= ~re2 ~; 

where C i is the impuri ty  specific heat at T-*O, Mi ,  n d and a are the impur i ty  
magnetization, average occupation num ber  and electric conductivity at T =  0 and 
arbitrary H. T h e  tempera ture  and frequency dependence of kinetic coefficients 
seems to be the principal unsolved problem. 

Another  interesting and important  question is the effect of magnetic  impurit ies 
on superconductivity.  Today  we know the quantities which may  be calculated by 
per turbat ion theory or Fermi- l iquid approach.  For  example,  the linear te rm in the 
expansion of the superconduct ing transition tempera ture  in powers of the impuri ty  
concentration is equal to 

To--Too 1 l" Tk "~ z 
- c - - [ l n - - j  at TK>>Teo 

T~o 4psTK \ rico 

(Sakurai 1978, Matsuura  et al. 1978) and unknown for an arbitrary value of Tco/T K. 
The  magnetic impuri ty  in a metal  affects the conduction electron states by the 

exchange interaction. It  is easy to show that these so-called Friedel charge and spin 
oscillations have, at T = 0  and r>>p(eF)(kBTK) -1,  the following form (Ishii 1976) 

1 
p(r) = 2 ~ 5 r  3 cos 2 [Mi(H)]  sin 2kvr, 

1 
6(r) = 8 ~ r  3 Sin [2Mi(H)] cos 2kF r, 

where the impuri ty  magnetization M i ( H  ) is given by eqn. (5.1.33). Such oscillations 
were observed by Boyce and Slichter (1974). T h e  polarization of the conduction 
electrons provides an indirect exchange interaction of the R K K Y  type between 
impurities.  When  the impuri ty  concentration increases the impur i ty - impur i ty  
interaction results in a non-linear dependence of the physical quantities on the 
concentration. Larkin and Khmel 'ni tski i  (1970) and Souletie and Tourn ie r  (1969) 
derived a virial expansion for various physical quantities at T>> T K and H>> T K and 
established the boundaries of applicability of the s ingle- impuri ty approximation.  I t  
is very interesting to derive the virial expansion at arbitrary ratios 7"/T K and H / T  K. I t  
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Exact results in the theory of magnetic alloys 705 

is important  for the analysis of experiments  with Ce alloys and, particularly, for the 
superconducting re-entrant  phenomenon in the La-based alloys. Such a virial 
expansion enables us to explain the surprising difference between 3d and 4 f  
impurit ies where the values of T K are comparable in order of magni tude but  the 
concentration at which the impur i ty - impur i ty  interaction in 3d alloys becomes 
important  is at least two orders of magni tude lower than that for 4 f  alloys. 

The  unsolved problem is the diagonalization of the exchange hamiltonian (2.2.7) 
(the so-called n-channel Kondo  problem).  The  non-physical  results which were 
obtained in the naive Bethe-Ansatz f ramework (Furuya and Lowenstein 1982) are 
associated with the approximat ion in which the bare par t ic le- impur i ty  scattering 
phase is taken as independent  of the energy of a particle. I t  is possible that this 
difficulty may be overcome with the help of some special degenerate Anderson 
model. 

Other  unsolved interesting problems involve the Anderson hamiltonian describ- 
ing Sm-  and T m - m i x e d  valence alloys. 

T h e  search for new integrable hamiltonians describing magnetic impurities in 
metals is associated with the general progress of the Bethe method and particularly 
with a search for new factorizable S-matrices.  I t  would be especially interesting for 
the theory of magnetic alloys to have the factorizable S matrices corresponding to 
various represent~ations'of the 0 ( 3 ) @ 0 ( 3 )  group. I t  would enable us to investigate 
the exchange hamiltonians for transition impurit ies (see § 2). Thus ,  we cannot assert 
that the Kondo  problem is solved. However ,  we hope to hear this declared in future 
and not only once. 

It  is natural to wonder  why the theory of §§ 4-8 has not been compared  with the 
experiments  described in § 1. Indeed it was tempt ing to seek quantitative agreement  
between theory and experiment.  However ,  without more detailed experimental  
studies of these substances there is no guarantee that some of the potentially 
important  propert ies of these alloys have not been ignored. Hence,  we restrained 
ourselves f rom citing one more  "sat isfactory" agreement  between the experiment  
and, perhaps,  imperfect  theory. Indeed, prel iminary analyses shows that something 
may be missing (Melnicov 1982, Rajan et al. 1982). T h e  qualitative agreement  
between theory and exper iment  was recognized before the appearance of the exact 
solution. Quantitative analysis requires new experiments  at low temperatures  and 
concentrations as well as special precautions to decrease the impur i ty - impur i ty  
interaction, and the role of the superconduct ing transition temperature.  On the other 
hand theory must  provide a careful estimate of effects which are not taken into 
consideration by the simple models,  such as the detailed band structure of the host 
metal. We think that since the Kondo  effect can now be completely taken into 
account, it is reasonable to work at precise experiments  to understand whether  only 
this effect is responsible for the behaviour of real magnetic alloys. 
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Note added in proof--Here we give the most important  results supplementing the 
present review. These results have been obtained since the article was prepared for 
publication. 

(1) Th e  thermodynamic equations of the degenerate exchange model ((7.1.12), 
(7.1.13)) have been solved numerically by Rajan (1983, Phys. Rev. Lett., 51, 308). 
The  magnetic susceptibility and specific heat curves have been found as a function of 
temperature for zero magnetic field for I =  1 / 2 , . . . ,  7/2. It is interesting that the 
susceptibility exhibits an / -dependen t  peak at I >  1. The  peaks become sharper as I 
increases. Such peaks are experimentally observed in some intermediate valence 
intermetallic like YbCuA1. A similar peak has been observed in the magnetic field 
dependence of the zero-temperature susceptibility of the model for which numerical 
analysis has been performed by Hewson and Rasul (1983, J. Phys. C, 16, 6799). In 
this work the exact results for I =  7/2 compared with the experimentally measured 
low-temperature magnetic isoterms for the compound YbCuA1. 

(2) Kawakami and Okiji (1983, Phys. Rev. Lett., 50, 1157) have performed the 
numerical analysis for the temperature dependence of the impuri ty susceptibility 
and specific heat for the non-degenerate Anderson model on the basis of 
eqns (8.3.14)-(8.3.16). 

(3) Schlottmann (Z. Phys., to be published) and Tsvelick (J. Phys. C, to be 
published) have investigated thermodynamic properties of the degenerate Anderson 
model on the basis of the solution presented in § 9. To  complete our review, we give 
the results obtained by them. The  thermodynamic potential is 

x/n (" do~ ( n'co' + icgE,( T) ) ~= --F-~- J ~  (exp(iq(O)c°)-l-iq(O)c°)(G(-)(c°))-l exp 2 

Tf  ° - d2e~(2)ln(l+exp(~c(2)/T)) T . d 2 " ~ l n ( l + e x p ( @ / T ) )  
-oo 3 j=l 

2 ( J  

where e(kJ)(2), ~C().), q(2) satisfy the equations 

T In (1 + exp ( -- e~))) -- AJk*Cmt*F In (1 + exp (~Ik)/T)) = 6~1 Tsj* in (1 + exp (~c/T)), 

/ , m = l . . . o 0 ;  j= l . . . n - -1 ;  l i m - - = h ( J ) ;  
m--* oo /T/ 
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Exact results in the theory of magnetic alloys 

2Fq(2) = T f A ( 2 ,  )J) in (1 + exp (--]~(~')1/T)) d2' 

n--1 I - - T  ~ d2 'Bj(2 ,2 ' ) ln( l+exp(e~)/T)) .  
j= l  

Here we use the notations of §§ 7 and 9 and 

A(22') = (2n) do)do) exp ( -  io)2 + io)'2')( G( + )(o)') ) - a 

x [  G(+'(O)) (G(-)(O)))- 1 ] 

o)--o) '+i0  co -- o)' -- iO ' 

i 
B(22 ' )= - -  ~ I do) do) exp ( -  io)2 + io)'2')sj(o)')G(-)(o) ') 

(2n) 2 J J  

F G(+>'(0)) (G(-)(O))) -* ] 

x L ~ 0  co -- o)' -- i0 J ' 

707 

do) exp ( - i2a;)sj(o))G (+)(o9) (G (+)(o)')) - 1 
¢ o  - o 9 '  - i 0  

E~(T) = e~ + 2rq(0). 

(4) The  authors of the present paper have obtained the exact solution of the 
Kondo problem for the orbital singlet or so-called multichannel Kondo problem 
referred to in §2.2.2 for arbitrary number  of channels n and impurity spin S 
(Wiegmann and Tsvelick, 1983, J E T P  Lett. 38, 489, and Z. Phys., to be 
published, and Tsvelick, J. Phys. C, to be published). It is amazing that the 
hypothesis of Nozi6res and Blandin (1980) that the fixed point of the hamiltonian 
(2.2.7) at n > 2S is finite and the model exhibits the scaling power law at small energy 
scale, proves to be valid. The  basic results are as follows. 

The  magnetization as a function of the magnetic field and the thermodynamics 
equations are 

do) 
Mimp(H) = S -  4~z3/-~- T 

sinh (n min (n, 2S)o)) F(1 + i~o)F(½- io9) 
× exp (nlo)l(n-max (n, 2S))) 

sinh (=no)) F(1 + io)n) 

(d2 '  In (1 + exp (¢P.+ 1(2)))( 1 + exp (rp n_ i(2))) 
{5n2S (~) q0, exp + O 2 cosh n ( 2 -  2') 

¢Po=--°°,  lira ~ o . _ H  
n~ao n T ~ 

which generalize eqns. (5.1.33) and (6.1.60)-(6.1.62). 
At n < 2 S  the ground state of the impurity is ( 2 S+  1--n)-fold degenerate. 
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708 A . M .  Tsvelick and P. B. Wiegmann 

At low energy scales H, T<< T K the free energy is 

~imp=--Tln(2S--n+l)--~ S-  S - ~ + I  

L2T ~ \ ln(T/TK) In 3 (T/TK) " 
At n =  2 S  the  g r o u n d  state is s ing le t  and  the  F e r m i - l i q u i d  law h o l d s  at l o w  

energies:  

2T K T 2 (  7~n 1 / H ' 2 )  _ _ 

This proves eqn. (3.1.48). 
At n > 2S  the new scaling regime arises: the ground state is also singlet but with 

infinite susceptibility given by the scaling law 

Tln(Sin[~(S+l)/n+2]~ oo 
imp ~ --  * - -  - --  \ sin (Tr/n + 2) ] K~=2 aK(H' T)(T/TK)2K/n+2 

N o t e  that  the  l imi t s  H ~ 0 ,  T ~ 0  do no t  c o m m u t e :  

l i m  aK(H , T ) =  aK; lira aK(H , r )  ( r ~(2K/.+ 
2) / H \K/. 

v v e  • 

So all basic models enumerated in § 2 have been solved exactly on the basis of the 
Bethe-Ansatz approach. 
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