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Three-dimensional Dirac fermions in quasicrystals as seen via optical conductivity
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The optical conductivity of quasicrystals is characterized by two features not seen in ordinary metallic systems.
There is an absence of the Drude peak and the interband conductivity rises linearly from a very low value up to
normal metallic levels over a wide range of frequencies. The absence of a Drude peak has been attributed to a
pseudogap at the Fermi surface but a detailed explanation of the linear behavior has not been found. Here we
show that the linear conductivity, which seems to be universal in all Al based icosahedral quasicrystal families,
as well as their periodic approximants, follows from a simple model that assumes that the entire Fermi surface
is gapped except at a finite set of Dirac points. There is no evidence of a semiconducting gap in any of the
materials suggesting that the Dirac spectrum is massless, protected by topology leading to a Weyl semimetal.
This model gives rise to a linear conductivity with only one parameter, the Fermi velocity. This picture suggests
that decagonal quasicrystals should, like graphene, have a frequency independent conductivity, without a Drude
peak. This is in accord with the experimental data as well.
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I. INTRODUCTION

The electronic properties of quasicrystals1 are not what one
expects of alloys of good metals. The more perfect the crystals
are, the worse is their electrical conductivity, just the opposite
of what one sees in the transport properties of their metallic
constituents where the residual resistance decreases as order
and purity are improved.2 The best quasicrystals are almost
insulators with a resistivity as high as 30 m� cm and a semi-
conducting temperature dependence.3 The high resistivities are
not caused by excessive disorder as seen in metallic glasses.4

High quality decagonal quasicrystals have a quasicrystalline
structure in two dimensions but are ordinarily periodic crystals
in the third direction. Their electrical conductivity is low and
frequency independent in the quasicrystalline plane, but in the
periodic c direction the decagonal quasicrystals behave like
ordinary metals: There is a Drude peak and the conductivity is
high with a metallic temperature dependence.5,6

The generally accepted model for this near-insulating
behavior of quasicrystals is a pseudogap that destroys a
large portion of the Fermi surface leaving only small pockets
of electrons that can contribute to conduction.7 The low
electronic specific heat coefficient γ is consistent with this
picture.3 Recent HAXPEX spectra show a clear pseudogap in
the density of states of Al63Cu25Fe12 at the Fermi surface.8

The origin of this pseudogap can be understood in terms of
the Hume-Rothery rules for the formation of stable alloys.9–11

The overall energy of the system can be reduced if the
Fermi surface is gapped in a structure where the Jones-zone

boundaries touch the Fermi surface as much as possible.
Quasicrystals have such a structure where a combination of the
strongest Bragg planes form an almost spherical Jones zone
and by choosing the appropriate concentration and valence of
the constituent elements the Fermi surface can be tailored to
match the Jones zone.

The optical conductivities of the three-dimensional icosa-
hedral quasicrystals and their periodic approximants are quite
remarkable. First they lack the Drude peak characteristic
of free electrons, but even more unusual is the frequency
dependence of the conductivity.12 Figure 1 shows the con-
ductivity spectra for three icosahedral quasicrystals. There
are some striking common elements in these curves. All start
from a low conductivity at low frequency and rise linearly
up to ∼1.0 eV where there is a broad maximum. There
are some additional structures at low frequency which can
be attributed to phonons.12–14 For example in Al70Pd20Re10

(AlPdRe) from Homes et al.12 there is a phonon contribution
below 50 meV but no sign of a Drude peak. In contrast,
in pure aluminum there is a Drude peak with an amplitude
of σ (0) = 3.5 × 105 (� cm)−1 and a width γ = 82 meV at
room temperature arising from electron-phonon scattering.
A linear fit to the data between 200 and 800 meV (the thin
line) extrapolates to zero frequency at a positive intercept
of 350 (� cm)−1. This is in qualitative agreement with the
low dc resistivity becoming even lower as the sample quality
improves. On the whole, setting aside for the moment the
phonon contribution and the weak dc component, the optical
conductivity of this material has only one major component:
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FIG. 1. (Color online) The optical conductivity of three icosahe-
dral quasicrystals measured at 300 K. The solid lines are experimen-
tally measured conductivities and the thin lines are least-squares fits of
straight line segments to the data. All spectra show evidence of phonon
lines below 100 meV, but surprisingly, as the overall low frequency
conductivity increases the phonons get stronger. Unlike conventional
metals these materials show no evidence of a Drude peak from free
electrons. The linear interband conductivity shows differences too. In
AlCuFe (Ref. 12) there is a single linear component intercepting near
zero frequency, while the AlPdRe material (Ref. 14) has a negative
intercept that we interpret (see below) as a 3D Dirac point some
100 meV from the Fermi surface. The AlMnSi material (Ref. 13) has
a strong incoherent background that seems to have transferred spectral
weight from the interband absorption which has a lower slope than
the other two. We also note that the steeper slopes are very similar
in AlCuFe and AlPdRe while the slope above 700 meV of AlPdRe
matches that of AlMnSi. The structure in the 600 meV region in all
the spectra is due to instrumental noise. The inset shows the AlCuFe
conductivity up to 2 eV.

a conductivity with a striking linear rise between 0 and 1 eV
that eventually saturates at 1.4 eV as shown in the inset
to Fig. 1.

The Al75.5Mn20.5Si4 (AlMnSi) curve in Fig. 1 is from Wu
et al.13 Here the zero frequency intercept is much higher,
σ (0) = 1350 (� cm)−1; there is still a linear high frequency
component but with a markedly lower slope. It appears
that spectral weight has been transferred from the interband
absorption to a background component. The third curve shows
Al70Pd20Re10 (AlPdRe) from Basov et al.14 This material
seems to have three components to the conductivity. At the
lowest frequencies there is a weak, frequency independent
component up to 220 meV, followed by a linear rise up to
700 meV at which point there is a change of slope followed
by another linear rise. It is interesting to note that the slopes
of the two linear components in (AlPdRe) match closely the
slopes of single lines in the other two compounds.

The sharp structure below 100 meV matches roughly the
phonon density of states in metallic aluminum.12 However
the overall amplitudes of the phonon spectra increase as the
background conductivity at low frequency increases. This is
just the opposite to what is naively expected for a metal: the
higher the metallic conductivity, the stronger is the screening

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

photon energy (meV)

σ 1

α-Al72.5Mn17.5Si10.1

Al2Ru

(Ω
cm

)-1

FIG. 2. (Color online) The optical conductivity of two periodic
approximants of quasicrystals at 300 K. These materials resemble
quasicrystals in their overall structure. There is an absence of a Drude
peak and the conductivity is dominated by linear segments. Al2Ru
from Ref. 14 has two components: a very weak one that intercepts the
conductivity axis near zero frequency and a stronger component that
shows a gap on the order of 300 meV. The α-AlMnSi material from
Ref. 13 has a slope that is intermediate between the large and small
slopes of the icosahedral quasicrystals and a semiconductorlike gap
at very low frequency.

of the ionic charges by the electrons and the weaker is the
phonon conductivity.

Figure 2 shows the optical conductivity of two periodic
approximants to quasicrystals. They are qualitatively similar
to the quasicrystals shown in Fig. 1. There are no Drude peaks
and the spectrum consists of segments of straight lines. There
are, however, notable differences as well. In particular, the
α-Al72.5Mn17.5Si10.1 (α-AlMnSi) from Wu et al.13 shows a
low frequency downturn below 200 meV. One can perhaps
argue that this material has a semiconducting gap at very low
frequency with a square root turn-on. However it is difficult
to fit the overall curve with a parabola. Finally the Al2Ru
spectrum from Basov et al.14 also shows a two-component
spectrum, a low-slope low-intercept part below 600 meV, and
a higher frequency component with an onset at 700 meV.

We next turn to the optical conductivity of decagonal
quasicrystals. These materials exhibit quasicrystalline peri-
odicity in a plane but have conventional periodic symmetry
in the third direction. Optical spectroscopy shows that the
conductivity in the periodic direction is that of a typical metal
with a well defined Drude peak15 with a width h̄/τ = 50 meV
for Al65Co17Cu18 and h̄/τ = 160 meV for Al62Co15Cu20Si3
but in the decagonal plane the conductivity, as shown in
Fig. 3, is quite different, weakly frequency dependent up
to 1 eV. As in the icosahedral quasicrystals there is no
metallic Drude peak in the icosahedral plane. The magnitude
of the weakly frequency dependent conductivity is fairly
low; expressed as the conductance per plane G/c, it is
fairly close to universal quantum conductance G0 = 2e2/h =
7.75 × 10−5�−1, shown as a dashed line in Fig. 3. Below
150 meV we see a phonon spectrum similar to what is seen
in the three-dimensional (3D) icosahedral systems. There is a
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FIG. 3. (Color online) Decagonal quasicrystals at 300 K from
Ref. 15. These curves show a conductivity that is, to a first
approximation, frequency independent but has a slight downturn at
low frequency that can be interpreted as a gap in a 2D Dirac scenario.
In addition to the phonons below 100 meV one can perhaps make a
case for a weak Drude band with a damping of the order of 100 meV.
These materials show a clear Drude peak in the perpendicular periodic
direction. The dashed line is at σ = G0/c = 1880 (� cm)−1, where
G0 is the quantum conductance and c = 4.12 Å is the lattice spacing.

downturn in conductance between 500 and 200 meV that could
be taken as evidence of a partial gap near zero frequency. On
the whole the spectra resemble those of the two-dimensional
graphene both in frequency dependence and in the overall
magnitude of the conductivity.16

II. THEORETICAL BACKGROUND

The linear frequency dependence of the optical conductivity
is unusual and not easily understood in terms of what is
observed in conventional materials. The optical conductivity
of metals is, at low frequency, dominated by the Drude
conductivity of the free electrons that collide with static defects
with an average collision time τ . Insulators, on the other
hand, are characterized by a low frequency region of zero
conductivity with a sharp onset at the band gap frequency
where interband transitions first set in.

Disordered systems, for example as measured by Thèye
et al.,4 show a Drude-like optical conductivity with a very
high scattering rate of h̄/τ of the order of 0.6 eV with
a good agreement between optical and dc measurement, a
signature of a Drude behavior extending to low frequencies.
Attempts to describe the optical data of quasicrystals in terms
of a partially gapped Fermi surface have been made17 but
with limited success. For example, in metallic aluminum the
interband absorption rises quadratically at low frequencies.18

It is difficult to model a linear conductivity down to zero
frequency unless one assumes a Fermi surface with zero
diameter pocket on the Fermi surface and a massless Dirac
spectrum. In what follows we will make this assumption and
calculate the optical conductivity of a system of massless 3D
fermions.

Here we follow the nearly free electron approach to the
electronic structure of quasicrystals taken by Burkov et al.17

In this approach the electron momentum is a good quantum
number and the the Fermi surface is taken to be in good
contact with the several prominent Bragg planes seen in
crystallography. Other subdominant Bragg planes do not
play an important role. In this picture these materials are
semimetals and their low conductivity is not due to a short
mean free path but is rather due to a low concentration of
itinerant carriers. Bands could cross at momentum points even
when not necessitated by crystal symmetry as described in
the early works of Herring19 and can generate Dirac points
without a need for strong spin-orbit coupling. Because we
do not have inversion symmetry the degeneracy of the Dirac
points is expected to be lifted providing two stable Weyl
points separated in energy which could be near the Fermi
energy.20 Any other power law for the electron dispersion,
say ε(k) ∝ |k|z, would give rise to an interband contribution
to the dynamic optical conductivity σ1(ω) ∝ |ω|(D−2)/z, where
D is the dimensionality of the space (here D = 3).21 The
observation of a linear in ω law necessitates ε(k) ∝ |k|. Thus
we adopt a Weyl semimetal model.

The Hamiltonian for a 3D Weyl or massless Dirac fermions
with fixed handedness which is described by a two-component
spinor can be written as

H = h̄vF τ · k − μτ0, (1)

where vF is the Fermi velocity, and τi with i = x,y,z

are the Pauli matrices which take care of the pseudospin
degree of freedom, τ0 is the unit 2 × 2 matrix, k is the 3D
wave vector, and μ is the chemical potential. The energies
of the quasiparticle excitations are linear in momentum,
ξk = ±h̄vF |k| − μ, i.e., relativistic with vF replacing the
velocity of light. While quasicrystals do not have long range
crystalline order, crystallographic analysis reveals that some
Bragg planes remain. As we do not see strong evidence of
gaps we suggest that the linear dispersion originates from
Weyl points.

To evaluate the diagonal optical conductivity we use the
Kubo formula,

Re σ (�) = −h̄ Im 
R
ii(� + i0)

3�
, (2)

where 
R
ij (� + i0) is the retarded current-current correlation

function, � is the energy of photon, and the sum over the
repeated index i is implied. In the lowest approximation


R
ij (� + i0) = e2v2

F

∫ ∞

−∞
dω dω′ nF (ω) − nF (ω′)

ω − ω′ − � − i0

×
∫

d3k

(2π )3
tr[τiA(ω,k)τjA(ω′,k)], (3)

where e is the electron charge, nF (ω)=1/{exp[(ω−μ)/T ] +1}
is the Fermi distribution, and tr includes the sum over NW Weyl
points. Since the spin degeneracy is assumed to be lifted, the
sum over spin degree of freedom is included in the number
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NW . In Eq. (3) the spectral function is given by

A(ω,k) = δ(ω − εk)
1

2

(
τ0 + h̄vF τ · k

εk

)

+ δ(ω + εk)
1

2

(
τ0 − h̄vF τ · k

εk

)
, (4)

where εk = h̄vF |k|. One can easily see from Eq. (4) that the
spectral function of the Weyl fermions selects the electron
(hole)-like excitations to possess the positive (negative) helic-
ity. The resulting optical conductivity consists of two pieces,
viz., intraband and interband. To simplify our presentation
Eq. (4) is written assuming that there is no broadening caused
by interactions and scattering from impurities. It is well known,
however, that to reproduce correctly the Drude (intraband) part
of the conductivity from the Kubo formula (2), one has to
include the disorder (see Bradlyn et al.22). When this is done,
one can take the limit τ → ∞ at the end of the calculation.
Then for zero temperature, T = 0, the resulting intraband piece
takes the form

Re σ intra(�) = NWe2μ2

hh̄vF

1

3
δ(�), (5)

while the interband which onsets only above 2|μ| is given by

Re σ inter(�) = NWe2|�|
hh̄vF

1

12
(|�| − 2|μ|) (6)

and is linear in energy �. It is clear from these expressions
that for finite chemical potential μ the optical spectral weight
in the interband piece lost below 2|μ| gets transferred to the
intraband Drude piece. When the chemical potential μ = 0,
the intraband piece vanishes and the remaining interband part
reduces to the expression given in Ref. 23.

III. DISCUSSION

Equation (6) predicts, for the case where the Weyl point
lies on the Fermi surface, an interband spectrum consisting of
a linear rise in the optical conductivity with a zero intercept.
The slope is proportional to the number of Weyl points divided
by the Fermi velocity. If the Weyl point is not on the
Fermi surface the straight line for the conductivity would
still extrapolate to the origin. However it would terminate at
� = 2|μ| where it would abruptly fall to zero regardless of the
sign of μ.

None of the quasicrystal spectra in Fig. 1 meet these strict
criteria but all display some Dirac-like features. AlPdRe has a
linear portion extending from 210 to 700 meV which would,
however, intercept the x axis at a finite photon energy of � =
210 meV rather than go through the origin. This rigid shift
of the curve to the right by 210 meV would arise in a Dirac-
like model if the common Dirac points of the conduction and
valence bands were split by 210 meV for a not yet known
reason.

Added to this is a weak frequency independent constant
background of about 150 (� cm)−1. There is a break in slope
at 700 meV. It can be argued that the AlCuFe material presents
an even simpler confirmation of Eq. (6) with μ = 0 provided
we neglect the small negative intercept on the frequency axis.
This negative intercept is inconsistent with Eq. (6). To account
for the negative intercept we will assume that there is a second
frequency independent channel of conductivity in the region

from zero to 1000 meV. We will call this constant background
the free electron contribution since it is finite at zero frequency.
The slopes of the linear portion in the two materials are similar.
The third quasicrystal AlMnSi also has the linear conductivity
predicted by Eq. (6) but the slope is considerably smaller and
the frequency independent channel is much stronger. Also the
phonon spectrum is much stronger in AlMnSi.

We would expect the total spectral weight to be conserved
and it does appear to be the case for AlCuFe and AlMnSi
where the interband linear contribution of AlCuFe is much
larger than in AlMnSi but compensated by the larger intraband
contribution in the latter material. The total areas under the
curves in Fig. 1 become equal at ∼600 meV at which point
the AlCuFe partial spectral weight increases more rapidly.
This compensation does not take place in AlPdRe where the
interband contribution is much smaller than in the other two
materials, due mostly to the gap at 210 meV, but is not made
up by the very small free carrier contribution.

It is instructive to compare the magnitude of the measured
conductivity with the value predicted by Eq. (6). We will use
the AlCuFe system as an example where the conductivity rises
linearly with a slope of 5750 (� cm)−1/eV yielding us the
ratio of the conductivity σ to the energy �. If we assume that
the Weyl points are located on the faces of the icosahedron
as shown in Fig. 4, we get 20 such points and with a spin
degeneracy of two NW = 40. We can now calculate the only
remaining unknown, the Fermi velocity:

vF = NW

4
G0

ω

σ (ω)
= 4.3 × 107 cm/s, (7)

where G0 = 2e2/h = 7.748 × 10−5 �−1 is the quantum con-
ductance. A rough estimate of the Fermi energy is the energy
of a free electron with a velocity vF , E = v2

F /2me = 0.5 eV.
This is a reasonable value if states below the Fermi surface
follow a free electron parabola as shown in the inset of Fig. 1,
from the the data in Homes et al.12 This good agreement is
certainly accidental in view of our naive estimate of the Fermi
velocity and the assumption of the location of the Weyl points
on the icosahedron. The data of Nayak et al.8 show a kink in the
density of states at 0.5 eV yielding the same Fermi velocity by
the same argument. Another rougher estimate can be made
from ARPES data of Rotenberg et al.24 on the decagonal
quasicrystal AlNiCo where there is band dispersing to flatten

FIG. 4. (Color online) Possible band dispersions radiating from
nodal points (marked in black) at various symmetry points of an
icosahedron from left to right, 12 vertices, 20 faces and 30 edges.
The energy scale, shown on the right, starts at E = 0 (black) at the
Dirac points to a maximum, (white) at E = 0.5 eV.
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out at 2 eV below the Fermi surface yielding a higher Fermi
velocity.

The periodic approximants in Fig. 2 show similar linear
conductivities rising from near zero up to 1000 meV. The
α-AlMnSi shows a break of slope at 210 meV and one might
be tempted to fit the curve with a square root onset near zero
frequency but clearly a pair of linear fits is better. The Al2Ru
spectrum is different from all the others in that it has two well
defined components. The first is a linear one that intercepts at
zero frequency; according to Eq. (6) this component has a Weyl
point on the Fermi surface but a very small slope implying a
very high Fermi velocity, or alternatively few Weyl points. A
second component exhibiting a rigid displacement of 630 meV
is seen for AlPdRe in Fig. 1. The slope of this component is
similar to what is seen in other materials.

The spectra of the two decagonal quasicrystals shown in
Fig. 3, to a first approximation, are frequency independent,
constant with a conductivity of 2500 (� cm)−1 cm between
zero and 1000 meV. The dashed line is drawn at σ1 = G0/c =
1880 (� cm)−1 and c = 4.12 Å is the c-axis lattice spacing.

It is useful to compare our decagonal quasicrystal conduc-
tivity to that of graphite measured by Kuzmenko et al.16 These
authors find that the optical sheet conductance of graphite per
graphite layer is very close to the theoretically expected sheet
conductance of a monolayer of graphene. Our value is higher
than this by a factor of about 1.5. In graphite the measured
conductance also exceeded the universal conductance in the
energy range 0.6–1.2 eV, which the authors attributed to con-
tributions from interlayer hopping. This may be the case here
too since the c-axis conductance of our sample is quite high.

Taking this comparison further one could interpret the
structure below 500 meV in Fig. 3 as due to a Dirac point
some 200 meV below the Fermi surface with a transfer of
spectral weight to a weak Drude peak with a width of the
order of 100 meV. The Drude width in the periodic direction
is 160 meV for AlCoCuSi and 50 meV for AlCoCu in rough
agreement with this picture.

Oxides with large spin-orbit interaction such as the
pyrochlore iridates R2Ir2O7 where R is yttrium or a rare

earth have been proposed as model systems for topologi-
cal semimetals25,26 as well as osmium compounds such as
CaOs2O4.27 Another system where a Dirac-like spectrum
has been predicted is the two-dimensional (2D) organic
material α-(BEDT-TTF)2I2.28 Here we add quasicrystals and
their approximants to the list. To show conclusively that
quasicrystals and their approximants are Weyl semimetals it
is important to perform experiments in high magnetic fields.
For the quasicrystals these will be challenging since it is
not clear that coherent orbits can be generated in available
laboratory magnetic fields. However, approximants such as
Al2Ru are candidates for such experiments if pure single
crystals are available. Because of the Dirac nature of their
dispersion curves the conductivity in high magnetic fields
should show a structure each time a Landau level is crossed.
The prediction is that the position in energy of these peaks
should vary like the square root of the magnetic field B. Also,
the optical conductivity of any new candidate materials should
be collected since it provides clear signatures of relativistic
dispersions in 3D: a linear frequency dependence of the optical
conductivity. As an example, a recent study by Ueda et al.29 on
Nd2(Ir1−xRux)2O7 with x = 0.02, a proposed Weyl semimetal,
found some evidence of a Dirac-like spectrum below 40 meV.
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