High Energy and Momentum Resolved Photoemission Studies of Quasi-One-Dimensional Blue Bronze K$_{0.3}$MoO$_3$

Physics Department, BNL:
Alexei Fedorov
Peter Johnson
V.N. Muthukumar
Sergei Brazovskii

Physics Department, Boston University:
Jinyu Xue
Laurent Duda
Kevin Smith

Chemistry Department, Rutgers University:
Martha Greenblatt
William McCarrol

NSLS, BNL:
Steven Hulbert

Supported by the Department of Energy under DE-AC02-98CH10886
Outline

Introduction:
✓ Crystal structure
✓ Electronic structure
✓ Structural studies of Charge Density Waves

Experimental details:
✓ Photoelectron spectrometer

Experimental data:
✓ Band structure of \(\text{K}_{0.3}\text{MoO}_3 \)
✓ Fermi wave vectors versus temperature
✓ Commensurate to incommensurate CDW transition
Low dimensionality \Rightarrow (i) Charge Density Waves (CDW), Peierls transitions
(ii) Electron correlation effects
/Non-Fermi liquid behavior, spin-charge separation, HTC/

J.-P. Pouget et al., J. Physique Lett. 44, L113 (1973)
Electronic structure of $K_{0.3}MoO_3$

/tight-binding calculations/

Two chains per unit cell \Rightarrow two bands crossing the Fermi level

How many Charge Density Waves?
Structural studies of CDW in K$_{0.3}$MoO$_3$

/Single Charge Density Wave/

(i) Diffuse X-ray scattering

\[q_{CDW} = 2k_F b^x / \]

J.-P. Pouget et al.

(ii) Temperature dependent neutron scattering

/commensurate to incommensurate transition/

M. Sato, H. Fujishita and S. Hoshito,

Nesting:
Fermi surface of the first band is nested to the Fermi surface of the second band

CDW wave vector

\[q_{CDW} : k_{F1} + k_{F2} \]
Temperature dependence of CDW wave vector:

◊ Thermally activated charge transfer between bands crossing the Fermi level and third band above it
 /Pouget et al./

◊ Shift of the chemical potential
 /Pouget & Nougera, Artemenko et al./

◊ Hidden temperature dependence of the nesting vector
 /Intention of the present study/

Goals of photoemission experiment:

◊ Direct monitoring k_{F_1} and k_{F_2}
◊ Temperature dependence of $(k_{F_1}+k_{F_2})$
Photoelectron Spectrometer
/Gammadata, SES-200/

✓ Multichannel detection in emission angle and kinetic energy

✓ Energy resolution ~ 10 meV

✓ Angle resolution ~ 0.2°

✓ Base pressure ~ 2 × 10^{-11} Torr

Presently located at the U13UB beamline at the National Synchrotron Light Source, BNL
Example of photoemission data

3-D maps of photocurrent/

Experimental details:

Samples cleaved \textit{in situ}

Liquid He cryostat provides temperatures from
\sim20 K to \sim450 K

Temperature monitored with a help of OMEGA CY7 sensor
Momentum Distribution Curves at E_F

Intensity at the Fermi level

Electron Momentum along ΓX (Å$^{-1}$)

$T=300$ K

$T=200$ K

$T=180$ K

$T=150$ K

$T=120$ K

$T=100$ K

$T=80$ K

$T=62$ K

$T=40$ K
Commensurate to incommensurate CDW transition in $K_{0.3}MoO_3$
/comparing neutron scattering data with nesting vector measured in photoemission experiment/

$1-|k_{F1} + k_{F2}|$ and $1-q_{CDW}$ (b$^\times$ units)

Temperature (K)

Present work

Neutron scattering,
Fermi surface of an array of coupled chains
/tight binding calculation/

Fermi surface is given by:

\[\mu = -2\cos(k_{//}) \pm (t_{//} + 2t_{//} t \cos(k_{//})+t)^{\sigma} \]