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Fermi showed that, as a result of their quantum nature, electrons
form a gas of particles whose temperature and density follow the
so-called Fermi distribution. As shown by Landau, in a metal the
electrons continue to act like free quantum mechanical particles
with enhanced masses, despite their strong Coulomb interaction
with each other and the positive background ions. This state of
matter, the Landau–Fermi liquid, is recognized experimentally by
an electrical resistivity that is proportional to the square of the
absolute temperature plus a term proportional to the square of
the frequency of the applied field. Calculations show that, if elec-
tron-electron scattering dominates the resistivity in a Landau–
Fermi liquid, the ratio of the two terms, b, has the universal value
of b = 4. We find that in the normal state of the heavy Fermion
metal URu2Si2, instead of the Fermi liquid value of 4, the coeffi-
cient b = 1 ± 0.1. This unexpected result implies that the electrons
in this material are experiencing a unique scattering process. This
scattering is intrinsic and we suggest that the uranium f electrons
do not hybridize to form a coherent Fermi liquid but instead act
like a dense array of elastic impurities, interacting incoherently
with the charge carriers. This behavior is not restricted to URu2Si2.
Fermi liquid-like states with b ≠ 4 have been observed in a number
of disparate systems, but the significance of this result has not
been recognized.
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Among the heavy Fermion metals, URu2Si2 is one of the most
interesting: it displays, in succession, no fewer than four

different behaviors. As is shown in Fig. 1, where the electrical
resistivity is plotted as a function of temperature, at 300 K the
material is a very bad metal in which the conduction electrons
are incoherently scattered by localized uranium f electrons. Be-
low TK ∼ 75 K, the resistivity drops and the material resembles
a typical heavy Fermion metal (1–3). At T0 = 17.5 K the “hidden-
order” phase transition gaps a substantial portion of the Fermi
surface but the nature of the order parameter is not known.
A number of exotic models for the ordered state have been
proposed (4–7), but there is no definitive experimental evidence
to support them. Finally, at 1.5 K URu2Si2 becomes an uncon-
ventional superconductor. The electronic structure, as shown by
both angle-resolved photoemission experiments (8) and band-
structure calculations (9) is complicated, with several bands
crossing the Fermi surface. To investigate the nature of the
hidden-order state we focus on the normal state just above the
transition. This approach has been used in the high-temperature
superconductors where the normal state shows evidence of dis-
crete frequency magnetic excitations that appear to play the role
that phonons play in normal superconductors (10). The early
optical experiments of Bonn et al. (11) showed that URu2Si2
at 20 K, above the hidden order transition, has an infrared
spectrum consisting of a narrow Drude peak and a strong in-
coherent background. The large electronic specific heat just

above the transition pointed to the presence of heavy carriers
with a mass m* = 25me (2). However, recent scanning tunneling
microsocopy (STM) experiments contradict this model (12, 13).
Schmidt et al. (12) find a light band crossing the Fermi surface
above 17.5 K turning into a hybridized heavy band only below the
hidden-order transition. This finding contradicts the conven-
tional view that mass builds up gradually below TK, although
there have been recent reports of some hybridization occurring
in the 25–30 K region by Park et al. (14) and Levallois et al. (15),
but the reported effects are weak and perhaps not resolved by all
spectroscopies. We can test the development of mass by carefully
tracking the Drude weight as a function of temperature with
optical spectroscopy. The Drude weight is a quantitative mea-
sure of the effective mass of the carriers. Before turning to an
optical investigation of the normal state of URu2Si2, we will re-
view briefly what is known from optical spectroscopy of other
metallic systems at low temperature.
In pure metals, at high temperature the dominant source of

resistance is the electron–phonon interaction, giving rise to the
familiar linear temperature-dependence of the electrical resistance.
At low temperature the phonon contribution weakens and the
resistance varies as T2, where T is the absolute temperature.
Gurzhi showed that under rather general conditions, the re-
sistivity of a pure metal at low temperature is given by ρ(ω, T) =
A′[Zω2 + 4π2(kBT2)], where ω is the frequency of the field used
to measure the resistivity, and A′ a constant that varies from
material to material (16). This formula is valid for three-di-
mensional systems, as long as Galilean invariance is broken by
the lattice, and the Fermi surface is not convex and simply
connected (16–22), and then in the high-frequency regime when
ω >>1/τsp(ω, T) with 1/τsp(ω, T) being the single-particle scat-
tering rate. In the dc limit, the resistivity behaves as ρ(T) = AT2,
if umklapp scattering is allowed. Notice that although the coef-
ficients A and A′ contain different combinations of umklapp and
normal scattering amplitudes, they are related as A = 4π2A′ if
umklapp scattering dominates over the normal one. We prefer to
introduce a parameter b, which we define as b = A/(A′π2). Then,
if the Gurzhi resistivity formula is valid, b = 4. A source of
confusion in the literature is the formula for the single-particle
scattering rate 1/τsp within Fermi liquid theory 1/τsp(ω, T) =
A′[(Zω2 + π2(kBT)2] that is sometimes used to describe the re-
sistivity. This formula does not apply here and, to be general, we
will use the parameter b as a quantity that is measured by
comparing the frequency and temperature terms in Gurzhi’s
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formula, in the same energy range Zω ∼ kBT. Although the focus
of this report is an accurate determination of b in the normal
state above the hidden-order transition of URu2Si2, it is useful to
look at previous work, where the quantity b can be extracted
from the measured optical resistivity ρ(ω, T) and, in some cases,
the dc resistivity ρ(T). These are challenging experiments be-
cause Fermi liquid scattering, in most metals, is a low-tempera-
ture phenomenon and, therefore, to stay in the energy range
where the temperature dependence of the resistivity is examined,
the optical measurements have to be carried out in the very
far infrared, an experimentally difficult region. Nevertheless, a
search of the literature turns up several examples.
The first report of a discrepancy of the ratio of the amplitudes

of the frequency and temperature terms in a Fermi liquid was
a report by Sulewski et al. (23) on the infrared properties of the
heavy Fermion material UPt3. Instead of the expected value of b =
4, they reported and experimental upper limit of b = 1. Since then
a number of studies have presented both T2 and ω2 dependencies
of the optical scattering on the same material (24–26). A summary
of these is given in Table 1. In some cases, the authors have not
calculated the ratio A/A′, in which case we have made an estimate

from the published curves. We have also tabulated the approxi-
mate maximum temperatures and frequencies where the quadratic
dependence is observed. It is important that these overlap to some
extent. The overall conclusion one can draw from this table is that
in no case has the expected canonical Fermi liquid behavior with
b = 4 been observed experimentally. Additional examples of non-
Fermi liquid behavior are given in a review by Dressel (27).

Results
Fig. 2 shows the optical conductivity between 20 and 75 K, the
region where coherence develops, as shown by the appearance of
a Drude peak below 15 meV, which narrows as the temperature
is lowered. Above 75 K the optical conductivity is frequency- and
temperature-independent. Interestingly, we find that in the
temperature range 75 K to 20 K the area under the Drude peak
is temperature-independent, with a plasma frequency of ∼400
meV. This finding is a signature that m* is constant in this
region of temperatures. A distinct minimum develops between the
Drude peak and the high-frequency saturation value. We suggest
this minimum is a pseudohybridization gap normally associated
with the formation of the Kondo lattice but not fully formed in this
material above 17.5 K. There is a simple relationship between the
Kondo temperature TK, the effective massm* and the gap VK:m*/
me = (VK/kBTK)

2 (17, 28). Estimating TK = 75 K from the tem-
perature where the Drude peak first appears, and taking VK = 15 ±
5 meV, we find m*/me = 5 ± 2, which is lower than what is esti-
mated from specific heat measurements (2) but not in disagree-
ment with recent STM (12) or optical (15) data. We note here that
the hybridization gap acts like the pseudogap in the cuprates; its
frequency does not change with temperature but fills in gradually
as the temperature is raised. In addition, the spectral weight
lost in the gap region is not recovered by the Drude peak or in
the spectral region immediately above the gap. The inset in Fig.
2 shows the accumulated spectral weight at the five temper-
atures. All of the curves cross at 15 meV, showing that the
Drude weight is conserved in the temperature range from 20 to
75 K. On the other hand, spectral weight is lost above this
frequency range as the temperature is lowered. These behaviors
are inconsistent with a simple picture of an effective mass
resulting from an inelastic interaction with a bosonic spectrum.
To examine quasiparticle damping above the hidden-order

transition, we apply an extended Drude model to the conductivity:

σðT;ωÞ = ω2
p

4π
1

1=τ opðωÞ− iωð1+ λðωÞÞ; [1]

where ω2
p = 4πne2=me is the plasma frequency squared, 1=τ opðωÞ=

ω2
p

4πReð1=σðωÞÞ, the optical scattering rate, and 1 + λ(ω) = m*/me is
the mass enhancement. Optical phonons at 13.5 and 46.9 meV
have been subtracted from the measured conductivity. The renor-
malized optical scattering rate, 1/τ* = 1/τop/(m*/me), is shown in
Fig. 3A, where we have used a plasma frequency of ω*p =ωp=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m* =me

p
= 418 meV; evaluated from the Drude weight. As the

temperature exceeds TK, here taken as 75 K, the frequency-
dependence below 14 meV is replaced by uniform temperature-
and frequency-independent scattering. We also note that the
low-frequency scattering above 20 K is incoherent in the sense
that 1/τ* > ω but, significantly, the condition reverses at 20 K,
near the temperature of the hidden order transition.
We next turn to the optical resistivity, defined as ρ(ω) = Re

[1/σ(ω)], where σ(ω) is the complex conductivity. We used the
“refined reflectivity” (Materials and Methods) to calculate this
quantity, as plotted in Fig. 3B at three temperatures, because we
are focusing on temperatures just above the phase transition.
The zero frequency limit of ρ(ω) is the dc resistivity, which as
mentioned above, has been adjusted to agree with the measured
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Fig. 1. The dc resistivity of URu2Si2 as a function of temperature. Unlike
ordinary metals, the resistivity rises as the temperature is lowered below 300
K to reach a maximum at around 75 K, referred to as the Kondo tempera-
ture, TK. Below this temperature the resistivity drops dramatically and the
system acquires a Drude peak at low frequency, a defining property of
a material with metallic conductivity. This change of resistivity slope at TK is
the signature of a heavy Fermion system, where the conduction electrons
hybridize with f electrons to form massive carriers. In URu2Si2, this process in
interrupted at 17.5 K by a phase transition, called the hidden-order transi-
tion, where a portion of the Fermi surface is gapped. Our aim in this work is
to investigate the electrodynamics of this system just above the hidden-or-
der state.

Table 1. Summary of experimental measurements of the ratio
b of temperature and frequency terms for some Fermi liquids

Material Tmax (meV) ωmax (meV) b Source

UPt3 1 1 <1 (23)
CePd3 1.3 (23)
Ce0.95Ca0.05TiO3.04 25 100 1.72 (24)
Cr 28 370 2.5 (25)
Nd0.95TiO4 24 50 1.1 (26)
URu2Si2 2 10 1.0 Present work

Tmax and ωmax indicate the upper limit of the measured quadratic behav-
ior of ρ(T) and ρ(ω), respectively.
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resistivity shown as filled circles at zero frequency. Fig. 3B also
shows a parabola fitted to the data where the constants A′(T)
and c(T) are adjustable parameters.
We next evaluate the Fermi liquid parameters A′ and A from

our data, as well as the constant b. We determine A′ directly
from a quadratic fit to the optical data shown in Fig. 3B between
5 and 11 meV. Note that the the scattering rate deviates from the
simple quadratic form below 5 meV and above 12 meV, where it
saturates. The coefficient A′ = 0.034 μΩ·cm·K−2 at 17.5 K and
decreases to 0.030 μΩ·cm·K−2 at 22 K, whereas the cutoff seems
to remain at 12 meV. Even with our enhanced signal-to-noise
ratio, we see little evidence to coupling to sharp resonance
modes in our spectra of the type seen in the cuprates (29). Such
modes, whether they are magnetic or because of phonons, would
show a characteristic rise of scattering rate at the mode fre-
quency. Instead, the self energy of the quasiparticles is domi-
nated by a featureless continuum without an energy scale.
The inset to Fig. 3B shows the intercept c(T) plotted as a

function of T2. The slope gives us the coefficient A = b(π)2 A′ =
0.30 μΩ·cm·K−2 and b = 1.0 ± 0.1, an average over the tempera-
ture region 18.5 K to 22 K. The intercept is negative but in view of
large range of extrapolation, we do not consider this significant.
A positive intercept would suggest a linear T contribution,
whereas a negative one implies a Kondo-like process that rises as
the temperature is lowered. Although the scatter in the points
precludes any definite conclusions, it is clear from the raw data that
an upward trend is present in ρ(ω) below 3 meV and below 25 K.
We next compare these optically determined parameters with

the parameters determined from the dc resistivity. Fig. 4 shows
the temperature derivative of the dc resistivity of URu2Si2. The
line is a straight-line fit to the derivative in the 18–22 K tem-
perature range to dρ/dT = c + 2AT with A = 0.3 ± 0.12
μΩ·cm·K2. The fit shows that the resistivity is dominated by a T2

term and the coefficient A agrees with its value determined from
optics well within experimental error. The near-zero value of
the intercept c shows that there is only a weak linear in T con-
tribution to the scattering, but it should be noted that in view of
the narrow 4 K temperature range used in the fit, by itself Fig. 3
does not prove that we have a Fermi liquid above 18 K. In fact,

higher-resolution dc resistivity data (30) shows that there is no
finite region where ρ(T) is linear in T. If Fermi statistics and
electron-electron scattering dominate the resistivity and 1/τ < ω,
we expect that, in addition to the ω2 dependence of the ac and T2

dependence of the dc resistivity, the coefficient b has to equal 4.
In URu2Si2 all of the conditions are met except the last one. Our
strongest evidence for this are the frequency fits in Fig. 3B and
the main role of the dc resistivity fit is to confirm the value of the
coefficient A. The agreement of the A coefficients obtained by
optics and transport is better than expected because the experi-
ments were done on different samples from the same batch and
absolute dc resistivities generally do not agree to better than
20% among groups. A Fermi liquid–like resistivity above 17.5 K
in URu2Si2 with A = 0.35 has also been reported by Palstra et al.
(3). Another comparison between the temperature- and frequency-
dependence of scattering is the ratio of the Kondo temperature
TK = 75 K and the cutoff frequency ωc = 14 meV of frequency-
dependent scattering. If it is written as bc =ω2

c=π
2T2

K   we find
that bc = 0.48, again substantially smaller than the Fermi liquid
value of b = 4.
We conclude that instead of the expected value of b = 4 for

Fermi liquid scattering (16), our data clearly show that b = 1 ±
0.1 in the temperature region immediately above the hidden order
transition. This discrepancy is well outside our possible error. The
value b = 1 is expected for resonant elastic scattering from im-
purities, when the single-particle scattering rate has an ω2 but no
T2 term (20). The Kubo formula then yields the optical 1/τ with
b = 1. Here, however, the scattering appears to be intrinsic. One
possibility is that in this material, instead of the formation of an
Anderson lattice of coherent states, the uranium f levels act like
independent incoherent scatterers and form the coherent lattice
only below the hidden-order transition. This picture has also
been advanced by Haule and Kotliar (6) and Schmidt et al. (12).
Our data provide independent evidence for this model. The
important question remains: Are there cases of true Fermi liquids
with b = 4? As Table 1 shows, all of the cases where the fre-
quency-dependence has been measured fail to show clear cases
where b = 4. The deviation from the Fermi liquid value of b has
been discussed by Rosch and Howell (18) for some special cases,

0 5 10 15 20 25 30 35 40
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

9

10
x 10

4

frequency meV

  20 K
  25 K
  30 K
  50 K
  75 K

1(
) (

cm
)-1

W
(

) (
cm

)-1
 m

eV
frequency (meV)

Fig. 2. The optical conductivity as a function of photon energy in the heavy Fermion state. Below 4 meV, the conductivity has been fitted to a Drude peak,
the amplitude of which agrees with the dc resistivity. (Inset) The integrated spectral weight up to a frequency ω. Below 10 meV, the Drude weight dominates.
The total Drude weight is temperature independent because all of the curves join at 15 meV above the Drude cutoff. The spectral weight in the hybridization
gap region, 5–40 meV, is lost to higher frequencies, and the accumulated spectral weight drops at 40 meV as the temperature is lowered.
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such as quasi-two-dimensional compounds, and a case with b =
5.6 is reported by Dressel (27).
In summary, we have found that in the normal state above the

hidden-order transition in URu2Si2, a relatively light band with
a massm*/me ∼ 5 is weakly coupled to the f electrons with VK ∼ 5
meV, and that this band is responsible for the transport current
as measured by the optical conductivity. We suggest that this
coupling is not strong enough to form an Anderson lattice. In-
stead, the f electrons act like elastic, incoherent scatterers, as
shown by the anomalous b = 1 in the generalized Fermi liquid-
scattering formula instead of the expected b = 4 for coherent
inelastic scattering from bosonic excitations. As suggested by the
STM experiments of Schmidt et al. (12), the Fermi liquid with
the heavy quasiparticles exists only below the hidden-order
transition. Because of the rapidly varying electronic density of
states, we are unable to use our technique to analyze the nature

of the scattering below the hidden-order transition to verify this
scenario, and recent transport experiments suggest a possible
non-Fermi liquid behavior at low temperatures (30). We also
note that this anomalous Fermi liquid behavior is shared by a
number of other strongly correlated materials, where magnetism
appears to play a role. The possibility exists that in these systems
the electron lifetime is not determined by Fermi liquid electron-
electron scattering but by elastic resonant scattering, and leads to
the notion that a quadratic temperature dependence of the re-
sistivity may not be a good signature of a Fermi liquid.

Materials and Methods
The single crystals of URu2Si2 were grown at Grenoble and at McMaster in
triarc furnaces in an argon atmosphere. The crystals were annealed under UHV
at 900 °C for 10 d. The surfaces cleaved along the ab plane were measured by
standard reflectance techniques, at three separate laboratories, using an in
situ gold-overcoating technique (31). The absolute reflectance results of the
three groups agreed to within 0.5%.

A

B

Fig. 3. (A) The frequency dependent scattering rate 1/τ* at three temper-
atures in the normal state above the hidden-order transition at 17.5 K from
the unrefined reflectivity. As the temperature is raised, the Fermi liquid
scattering below 14 meV is replaced by a uniform frequency-independent
incoherent scattering. Coherent quasiparticles exist below the dashed line
ω > 1/τ*. (B) The optical resistivity ρ(ω) vs. photon energy at low frequencies
from the refined reflectivity. The experimental curves (solid lines) are com-
pared with a Fermi liquid fit (dashed lines), with the coefficient A′ and an
offset c(T) determined by a least-squares fit to the experimental data. (Inset)
The temperature dependence of c(T) plotted as a function of T2, for the
three lowest temperatures, 17.5 K, 18 K, and 22 K. The slope of this curve
yields an estimate of A = 0.30μΩ·cm·K−2 from optics.

Fig. 4. The solid line shows the temperature derivative of the experimental
dc resistivity of URu2Si2. The straight line is a fit of dρ(T)/dT = c + 2AT in the
temperature range 18–22 K. Above 22 K the temperature derivative falls,
a signature of the onset of incoherence.
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Fig. 5. The noisy experimental reflectance data, measured at 22 K, is
smoothed by fitting a cubic polynomial to the data. This curve is combined
with other experimental data at higher frequencies and Kramers–Kronig
transformed to yield an approximation to the actual spectrum.
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At long wavelengths, a simple procedure which we call “refined thermal
reflectance” was used to cancel out interference artifacts (32) below 13
meV. The procedure involves the following steps. We have found that the

interference artifacts seen in the absolute experimental spectrum (Fig. 5)
are related to the movement of the sample stage. To overcome this
problem, we measure the reflected spectra over a narrow temperature
range without moving the sample stage, typically from 4 K to 25 K. Using
one of the spectra as a reference, we record the ratios of the spectra at the
various temperatures to the spectrum at the reference temperature. To
obtain a low-noise absolute reflectance, we use the gold-overcoating
technique to get an estimate of the absolute reflectance at the reference
temperature. Because the sample is moved in this process this absolute
spectrum is contaminated by interference artifacts. To eliminate these
artifacts, we fit the absolute reflectance at the reference temperature
with a cubic polynomial, a curve labeled “cubic fit” in Fig. 5. This smoothed
spectrum is then used as a reference spectrum to calculate absolute
spectra at all other temperatures. It is clear that the smoothing procedure
hides any sharp structure in the reference spectrum. However, any new
sharp structure that appears as the temperature is changed will be present
at full resolution. The final refined spectra are shown in Fig. 6. This pro-
cedure is well-suited to the discovery of new spectral features that appear
at phase transitions, for example the prominent minimum at 5 meV, be-
cause of the hidden-order gap. The measured refined reflectance was
converted to an optical conductivity by Kramers–Kronig analysis. At low
frequency, below 4 meV, a Drude response was assumed where we used
the measured dc resistivity to determine the amplitude of the Drude peak
and the absorption at our lowest measured infrared frequency to de-
termine the width. At high frequency, beyond 7 eV, we used the results of
Degiorgi et al. (33).
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Fig. 6. “Refined” reflectance of URu2Si2 obtained by first measuring a se-
ries of spectra at different temperatures T and then dividing the spectra with
one measured at a reference temperature Tref. All this is done without
moving the sample stage. The resulting temperature ratios are smooth
without interference artifacts. Then, these smooth ratios are multiplied by
the estimate to the absolute spectrum at Tref shown in Fig. 4. The resulting
spectra shown in the figure are a low noise approximation to the true ab-
solute spectra of URu2Si2. Of all of the spectra shown, only the one at Tref =
22 K is a polynomial fit; all of the others show actual measured data.
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