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We present a method for extracting the electron-boson spectral functiona2Fsvd from infrared and photo-
emission data. This procedure is based on inverse theory and will be shown to be superior to previous
techniques. Numerical implementation of the algorithm is presented in detail and then used to accurately
determine the doping and temperature dependence of the spectral function in several families of high-Tc

superconductors. Principal limitations of extractinga2Fsvd from experimental data will be pointed out. We
directly compare the IR and angular-resolved photoemission spectroscopya2Fsvd and discuss the resonance
structure in the spectra in terms of existing theoretical models.
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I. INTRODUCTION

The electron-boson spectral function is one of the most
important properties of a BCS superconductor.1 In conven-
tional superconductors the electron-phonon spectral function
has been successfully obtained using tunneling2 and infrared
sIRd spectroscopy.3–5 The situation is more complicated in
cuprates where the mechanism of superconductivity is still a
matter of debate. Based on IR data it was suggested very
early that charge carriers in cuprates might be strongly
coupled to some collective boson mode.6 It was subsequently
proposed that this collective mode might be magnetic in
origin.7–9 Within this scenario electrons are strongly coupled
to a so-called “41 meV” resonance peak observed in inelastic
neutron scattering spectroscopysINSd sRefs. 10 and 11d. The
peak is believed to originate from antiferromagnetic spin
fluctuations that persist into the superconducting state; cou-
pling of electrons to this mode in turn leads to Cooper pair-
ing. However, recently this view was challenged by a pro-
posal that charge carriers might be strongly coupled to
phonons.12–15 This controversial suggestion has revitalized
the debate about whether a collective boson mode is respon-
sible for superconductivity in the cuprates. An accurate and
reliable determination of the electron-boson spectral function
has become essential.

In this paper we propose a different way of extracting the
spectral function from IR and angular-resolved photoemis-
sion spectroscopysARPESd data.16 The proposed method is
based on inverse theory,17 and will be shown to have numer-
ous advantages over previously employed procedures. An
advantage of the method is that it eliminates the need for
differentiation of the data, that was previously the most seri-
ous problem. The inversion algorithm uncovers extreme sen-
sitivity of the solution to smoothing, and offers a smoothing
procedure which eliminates arbitrariness. Since the spectral
function is convoluted in the experimental data, some infor-
mation is inevitably lost; we will use inverse theory to set the
limits on useful information that can be extracted from the

data. Unlike previous techniques which are valid only atT
=0 K, our method can be applied atany temperature.

The paper is organized as follows. First in Sec. II we
outline the numerical procedure of solving integral equa-
tions. In Sec. III we demonstrate the usefulness of our
method by applying it to previously published data for
YBa2Cu3O7−d sY123d. In Sec. IV model calculations of the
spectral function will unveil some important problems en-
countered when solving integral equations. Section V dis-
cusses the origin of negative values in the spectral function
and methods for dealing with them. In Sec. VI the effect
superconducting energy gap has on the spectral function will
be analyzed. In Sec. VII we study the temperature depen-
dence of the spectral function for optimally doped
Bi2Sr2CaCu2O8+d sBi2212d. In Sec. VIII inverse theory is
applied to ARPES data and the spectral function of molyb-
denum surface Mos110d and Bi2212 have been studied. Fi-
nally, Sec. IX contains quantitative comparison of the spec-
tral functions of optimally doped Bi2212, extracted from
both IR and ARPES data; the observed results are critically
compared against existing theoretical models. In Sec. X we
summarize all the major results.

II. NUMERICAL PROCEDURE

Thesopticald scattering rate of electrons in the presence of
electron-phonon coupling atT=0 K is given by the famous
result of Allen:20

1

tsvd
=

2p

v
E

0

v

dVsv − Vda2FsVd, s1d

wherea2Fsvd is the electron-phonon spectral function. The
scattering rate 1/tsvd can be obtained from complex optical
conductivityssvd=s1svd+ is2svd:
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where vp is the conventional plasma frequency. Recently
Marsiglio, Startseva, and Carbotte5 have defined a function
Wsvd:

Wsvd =
1

2p

d2

dv2Fv
1

tsvdG , s3d

which they claim to beWsvd<a2Fsvd in the phonon
region.5 It is easy to showsby substitution, for exampled that
Allen’s formula Eq. s1d and Eq.s3d are equivalent expres-
sions, provided 1/tsv=0d=0. Equation s3d is frequently
used to extract the spectral function in the cuprates from IR
data.8,21–27Obviously this method introduces significant nu-
merical difficulty since thesecondderivative of the data is
needed. The experimental data must besambiguouslyd
smoothed “by hand” before Eq.s3d can be applied, otherwise
the noise will be amplified bysdoubled differentiation and
will completely dominate the solution. An alternative ap-
proach is to fit the scattering rate with polynomials and then
perform differentiation analytically.27,28 Note also that al-
though Eq.s3d is valid only atT=0 K, it is frequently ap-
plied to higherT, even at room temperature.

Here we propose a different method of extracting the
spectral function. It is based on the following formula for the
scattering rate atfinite temperatures derived by Shulgaet
al.:29,30

1

tsv,Td
=

p

v
E

0

`

dVa2FsV,TdF2v cothS V

2T
D

− sv + VdcothSv + V

2T
D + sv − VdcothSv − V

2T
DG ,

s4d

which in the limitT→0 K reduces to Allen’s result Eq.s1d.21

Unlike Eq. s1d which has a differential form Eq.s3d, there is
no such simple expression for Eq.s4d. Therefore in order to
obtaina2Fsvd from Eq. s4d one must apply inverse theory.31

Like most inverse problems, obtaining the spectral function
from the scattering rate data is an ill-posed problem which
requires special numerical treatment. The spectral function
appears under the integral, an operator which has smoothing
properties. That means that some of the information on
a2Fsvd is inevitably lost. Using inverse theory our goal will
be to extract as much useful information as we can, and set
the limits on lost information.

Numerically the procedure of solving an integral equation
reduces to an optimization problem, i.e., finding the “best”
out of all possible solutions.31 Different criteria can be
adopted for the best solution, such as:sid closeness to the
data in the least-square senseswe will call this solution “ex-
act”d or sii d smoothness of the solution. The most useful
solution is often a tradeoff between these two.

Equations4d is a Fredholm integral equation of the first
kind;31 it may be rewritten as

1

tsv,Td
=E

0

`

dVa2FsV,TdKsv,V,Td, s5d

where 1/tsv ,Td are experimental dataffrom Eq. s2dg,
Ksv ,V ,Td fcontains the prefactorp /v from Eq. s4dg is a
so-called kernel of integral equation, anda2Fsv ,Td is the
unknown function to be determined. When discretized in
both v andV Eq. s5d becomes

1

tsvi,Td
= o

j=1

N

DV ja
2FsV j,TdKsvi,V j,Td, s6d

with i =1,N. In matrix form

gW = KaW , s7d

where vector gW corresponds to 1/tsvi ,Td, vector aW to
a2FsV j ,Td and matrixK to Ksvi ,V j ,Td.32 The problem is
reduced to finding vectoraW, i.e., the inverse of matrixK. To
perform this matrix inversion we adopt a so-calledsingular
value decompositionsSVDd,31 because it allows a physical
insight into the inversion process and offers a natural way of
smoothing. MatrixK is decomposed into the following form:

K = UfdiagswjdgVT, s8d

where U and V are orthogonal matricessUT=U−1 and VT

=V−1d, and diagswjd is a diagonal matrix with elementswj.
The inverse ofK is now trivial: K−1=V fdiags1/wjdgUT and
the solution to Eq.s7d is then simply

aW = K−1gW = Vfdiags1/wjdgUTgW . s9d

The elements of diagonal matrixwj are calledsingular
valuesssvsd; they are by definition positive and are usually
arranged in decreasing order. If all of them are kept in Eq.s9d
the exact solution, i.e., the best agreement with the original
data, is obtained. If needed, and it almost always is when
solving integral equations, the smoothing of the solutionsnot
the experimental datad is achieved by replacing the largest
1/wj in Eq. s9d with zeros, before performing matrix multi-
plications. This is a common procedure of filtering out high-
frequency components in the solution.31

III. AN EXAMPLE

To demonstrate the usefulness of this procedure we first
analyze the existing IR data for underdoped YBa2Cu3O6.6
with Tc=59 K sRef. 33d. The spectral functionWsvd for this
compound was previously determined using Eq.s3d, after
1/tsv ,Td had beensheavilyd smoothed.8 Here we apply the
numerical procedure described in the previous section on the
same data set. We start with 1/tsv ,T=10 Kd data in the
range 10–3000 cm−1, and form a linear set of 300 equations
to be solvedfN=300 in Eq.s6dg, i.e., 300-element vectorsaW
andgW and a 3003300 matrixK fEq. s7dg. We then decom-
pose matrixK fEq. s8dg and choose how many of its singular
values we are going to keep. Finally we invert the matrix and
solve the system for vectoraW fEq. s9dg, i.e., a2Fsvd in the
range between 10 and 3000 cm−1, at 300 points.

The left panels of Fig. 1 show the results ofa2Fsvd cal-
culations for YBa2Cu3O6.6 at 10 K, for six different levels
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and/or methods of smoothing. The right panels show the
scattering rate 1/tsvd, along with the calculated scattering
rate 1/tcalsvd, obtained by substituting the corresponding
a2Fsvd on the left back into Eq.s4d. The top panelssA1 and
A2d display a previously published solution8 obtained using
Eq. s3d after the data had been smoothed by hand. The next
two panelssB1 and B2d present the exact solution using
SVD, with all 300 singular values different from zero. This
solution does not appear to be very usefulsnote the vertical
scaled, although it gives the best agreement between the ex-
perimental data 1/tsvd and calculated scattering rate
1/tcalsvd spanel B2d. One might say that the solution con-
tains too much information, as it unnecessarily reproduces all
the fine details in the original 1/tsvd data, including the
noise. The remaining panels show SVD calculations with 30
sCd, 20 sDd, 15 sEd, and 10sFd biggest svs different from
zero. Surprisingly only a few singular valuessless than 10%
of the total numberd are needed to achieve a similar spectral
function as obtained previously by smoothing the data by
handspanel A1d. Indeed Fig. 2 shows that approximately 12
or 13 nonzero singular values are needed. Note, however,
that neither of the curves matches exactly the curve obtained
from the data smoothed by hand.

Thea2Fsvd spectrasFig. 2d display a characteristic shape
with a strong peak at 480 cm−1, followed by a strong dip at

around 750 cm−1. In addition there is weaker structure at
both lower and higher frequencies. Carbotteet al.8 argued
that the main peak is due to coupling of charge carriers to a
collective Bosonic mode and that it occurs at the frequency
D+vs, whereD is the maximum gap in the density of states
and vs is the frequency of the Bosonic mode. They also
claimed that in optimally doped Y123 the spectral weight of
the peak matches that of neutronsp ,pd resonance and is
sufficient to explain the high transition temperature in the
cuprates. On the other hand Abanovet al.25 argued that the
main peak due to coupling to the collective mode should be
at 2D+vs. Moreover, they argued that the fine structure at
higher frequencies ina2Fsvd has physical significance: the
second dip above the main peak should be atv=4D and the
next peak atv=2D+2vs.

From Figs. 1 and 2 we conclude thatextremecaution is
required when performing numerical procedures based on
the data smoothed by hand. In Fig. 2 the strongest peak at
around 480 cm−1 is fairly robust, although its spectral weight
does change a few percent. However, the other structures are
very dependent on smoothing. The strongest dip shifts from
780 cm−1 with 11 svs, to 760 cm−1 with 12 svs and 750 cm−1

with 13 svs. In the data smoothed by hand it is at 730 cm−1.
The spectral weight of the dip also varies. It was suggested
by Abanovet al.25 that the main dip, not the peak, is a better
measure of the frequency 2D+vs. However, based on our
calculations sFig. 2d the dip is even more sensitive to
smoothing than the peak. Other peaks and dips do not dis-
play any correlation with the number of svs, i.e., the level of
smoothing.

IV. MODEL CALCULATIONS

The question we must now try to answer is how many svs
to keep in inversion calculations. To address this issue we
have performed calculations based on a model spectral func-
tion with two Lorentzians:

FIG. 1. Spectral functiona2Fsvd for underdoped YBa2Cu3O6.6

with Tc=59 K. The left panels showa2Fsvd and the right panels
show the experimental 1/tsvd along with 1/tcalsvd calculated from
the corresponding spectral functionfEq. s4dg. The top panels show a
previously published spectral functionsRef. 8d obtained from the
scattering rate smoothed by hand. The other five pairs of panels are
the data obtained using inverse theory. Different numbers of singu-
lar values are kept in the calculations, which results in different
levels of smoothing. Note that the vertical scale in panels B1 and
C1 is different.

FIG. 2. Spectral functiona2Fsvd for underdoped YBa2Cu3O6.6

with Tc=59 K obtained by smoothing the experimental 1/tsvd data
by handsRef. 8d and with SVD with 11, 12, and 13 svs.
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a2Fsvd =
vp,a

2 v2

sva
2 − v2d2 + sgavd2 +

vp,b
2 v2

svb
2 − v2d2 + sgbvd2 ,

s10d

with vp,a
2 =50 000 cm−1, va=500 cm−1, ga=200 cm−1, vp,a

2

=250 000 cm−1, va=2000 cm−1, and ga=800 cm−1. This
analytic form was chosen to mimic the real spectral function
in cupratesfsee, for example, Fig. 6 belowg. From this
a2Fsvd the scattering rate was calculatedsnot shownd using
Eq. s4d and then the formalism of inverse theorysSec. IId
was applied. Figure 3 shows the model spectral function
sgray linesd along with the spectral function determined us-
ing inverse theorysblack linesd. We see that the exact solu-
tion swith all 300 svsd does not agree well with the model;
this is due to numerical instabilities induced by the smallest
svs. As we reduce the number of svsscut off the smallestd the
agreement improves and for 100 and 50 svs the inversion
reproduces the original spectral function. As we reduce the
number of svs further the agreement begins to deteriorate
and negative values ina2Fsvd appear again. Obviously these
negative values are not real and simply reflect the fact that
too few svs do not contain enough information to reproduce
the original data. Note, however, that even with very few svs
the main features of the spectral function are reproduced, as
the main peaks and dips are roughly at correct frequencies
ssee, for example, calculations with 20, 15, and 10 svsd.
Their spectral weights are not reproduced though.

The optimal number of svs is always a tradeoff between
numerical precision and closeness to the data. Unfortunately,

unlike the model calculation shown in Fig. 3, in calculations
with real data those two criteria are not well separated.
Therefore one must be very careful when quantitatively ana-
lyzing the fine structure and their spectral weight ina2Fsvd,
as different levels and/or methods of smoothing can cause
spurious shifts of the peaks and/or redistribution of their
weights. For example, visual inspection of 1/tcalsvd on the
right-hand side of Fig. 1 cannot distinguish between different
levels of smoothingfcompare 1/tcalsvd in panels C2, D2, or
E2g, however, even the smallest differences manifest them-
selves in the spectral functions in the left panels.

An advantage of using inverse theory for extracting
a2Fsvd is that we canquantify the smoothing procedure by
specifying the number of svs different from zero in Eq.s9d,
thus eliminating arbitrariness related with smoothing of ex-
perimental data by hand. This is especially important when
quantitatively comparing results from two different 1/tsvd
curves. Note, however, that if the data sets have different
signal-to-noise levels, keeping the same number of svs will
result in different levels of smoothing. We will encounter this
problem below when we study the doping dependence of
a2Fsvd in Y123, since available data are from different
sources.

Similar problems arise when analyzing temperature de-
pendence of the data. Keeping the same number of singular
values is again not the best way to achieve similar levels of
smoothing. Figure 4stopd shows the absolute values of the
first sbiggestd 200 svs at different temperatures. They drop

FIG. 3. Model calculations of a spectral function with two
LorentziansfEq. s10dg. The exact solution, with all 300 svs, does
not agree well with the model because small singular values pro-
duce numerical instabilities in the solution. On the other hand, if too
few svs are kept unphysical negative regions appear. The model
spectral function is recovered with 50–100 svs.

FIG. 4. Singular values at different temperatures. Top panel: first
sbiggestd 200 svs from IR; bottom panel: all 100 svs from ARPES.
When analyzing temperature dependence of the spectral function
“horizontal cuts” are more appropriate, assuming all data sets have
the same signal-to-noise ratio. On the other hand, for doping depen-
dence studiessat the same temperatured “vertical cuts,” i.e., the
same number of svs, should produce similar levels of smoothing.
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quickly snote the log scaled and such smallwi produce large
oscillations in the solution. To avoid that one cuts off, i.e.,
replaces 1/wi with zeros in Eq.s9d. As Fig. 4 stopd shows,
svs are also very temperature dependent, and there are dif-
ferent ways to make the cut. As mentioned above, keeping
the same number of svs different from zeros“vertical cut”d is
not a good way, as that would imply including smaller svs at
higher temperatures and therefore higher frequency compo-
nents into the solution. In such cases it is better to make
“horizontal cuts,” i.e., keep the svs in the same range of
absolute values. This implies different numbers of svs at dif-
ferent temperatures, but the oscillations in all the solutions
should be approximately the same.

V. PROBLEM OF NEGATIVE VALUES

An obvious problem with thesesFigs. 1 and 2d and pre-
vious sRefs. 8 and 22–27d calculations is that they all pro-
duce nonphysicalnegative valuesin the spectral function.
The latter function is proportional to the boson density of
statesFsvd and therefore cannot be negative. The important
issue we must address is the origin of these negative values.
As shown in Fig. 3 negative values can appear because of
numerical problems: either because small svs produce nu-
merical instabilities, or because too few svs do not contain
sufficient information to reproduce the original data. These
negative values are not real and can be eliminated either by
choosing an appropriate number of svs, or by some other
numerical technique, as we will show below.

However, negative values can also have a real physical
origin, and they cannot be eliminated by any numerical pro-
cedure. Namely, all the methods we have discussedfEqs.s1d
ands3d, or s4dg were developed for thenormal state, but are
frequently used in thespseudodgapped state.25,34 In order to
illustrate the insufficiency of these models to account for a
spseudodgap in the density of states we have performed in-
version calculations on the BCS scattering rate. Figure 5
shows that scattering ratesright panelsd calculated within
BCS withG=2D=400 cm−1, atT/Tc=0.1. The spectral func-
tions calculated with different numbers of svs, i.e., different
levels of smoothing are shown in the left panels. Surprisingly
they look very similar to those produced by the coupling of
carriers to the collective Bosonic modessee Figs. 1 and 2d:
there is a strong peak roughly at the frequency of the gap,
followed by a strong dip and fine structure which is smooth-
ing dependent.

The main issue now is whether one can distinguish be-
tween real, physical negative values arising because of the
gap in the density of states and those arising because of
numerical instabilities. Using inverse theory we can also ad-
dress this problem. A so-calleddeterministic constraint31 can
be imposed on the solution during the inversion process.
These deterministic constraints reduce the set of possible so-
lutions from which the best solution will be picked. In the
case of the spectral function an obvious constraint is
a2Fsvdù0 for all v. However, other constraints are also
possible. In fact one of them, thata2Fsvd=0 above some
cutoff frequencys3000 cm−1d, was implicitly assumed in all
previous calculations, as the limits in the integral in Eq.s4d

run from zero to infinity, and the sum in Eq.s6d runs only up
to 3000 cm−1.

Numerically one applies the constraints during an itera-
tive inversion process.31 The initial solutionaW0 for the itera-
tion can be obtained either from Eq.s7d or more generally
using a so-called regularization:

KTgW = sKTK + dHdaW , s11d

whereH is a so-called regularization matrix andd is a regu-
larization parameter. Ford=0 sno regularizationd Eq. s11d
reduces to Eq.s7d. Equations11d can also be solved using
SVD. Once the initial solutionaW0 is found, one applies itera-
tion, imposing the constrainta2Fsvdù0 in every step:

aWn+1 = PfsI − bdHdaWn + bKTsgW − HaWndg, s12d

whereb is the iteration parameter andP denotes an operator
that sets all the negative values in the solution to zero. The
results of these calculations for YBa2Cu3O6.6 with Tc
=59 K are shown in Fig. 6. The initial solutionstop panelsd
was obtained from SVD with 20 svs and no regularization.
This solution was then iterated different numbers of times:
100 spanel Bd, 200 sCd, 500 sDd, and 1000sFd. For each
intermediate solution the scattering rate 1/tcalsvd sgray
linesd was calculated using Eq.s4d.

Clearly as the number of iterations increase the agreement
between 1/tsvd and 1/tcalsvd becomes better, but it never
becomes as good as the one with negative valuesstop paneld.

FIG. 5. Model calculations of spectral function from the BCS
scattering rate. The left panels display the calculated spectral func-
tion a2Fsvd and the right panels display the BCS scattering rate
salso shown with dotted lines in the left panelsd and 1/tcalsvd cal-
culated from the spectral function on the left. A gap in the density of
states produces similar structure ina2Fsvd as does the coupling to
a Bosonic mode.
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It appears that the numerical process converges, although
very slowly, to the solution with negative values: some fre-
quency regions ina2Fsvd have simply been cut off by the
program. The position of the main peak is not affected, but
its intensity has been reduced significantly. We also empha-
size that the structure in the spectral function atv
.1000 cm−1 is essential for obtaining linear frequency de-
pendence of 1/tsvd up to very high frequencies. We will
return to this important issue in Sec. IX below.

Therefore in the case of YBa2Cu3O6.60 we have been able
to eliminate negative values and at least in principle obtain
a2Fsvd which is always positive. This indicates that the
structure in the spectral function isspredominantlyd due to
coupling to the Bosonic mode and not the gap in the density
of states. On the other hand, we have not been able to obtain
a good BCS scattering rate without negative values in the
spectral functionsnot shownd. This is not unexpected as the
form of the spectral function is entirely due to a gap in the
density of statessno Bosonic moded, which Eqs.s1d and s4d
do not take into account. We have encountered a similar
situation in some cuprates. Figure 7 displays inversion cal-
culations for several Y123 samples with different doping
levels and/or Tc: YBa2Cu3O6.60 with Tc=57 K,36

YBa2Cu3O6.60 with Tc=59 K,8 and YBa2Cu3O6.95 with Tc
=91 K.36d All calculations are forT=10 K, with a fixed num-
ber of 15 svs. As can be seen from Fig. 7 the peak system-
atically shifts to higher energies as doping andTc increase:
430 cm−1 in x=6.6 with Tc=57 K, 480 cm−1 in the second
x=6.6 with Tc=59 K, and 520 cm−1 in x=6.95. For both 6.6
samples we have been able to obtain relatively good inver-

sions sdashed linesd without negative values in the spectral
function. That is not the case for the 6.95 sample where
without negative values the inversion fails badlyssee dashed
line in the bottom-right paneld. This indicates that the form
of the scattering rate is probably a combination of coupling
to the collective mode and a gap in the density of states, as
pointed out by Timusk.37

VI. ELECTRON-BOSON COUPLING VS ENERGY GAP

As demonstrated in previous sections similar shapes of
a2Fsvd are produced by coupling to the Bosonic mode and a
gap in the density of states when equations for the normal
statefEqs.s1d or s4dg are used. It is essential to discriminate
these two contributions because they usually appear together.
To address this problem we have to apply Allen’s formula for
the scattering rate in the superconducting state:20

1

tsvd
=

2p

v
E

0

v−2D

dVsv − Vda2FsVdESÎ1 −
4D2

sv − Vd2D .

s13d

In this equationEsxd is the complete elliptic integral of the
second kind andD is a gap in the density of states. ForD
=0 Eq.s13d reduces to Eq.s1d for the normal state. Numeri-

FIG. 6. Spectral functiona2Fsvd for underdoped YBa2Cu3O6.6

with Tc=59 K. A deterministic constrainta2Fsvdù0 is applied it-
eratively fEq. s12dg. The top two panels show the initial solution
with 20 svs. The other four sets of panels display intermediate so-
lutions for several different levels of iterations.

FIG. 7. Doping dependence of spectral functiona2Fsvd for sAd
YBa2Cu3O6.60 with Tc=57 K sRef. 36d, sBd YBa2Cu3O6.60 with
Tc=59 K sRef. 8d, andsCd YBa2Cu3O6.95 with Tc=91 K sRef. 36d.
All curves are for the lowest measured temperatureT<10 K. Ver-
tical cuts, i.e., the same number of singular valuess15d, were made
for all three data sets. The right panels display 1/tsvd data along
with 1/tcalsvd. Dashed lines are the results of iterative calculations.
Relatively good fits without negative values ina2Fsvd can be ob-
tained for both YBa2Cu3O6.60 samples, but not for YBa2Cu3O6.95.
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cally Eq. s13d is again the Fredholm integral equation of the
second kind and the same numerical procedure for its solu-
tion can be used.

We have performed the inversion of the data for optimally
doped YBa2Cu3O6.95 using Eq.s13d. Figure 8 shows inver-
sion calculations for different values of the gapD. The top
panels display calculations withD=0, which are equivalent
to previous calculations using Eq.s4d sFig. 7d. As we already
discussed, the spectrum is dominated by a pronounced peak,
followed by a large negative dip. Unlike YBa2Cu3O6.6 for
which this negative dip can, at least in principle, be elimi-
nated, the dip in YBa2Cu3O6.95 cannot be eliminatedsFig. 7d
and in the previous section we suggested that the origin of
the dip is the energy gap in the electronic density of states.
Indeed when finite values of the gap are used in Eq.s13d this
negative dip following the main peak is strongly suppressed;
the calculated spectral function is positive for almost all fre-
quenciessFig. 8d.

The problem with Eq.s13d is that it is based on ans-wave
energy gap atT=0 K. These two assumptions imply that the
scattering rate must be zero below 2D, which is never the
case with cuprates because of thed-wave gap and because
the data were taken at finite temperature. In spite of this,
Eq. s13d is useful because it can provide some insight into
charge dynamics in cuprates. Figure 9 displays calculations
of the scattering rate based on the model spectral function
a2Fsvd shown by the thin line. When the gap is zero 1/tsvd

qualitatively looks like that of underdoped YBa2Cu3O6.6: at
higher frequencies it is linear and is suppressed below a cer-
tain energysblack lined. However, for the finite values of the
gap sD=200 cm−1d1/tsvd looks more like that of optimal
YBa2Cu3O6.95: there is overshoot just above the suppressed
region sgray lined.

Based on these model calculations it appears that the re-
sponse of YBCO on the underdoped side is dominated by
coupling to the Bosonic mode, whereas at optimal doping the
gap plays a more prominent role. Indeed recent ARPES and
tunneling measurements have shown that the Fermi surface
of cuprates is continuously destroyed with underdoping.38,39

On the underdoped side antinodal states do not existsthey
are incoherentd and the IR response is dominated by nodal
states which are coherent and not gapped. On the other hand,
the IR response at optimal doping is more complicated, be-
cause both antinodalsgappedd and nodalsnot gappedd states
are coherent and contribute to the IR response.

VII. ELECTRON-BOSON SPECTRAL FUNCTION
OF BI2212

In this section we analyze the temperature dependence of
the spectral function for optimally doped Bi2212 withTc
=91 K. The same data set has been analyzed before27 using
Eq. s3d. The calculated spectrasFig. 10d look qualitatively
similar to those obtained on Y123sFig. 2d, with a strong
peak in the far-IR range followed by a dip, and a high-
frequency contribution that extends up to several thousand
cm−1. To achieve similar levels of smoothing at different
temperatures a “horizontal cut” has been madesFig. 4, topd.

In the normal state atT=100 K we identify a peak at
<400 cm−1 s50 meVd. Note that the peak is at somewhat
lower energy than in Ref. 27, which can be traced back to the
use of Eq.s3d, which is strictly speaking valid only atT
=0 K. We also note that the peak is observed aboveTc, un-

FIG. 8. Spectral function a2Fsvd for optimally doped
YBa2Cu3O6.95 calculated from Eq.s13d for the scattering rate in the
superconducting state. Different values of the gapD=0–200 cm−1

were used in the calculations. ForD=0 there is a pronounced dip
following the main peak. However, when finite values of the gap
are introduced the negative dip gradually disappears and the main
peak shifts to lower energies.

FIG. 9. Model spectral functiona2Fsvd sthin lined is used to
calculate the scattering rate 1/tcalsvd from Eq. s13d. For D=0 the
calculated scattering rate resembles 1/tsvd of underdoped
YBa2Cu3O6.60 sFig. 7d. However, for finite values of the gap the
calculated scattering rate resembles 1/tsvd of optimally doped
YBa2Cu3O6.95: there is anovershootfollowing the suppressed re-
gion sFig. 7d.
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like the sp ,pd resonance detected in INS only in the super-
conducting state.48

As temperature decreases belowTc the peak shifts to
higher energies: 430 cm−1 at 80 K, 520 cm−1 at 50 K, and
560 cm−1 at 10 K. At the lowest temperature the spectral
function is almost identical to that previously reported,27

which confirms that at 10 K Eqs.s3d and s4d are equivalent.
According to theoretical considerations8,25 in the supercon-
ducting state the peak should be offset from the resonance
frequency of thesp ,pd peaksvs.43 meVd by one or two
gap valuessD=34 meV, Ref. 50d. At 10 K the peak is at 70
meV, somewhat lower thanD+vs=77 meV,8 and signifi-
cantly lower than 2D+vs=111 meV.25 This result is in con-
trast with optimally doped Y123 where the IR peak at 66
meV sFig. 7d is in relatively good agreement withD+vs
=27 meV+41 meV=68 meV.8

VIII. INVERSION OF ARPES DATA

Recently it has been argued based on ARPES data12–15

that in cuprates electrons are strongly coupled to phonons
and that such strong coupling might be responsible for high
Tc. In light of these suggestions there have been several at-
tempts to determinea2Fsvd from ARPES data.40,41,19Inver-
sion by Vergaet al.40 was based on the imaginary part of the
self-energyS2svd, obtained from the real partS1svd through
Kramers-Kronig transformation. The spectral function was
then calculated by differentiation ofS2svd, a procedure
which necessarily requires smoothing by hand. On the other
hand, Schachingeret al.41 have modeled the spectral function

with analytical functions and then used these models to si-
multaneously fit both the IR and ARPES spectra. The maxi-
mum entropy methodsMEMd has recently been used to in-
vert ARPES data and obtaina2Fsvd for the beryllium
surface Bes101̄0d sRef. 19d and LSCO.42 Here we apply the
same inversion method we used for IR to ARPES. The pro-
cedure of extractinga2Fsvd is based on the standard expres-
sion for the real part of quasiparticle self-energyS1svd:43

S1svd =E
0

`

dVa2FsVdReFCS1

2
+ i

V − v

2pT
D

− CS1

2
− i

V + v

2pT
DG , s14d

where Csxd is the digamma function. The real part of the
self-energyS1sEkd can be obtained from ARPES data as43

S1sEkd = Ek − ek, s15d

whereEk is the renormalized dispersion measured in ARPES
experiments andek is the bare electron dispersion. As the
latter function is not independently known, a common pro-
cedure when using Eq.s15d is to assume a linear bare dis-
persionsek,kd and no renormalization at higher energies,
i.e., Ek=ek above <250 meV. Expressions14d is again a
Fredholm integral equation of the first kind and the same
numerical technique described in Sec. II can be used for its
solution. Similar to IR, by-hand smoothing of the data is not
needed, as the SVD procedure will allow us to smooth the
solution by reducing the number of nonzero svs. Since the
resolution of ARPES data is poorer than IR, in all calcula-
tions we used vectors and matrices with dimensions 100 in-
stead of 300.

As an example of this procedure, in Fig. 11 we first
present spectral functiona2Fsvd calculated from ARPES
data for molybdenum surface Mos110d.44 As before, the left-
hand panels show the calculated spectral function and the
right panels measured the ARPES dispersionEk and the dis-
persion calculated from Eq.s14d, Ek,cal, using the corre-
sponding spectral function on the left. The spectral function
has a characteristic shape, with a strong peak at around
200 cm−1 and weaker structure at both higher and lower fre-
quencies. Similar to IR, the position of the main peak is
fairly robust against smoothing, but weaker peaks and dips
are not. The dashed lines in the left-hand panels represent
a2Fsvd calculated based on band structure.45 Low data reso-
lution and loss of information during the inversion do not
allow us to resolve the fine structure ina2Fsvd that has been
predicted numerically.45 At higher energiessv*400 cm−1d
the spectral function is effectively zero, in accord with band-
structure calculations.

These relatively simple calculations for molybdenum sur-
face Mos110d have uncovered the limitations of inversion of
ARPES data. Fine details of the spectral function, especially
narrow peaks, cannot be resolved as they are convoluted in
the experimental datafEq. s14dg. The maximum information
that can be obtained is thefrequency regionwhere there is
significant contribution toa2Fsvd. It has recently been
claimed based on MEM inversion of ARPES data that the

FIG. 10. Temperature dependence of the spectral function
a2Fsvd for optimally doped Bi2Sr2CaCu2O8−d with Tc=91 K. As
temperature increases the main peak shifts to lower energies and
loses intensity, but seems to persist even aboveTc.
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sharp peaks identified ina2Fsvd spectra are due to specific
phonon modes.19,42 Based on our calculations we speculate
that it is unlikely that such fine details of the spectra could be
resolved by any inversion procedure.

Figure 12 presents the data for optimally doped Bi2212
sTc=91 Kd at 130 and 70 K taken along the nodal direction.
Similar to IR calculations in Fig. 10, to achieve approxi-
mately the same level of smoothing, different numbers of svs
values were kept in calculations at different temperatures:
eight sout of 100d at 130 K and ten at 70 K. Within the error

bars the main peak does not shift with temperature: it is at
440 cm−1 at both 130 and 70 K. However, the peak does
narrow and gains strength at 70 K.49 Below 70 K ARPES
dispersion displays almost no temperature dependence. Note
also that unlike IR, there seems to be fewer problems with
negative values in ARPESa2Fsvd calculations. In particular
there is no pronounced dip following the main peak, which
might be related to the fact that the APRES scans were taken
along thesp ,pd direction where the magnitude of the gap
goes to zero. Another important difference compared with IR
is that there is no high-frequency component in ARPES: the
whole contribution to a2Fsvd is concentrated atv
&750 cm−1.

IX. IR-ARPES COMPARISON

In the previous section the inversion calculations have
uncovered several important differences between the spectral
function extracted from IR and ARPES. In all ARPES calcu-
lations the strong dip following the main peak was absent,
which we suggested was due to the absence of the gap along
the sp ,pd symmetry direction. More importantly, there was
no high-frequency contribution extending up to several thou-
sand cm−1 in any ARPES calculations. In this section we will
make an explicit comparison between IR and ARPES spec-
tral functions and discuss their similarities and differences.

First it should be emphasized that ARPESa2Fsvd from
Eq. s14d is not the same as the IR from Eqs.s1d ands4d.43,41

ARPES is a momentum resolving technique, whereas IR av-
erages over the Brillouin zone. More importantly, ARPES
probes the equilibriuma2Fsvd ssingle-particle propertyd,
whereas IR measures transportatr

2Fsvd stwo-particle
propertyd.43 Recently Schachinger,et al. discussed the
difference41 and suggested that in the simplest case these two
functions might differ only by a numerical factor of 2–3.
Therefore it would be very instructive to directly compare
the spectral functions extracted from IR and ARPES. How-
ever, technical reasons make this comparison difficult.
Present resolution of ARPES data of<10 meV is at least
one order of magnitude less than IRstypically &1 meV in
the frequency range of interestd. This large discrepancy in
resolution requires different levels of smoothing, which can
affect the solution. Therefore we cautiously compare calcu-
lateda2Fsvd’s, relying only on robust features, as discussed
in the previous sections.

The most complete comparison can be made for optimally
doped Bi2212, for which high quality IRsRef. 27d and
ARPESsRef. 46d data sets exist, all obtained on the samples
from the same batch.47 Although data at different tempera-
tures are available, we believe that will not change the main
results and conclusions in any significant way, as ARPES
data display little temperature dependence below 70 K.46

Figure 13 showsa2Fsvd from both IR and ARPES for
optimally doped Bi2212 withTc=91 K. The a2Fsvd from
ARPES is multiplied by a factor of 3. The agreement be-
tween the positions of the main peak in both data sets
s<500 cm−1d is very good. This agreement is actually sur-
prising and unexpected. As discussed in Secs. III and VII, the

FIG. 11. Spectral functiona2Fsvd of Mos110d surface at 70 K
extracted from ARPES datasRef. 44d. Three different levels of
smoothing are shown with 10, 15, and 20 svs. Dotted lines in the
left panels represent the theoretical spectral functionsRef. 45d.

FIG. 12. Temperature dependence of spectral functiona2Fsvd
of optimally doped Bi2212 extracted from ARPES datasalong
nodal directiond using inverse theory. Left panels showa2Fsvd
spectra calculated from Eq.s14d, and right panels show ARPES
quasiparticle dispersionEk sgray symbolsd and calculated dispersion
Ek,cal sfull linesd using the corresponding spectral function on the
left. Also shown with dashed lines are bare quasiparticle dispersions
ek used to calculateS1svd fEq. s15dg.
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main peak in the IR spectral function should be offset from
the frequency of the neutron peakvs by either one8 or two25

gap valuesD. On the other hand, in ARPES data the gap
should not play a role: the data were taken along the nodal
directions where the gap is zero. Therefore almost perfect
agreement between the positions of IR and ARPES peaks
sand disagreement with the INS peak—see Sec. VIId in op-
timally doped Bi2212 is puzzling and calls for further theo-
retical studies.

Another important difference between IR and ARPES is
the contribution in IR that extends up to very high energies.
There is no such contribution in any ARPES data we have
availablesSec. VIIId. Therefore based on ARPES data alone
one can argue that the observed contribution toa2Fsvd is
either due to phonons or spin fluctuations. On the other hand,
the high-frequency component is always present in IR and is
necessary to keep 1/tsvd increasing, approximately linearly
with v. Figure 14 displays calculations ofa2Fsvd for
YBa2Cu3O6.6 with Tc=59 K up to almost 1 eV.8 Both inver-
sion with negative valuesstop panelsd and iterative calcula-
tions with positive valuessmiddle panelsd result in a spectral
function with significant contributions up to<0.85 eV. If
this contribution is cut off, for example at 1000 cm−1 sbot-
tom panelsd, the calculated scattering rate deviates strongly
from experimental data, as 1/tcalsvd tends to saturate above
,2000 cm−1. This result argues against phonons as the ori-
gin of the structure ina2Fsvd, as phonon spectrum cannot
extend up to such high frequencies. However, a phonon con-
tribution below<1000 cm−1 cannot be ruled out.

The absence of high-frequency contribution in ARPES is
puzzling and seems to indicate that the difference between
the IR and ARPES spectral function might be more than just
a numerical prefactor. On the other hand, it may also signal
intrinsic problems with our procedure of extractingS1sEkd
from ARPES dispersion.51 As mentioned in Sec. VIII, bare
electron dispersionek is not known and some assumptions
must be made before Eq.s15d can be used. The most com-
mon assumptions are:sid linear bare dispersionek andsii d no

renormalization above a certain cutoff frequency. We have
employed these assumptions in all our calculations, with a
cutoff of typically <250 meV. The use of both of these as-
sumptions in highly unconventional systems like cuprates is
questionable and requires further theoretical treatment.51

In order to check the effect upper cutoff energy has on the
solution, we have performeda2Fsvd inversion for optimally
doped Bi2212sFig. 12d assuming that the renormalization
persists up to 0.5 eV, instead of 0.25 eV. Figure 13 also
shows this new calculation with a dashed line and obviously
there is very little difference: the main peak is in good agree-
ment and there is no significant contribution above
<800 cm−1, even though the renormalization extends up to
0.5 eV. We speculate that in order to obtain a spectral func-
tion similar to IR, either the renormalization must persist up
to several eV or some more sophisticated form of the bare
dispersionek must be used.51

X. SUMMARY AND OUTLOOK

A different numerical procedure of extracting electron-
boson spectral function from IR and ARPES data based on
inverse theory has been presented. This method eliminates
the need for differentiation and smoothing by hand. How-
ever, we also showed that the information is convoluted and

FIG. 13. Comparison of spectral functionsa2Fsvd extracted
from IR and ARPES data for optimally doped Bi2212 withTc

=91 K. Note thata2Fsvd from ARPES is multiplied by a factor of
3. The dashed line is an ARPES calculation with a different bare
dispersionswith renormalization effects up to 0.5 eVd.

FIG. 14. Spectral functiona2Fsvd extracted from IR data for
underdoped YBa2Cu3O6.6 with Tc=59 K and calculated up to
<0.85 eV. The top panels display calculations with negative values
sSec. IId. The middle panels are iterative calculations with 2000
iterations sSec. Vd. In both cases a significant contribution to
a2Fsvd persists up to very high frequencies. The bottom panels
display the results of calculations of 1/tcalsvd with high-frequency
contribution toa2Fsvd cutoff sabove 1000 cm−1d. In this case the
calculated scattering rate tends to saturate at higher energies.
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fine details ofa2Fsvd cannot be extracted, no matter what
numerical technique one uses. This especially holds for
ARPES, whose current data resolution is particularly poor
compared to IR.

Using this procedure we have extracteda2Fsvd from IR
and/ or ARPES data in a series of Y123 and Bi2212 samples.
The calculations have uncovered several important differ-
ences between IR and ARPES spectral functions. All IR
spectral functions contain, in addition to a strong peak at low
frequenciessv&500 cm−1d, contributions that extend up to
very high energiesstypically several thousand cm−1d. On the
other hand, none of ARPES spectral functions display such
high-energy contribution. Therefore we concluded that based
on ARPES results one cannot distinguish between phonon
and magnetic scenarios, as the main peak ina2Fsvd can have
either sor bothd magnetic or phonon components. However,
in all IR results the observed high-frequency contribution

extends to much higher than typical phonon frequencies, the
result which argues against phonon mechanism.

Finally, the observed differences between IR and ARPES
have prompted us to speculate thata2Fsvd from these two
experimental techniques might contain qualitatively different
information. Alternatively, we suggest that the whole concept
of coupling of charge carriers to collective boson modes in
the cuprates needs to be revised.
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