Spin-resolved Photoemission Studies of Gd(0001)

A.V. Fedorov #
T. Valla /Brookhaven/
P.D. Johnson /Brookhaven/
M. Weinert

P.B. Allen /Stony Brook/

now at ALS
Spin Resolved Photoemission on Gd

★ Surface Curie temperature \((T_{\text{surf}} \sim T_{\text{bulk}} + 60K)\)
★ Canted magnetic moments
★ Stoner splitting vs. spin-mixing
★ Electron-magnon coupling

Plan

★ Photoemission, self energies, scattering rates, etc.
★ Micro-Mott spin polarimeter, achieving the high resolution
★ Scattering channels for the spin majority and minority photo-holes
★ Surface Curie temperature
Angle Resolved Photoemission /band structure mapping/

Experiment

Excitation Radiation
- photon energy
- polarization
- angle of incidence

Photoelectrons
- kinetic energy
- emission angle
- polarization

Data

Energy Distribution Curves (photocurrent vs. kinetic energy) measured at certain emission angle

- Kinetic energy
- Vacuum level
- Fermi level
- Binding energy
- Electron momentum (Å⁻¹)

E - E_F (eV)

Mo(110)
Angle Resolved Photoemission
/spectral function and self energy/

\[A(\kappa, \omega) = \frac{1}{\pi} \frac{\text{Im} \Sigma(\kappa, \omega)}{[\omega - \varepsilon_{\kappa} - \text{Re}(k, \omega)]^2 + [\text{Im} \Sigma(\kappa, \omega)]^2} \]

\[\text{Im} \Sigma(k, \omega) \sim \frac{1}{T} \] and gives the scattering rate /e-ph, e-e, e-imp, e-magnon/
High-efficiency retarding-potential Mott polarization analyzer

G. C. Burnett, T. J. Monroe, and F. B. Dunning
Department of Physics and the Rice Quantum Institute, Rice University, P.O. Box 1892, Houston, Texas 77251

(Received 17 January 1994; accepted for publication 14 March 1994)

\[P = \frac{1}{S} \frac{\sqrt{I_{L}^{+}I_{R}^{-}} - \sqrt{I_{L}^{-}I_{R}^{+}}}{\sqrt{I_{L}^{+}I_{R}^{-}} + \sqrt{I_{L}^{-}I_{R}^{+}}} \]

\[A = \frac{\sqrt{I_{L}^{+}I_{L}^{-}}}{\sqrt{I_{R}^{+}I_{R}^{-}}} \]

\[I^\uparrow = \langle I \rangle (1 + P) \]

\[I^\downarrow = \langle I \rangle (1 - P) \]

\[\langle I \rangle = \frac{I_{L}^{+} + I_{L}^{-} + I_{R}^{+} + I_{R}^{-}}{4} \]
Spin polarimeter in BNL

Energy resolution: \(\frac{\text{Aperture}/\text{ØMCP}}{10} \times \text{PE}/10 \)
Aperture plate
Channeltrons

90° deflector
Photoelectron Spectrometer
/200-mm hemispherical analyzer from Scienta/

Excitation radiation

Wide-band Energy Analyzer

2-Dimensional (Energy and Angle)
high-resolution electron detector

Magnifying
high-transmission imaging Electron Lens

Photoelectrons

Sample

h_v
Test results: “in-plane” polarization in ferromagnetic iron films

Fe(110)/Mo(110)
$\hbar \nu = 21.2$ eV
T = 85 K

Resolution: 50 meV / PE=10 eV/
Sherman function: 0.15
Surface state in Gd(0001)

D. Li et al., PRB 51, 13895

R. Wu and A.J. Freeman, PRB 44, 9400

∆E~175 meV

Spin-resolved

Spin-integrated

Spin-mixing

Stoner-like

E. Weschke et al., PRL 77, 3415
Sample Preparation:

Epitaxial films of Gd on Mo(110)
Deposition at 200÷300 K
Annealing at ~800 K
Result: Gd(0001)

Sample lifetime ~ 48 Hours

Temperature range 20 K÷3000 K

Base pressure 2×10^{-11} mbar
Angle-resolved spin-integrated data
/suggests Stoner-like behavior/

Gd(0001)/Mo(110)
PE, $h\nu = 21.22$ eV

a) $T= 300$ K

b) $T= 82$ K
Spin-resolved data

Spectra were measured at six different temperatures: 20K, 80K, 98K, 117K, 140K, 160K

Temperature-dependent shift of spin-majority peak agrees with Stoner behavior

Spin-majority peak shows considerable broadening with temperature

Surface state is not 100% polarized even at 20K

Relative intensity of spin-minority component increases with temperature
Width of spin-majority peak vs. temperature

```
FWHM (meV) vs. Temperature (K)

Broadening of majority peak reflects mostly phonon contribution to the line-width

"Spin-resolved" electron-phonon coupling constants:
\( \lambda^{\uparrow} \approx 0.73 \quad \lambda^{\downarrow} \approx 0.31 /P. Allen/ 

"Spin-averaged" constant: 0.4
/H.L. Skriver and I. Mertig, PRB 41, 6553

Experiment: \( \lambda \approx 0.9 \)

\[
\text{Im} \sum_{e-ph} (T, \omega) = \pi \int d\nu \alpha^2 F(\nu) \left[ 1 + 2n(\nu) + f(\nu + \omega) - f(\omega - \nu) \right]
\]

Debye model: 
\[
\alpha^2 F(w) = \lambda \left( \frac{\omega}{\Omega_m} \right)^2 \quad \frac{1}{\tau} \approx \text{const} + \pi \lambda k_B T
\]
```
Extra broadening of spin-minority peak was detected at all temperatures

Least-square fits to Lorentzian + Fermi edge

Intrinsic width of the peak should not depend on the orientation of magnetic moment in domains
Broader minority spin channel indicates electron-magnon mechanism

\[
\frac{1}{\tau_{\downarrow}} \approx \frac{P(\uparrow)m^*}{S} \left(\frac{2JSa}{\eta} \right)^2
\]

\[
\frac{1}{\tau_{\downarrow}} \approx 0.095\text{eV}
\]

\[
\frac{1}{\tau_{\uparrow}} \approx 0.014\text{eV}
\]

P.B. Allen, PRB 63, 214410 (2001)
At low T majority spin hole decays primarily via lattice excitations, minority spin hole primarily via spin excitations

<table>
<thead>
<tr>
<th></th>
<th>Majority</th>
<th>Minority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phonons</td>
<td>46 meV</td>
<td>10 meV</td>
</tr>
<tr>
<td>Magnons</td>
<td>14 meV</td>
<td>95 meV</td>
</tr>
</tbody>
</table>

E_r

e-ph
e-magnon
Surface transition temperature: enhanced or regular?

C.S. Arnold and D.P. Pappas,
PRL 85, 5202 (2000):
Common Curie temperature
for surface and bulk

Present work at ~300 K:
Hint for the enhanced T_c

Gd(0001)/Mo(110)
$T=300$ K

Electron Polarization (%) vs. Temperature (K)

MOKE Intensity (arb. units)

in-plane

out-of-plane

Binding Energy (eV)

majority

minority
Polarization of the surface state vs. temperature

Polarization = \{n_{\uparrow} - n_{\downarrow}\}/\{n_{\uparrow} + n_{\downarrow}\}

Fit with “T^{3/2}” law found in bulk Gd:
\[P(T) = P_0 \times (1 - T/T_C)^{3/2} \]

\[T_C = 362 \text{ K} \] in agreement with reports on enhanced surface Curie temperature/

Polarization of the surface state

Polarization of background

Simulation for T_C = 293 K /bulk/
Measuring “out-of-plane” component in Gd

We can estimate the canting of magnetic moment: 6° with respect to the surface plane.