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Three-dimensional topological insulators and topological crystalline insulators represent new quantum states
of matter, which are predicted to have insulating bulk states and spin-momentum-locked gapless surface states.
Experimentally, it has proven difficult to achieve the high bulk resistivity that would allow surface states to
dominate the transport properties over a substantial temperature range. Here we report a series of indium-doped
Pb1−xSnxTe compounds that manifest huge bulk resistivities together with evidence consistent with the topological
character of the surface states for x � 0.35, based on thickness-dependent transport studies and magnetoresistance
measurements. For these bulk-insulating materials, the surface states determine the resistivity for temperatures
beyond 20 K.

DOI: 10.1103/PhysRevB.91.195321 PACS number(s): 72.20.−i, 73.20.At

I. INTRODUCTION

A great deal of interest has been generated by the theoretical
prediction and experimental realization of three-dimensional
(3D) topological insulator (TI) materials [1,2]. In certain
semiconductors with strong spin-orbit coupling effects, the
chiral character of metallic surface states is protected by time-
reversal symmetry. A variety of 3D TI materials have been
synthesized over the last few years [3], and the existence of the
topologically protected surface states has been experimentally
confirmed [1]; however, none of these materials have exhibited
truly insulating bulk character.

Topological crystalline insulators (TCIs) are closely related
to TIs, with the exotic surface states protected by crystal
symmetries, rather than by time-reversal symmetry [4]. There
has been considerable excitement since the first example, SnTe,
was theoretically predicted [5] to exhibit topological surface
states on {001}, {110}, and {111} surfaces of the rock-salt
crystal structure, with quick experimental confirmation of
the first case [6]. Soon after this discovery, the topological
surface states in the alloys Pb1−xSnxSe and Pb1−xSnxTe
were verified by angle-resolved photoemission spectroscopy
(ARPES) [7–9], thus expanding the range of relevant materials.

For applications in spintronics, it is important to have the
resistivity dominated by the topologically protected surface
states. Substantial efforts have been made on the TI material
Bi2Se3 and its alloys to reduce the bulk carrier density;
however, while it has been possible to detect the signature
of surface states in the magnetic-field dependence of the
resistivity at low temperature [10–12], attempts to compensate
intrinsic defects [13,14] have not been able to raise the bulk
resistivity above 15 � cm. Theoretical analysis suggests that
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even with perfect compensation of donor and acceptor defects,
the resulting random Coulomb potential limits the achievable
bulk resistivity [15].

The solid solution Pb1−xSnxTe provides a fresh opportunity
for exploration. Figure 1(b) illustrates the expectations for this
system. With a small amount of In doping, the band gap should
be at the Fermi level, EF , for x in the range of 0.25–0.3 [16].
The topological character changes from nontrivial at x = 1 to
trivial at x = 0, with a topological quantum phase transition at
xc ≈ 0.35, corresponding to the point at which band inversion
begins [8,17–19]. In our previous investigation of indium-
induced superconductivity in Pb0.5Sn0.5Te single crystals [20],
we observed a nonmonotonic variation in the normal-state
resistivity with indium concentration, with a maximum at 6%
indium doping. Further motivation has come from older work
[21] on various compositions of (Pb1−xSnx)1−yInyTe. (Note
that In doping reduces the lattice parameter [20], so that,
like pressure [16], it should reduce xc for band inversion.)
Hence, we have performed a systematic study, growing and
characterizing single crystals with six Pb/Sn ratios (x = 0.2,
0.25, 0.3, 0.35, 0.4, 0.5) and a variety of In concentrations
(y = 0−0.2).

II. MATERIAL SYNTHESIS AND CHARACTERIZATION

Single crystal samples with nominal composition,
(Pb1−x Snx)1−yInyTe (xnom = 0.2−0.5, ynom = 0−0.2), were
prepared via the modified Bridgman method. Stoichiometric
mixtures of high-purity (99.999%) elements were sealed in
double-walled evacuated quartz ampoules. The ampoules were
heated at 950 ◦C in a box furnace and rocked to achieve good
mixing of the ingredients. The crystal growth took place via
slow cooling from 950 to 760 ◦C in 1.5 ◦C/hr, followed by
gradual cooling to room temperature over another 3 days.
Chemical composition values for x and y cited from here
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FIG. 1. (Color online) (a) Resistivity measured at 50 K for
samples of (Pb1−xSnx)1−yInyTe for y ∼ 0.06 as a function of x.
(b) Schematic diagram of bulk electronic structure at low temperature
as a function of x; surface states are expected to be topologically
nontrivial for x � 0.35.

on correspond to the concentrations measured by energy-
dispersive x-ray spectroscopy, with a measurement uncertainty
of 2%.

III. ELECTRICAL RESISTIVITY

Nearly rectangular parallelepiped-shaped samples were
prepared by polishing, with a typical geometry of 5 mm long,
1.5 mm wide, and 0.5 mm thick. Electrical resistance was
measured in the standard four-probe configuration, using gold
wires and silver paint for the ohmic contact on the top side,
performed with a Keithley digital multimeter (Model 2001),
where a Quantum Design (QD) Magnetic Property Measure-
ment System was used for temperature control. Measurement
errors due to the contact geometry were estimated to be less
than 10%.

The measured resistivities, ρ(T ), for all samples, char-
acterized by Sn concentration x and In concentration y, are
summarized in Fig. 2. For each value of x, one can see that
the resistivity of the parent compound (y = 0, black open
triangles) reveals weakly metallic behavior; furthermore, the
magnitudes of ρ in the In-free samples depend only modestly
on x. With a minimum of ∼2% indium doping, the low-
temperature resistivity grows by several orders of magnitude,
and the temperature dependence above ∼30 K exhibits the
thermal activation of a semiconductor. The saturation of the
resistivity for T � 30 K is consistent with a crossover to
surface-dominated conduction.

The maximum resistivities, surpassing 106 � cm, are
observed for x = 0.25−0.3; the x dependence of resistivities
at 50 K for y ≈ 0.06 is summarized in Fig. 1(a). Even for
x = 0.35, doping with 6% In results in a rise in resistivity of
6 orders of magnitude at 5 K; higher In concentrations tend
to result in a gradual decrease in ρ. With increasing y, one
eventually hits the solubility limit of In. Exceeding that point
results in an InTe impurity phase, which is superconducting
below 4 K and appears to explain the low-temperature
drop in resistivity for x = 0.4 and y = 0.16 illustrated in
Fig. 2(b).

Past studies [16,22] of various transport properties in
Pb1−xSnxTe and the impact of In doping provide a basis
for understanding the present results. For In concentrations
of �0.06, the In sites introduce localized states at a sharply
defined energy that pins the chemical potential. In a small range
of Sn concentration centered about x = 0.25, the chemical
potential should be pinned within the band gap. Hence, the
very large bulk resistivities observed for x = 0.25 and 0.3 are
consistent with truly insulating bulk character.

IV. ARPES

To check the character of the electronic states near
EF , ARPES measurements were carried out on a Scienta
SES-R4000 electron spectrometer at beamline U5UA at the
former National Synchrotron Light Source (NSLS). The
total instrumental energy resolution was ∼6 meV; angular
resolution was better than ∼0.15◦. Thick (2–5 μm) films of
(Pb0.7Sn0.3)1−yInyTe were grown on freshly cleaved Bi2Te3

substrates [9], using the open hot-wall epitaxy method [23] and
a single-source evaporator loaded with crushed single crystals
of the desired composition. The substrate was kept at ∼300 ◦C
during the growth. Composition of the films was checked by
measuring photoemission from the shallow core levels (In 4d,
Sn 4d, Te 4d, and Pb 5d) and comparing them with the source
material.

Figure 3 shows the ARPES results for x = 0.3 with two
different In concentrations. The valence band in Fig. 3(a)
shows two overlapping states, split in k in the Rashba-like
manner. This indicates that the surface states are already
formed on surfaces of a material on the trivial side of the
phase diagram (x < 0.35), and although they are expected
to contribute to transport, they are not protected by any
topological invariance. In that sense, they are very similar to the
conventional Rashba surface states on Au(111). Increasing
the In concentration to 16% in Fig. 3(b) clearly shifts the
Fermi level towards the bulk conducting band, which seems to
be just touching the Fermi level in the present case. Inside
the bulk gap, the Rashba-like surface states can be seen
on both the conduction side and the valence side, forming
a conical like shape, but with a small gap still present
between the two sides. This shows that at this composition,
the material is very close to the critical point beyond which
the cone should be complete (not gapped)—and topological
surface states fully formed. A previous ARPES study has
provided evidence for topological surface states at x = 0.4
(without In) [8].
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FIG. 2. (Color online) Temperature dependence of resistivity in (Pb1−x Snx)1−yInyTe for (a) x = 0.5, (b) x = 0.4, (c) x = 0.35, (d) x = 0.3,
(e) x = 0.25, and (f) x = 0.2; the values of y are labeled separately in each panel. For each value of x, indium doping turns the metallic
parent compound into an insulator, with low-temperature resistivity increasing by several orders of magnitude. The saturation of resistivity at
temperatures below 30 K suggests that the surface conduction becomes dominant.

V. THICKNESS DEPENDENCE OF RESISTANCE

Now we concentrate on testing the character of the x = 0.35
and y = 0.02 sample, where we anticipate topological surface
states. To test the contribution of the surface states to the

FIG. 3. (Color online) Electronic structure of (111) oriented
films of (Pb0.7Sn0.3)1−yInyTe. Dispersion of the valence band along
the K̄-�̄-K̄ line of the surface Brillouin zone (corresponding to the
W -L-W line of the bulk BZ), taken at ∼20 K and at 17 eV photon
energy for (a) y = 0 and (b) y = 0.16.

sample conductivity, we have measured the resistance R(T )
as a function of sample thickness [24–26]. The measurements
involved sanding the bottom surface of the crystal with the top
contacts remaining nominally constant. Following Syers et al.
[26], in Fig. 4(a) we plot the ratio r ≡ R(T )/R(300 K) for
several thicknesses. Assuming parallel conductance channels
for the surface and the bulk, with the bulk conductance being
thermally activated, we fit r(T ) with

r(T )−1 = r−1
s + r−1

b e−�/kBT , (1)

where subscripts s and b label the surface and bulk con-
tributions, respectively. The fitted results for rs and rb are
plotted in Figs. 4(c) and 4(d); for the gap, we obtain � =
14.6 ± 0.3 meV. The parameter rs , essentially the ratio of
the bulk conductance at 300 K to the surface conductance,
linearly extrapolates to zero in the limit of zero thickness.
Alternatively, we can calculate the fraction of the conductivity
in the surface channel, which is plotted in Fig. 4(b). Despite
the fact that the sample thicknesses are quite large, we find
that the surface states provide >90% of the conduction for
T < 20 K.
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FIG. 4. (Color online) (a) Resistance normalized to its room-
temperature value for several thicknesses of (Pb0.65Sn0.35)0.98In0.02Te.
Lines are fits as described in the text. Results for fitting parameters
rs and rb are shown in panels (c) and (d), respectively. (b) Fraction of
conductivity due to surface states calculated from the fit parameters.

VI. HALL EFFECT AND MAGNETORESISTANCE
MEASUREMENTS

As another test, the Hall effect and zero-field resistivity
were measured on a x = 0.35 and y = 0.02 crystal using a QD
Physical Property Measurement System. From those measure-
ments, we obtained the carrier density n and mobility μ shown
in Figs. 5(a) and 5(b), respectively. The carrier density drops
rapidly upon cooling, falling below 1014/cm3 at 5 K, while
the mobility rises rapidly below 20 K, eventually surpassing
2000 cm2 V−1 s−1, consistent with metallic conduction by sur-
face states and negligible bulk contribution at low temperature.

As can be seen in Fig. 2, and as confirmed by ARPES
(Fig. 3), the surface conduction channel exists and dominates
the low-temperature transport on both topological and trivial
sides of the phase diagram. Therefore, we perform the
final test of the topological character of the surface states
with magnetoresistance measurements [27]. The symmetry-
protected coupling of spin and momentum for surface states
makes them immune to weak localization effects. Application
of a transverse magnetic field violates the relevant symmetries
[28], thus removing the topological protection and leading
to a field-induced decrease in conductance. Combining the
longitudinal and transverse resistivity data, we have evaluated
the field-dependent longitudinal conductivity. Results at 5 K
and 20 K are plotted in Figs. 5(c) and 5(d), respectively.

For a quantitative analysis, we fit the data with the
theoretical formula for weak antilocalization (WAL) [29],

�G = α
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FIG. 5. (Color online) Characterizations of the
(Pb0.65Sn0.35)0.98In0.02Te sample. (a) Carrier density, obtained
from Hall effect measurements, and (b) carrier mobility vs T ; lines
are guides to the eye. (c) Change in magnetoconductivity with the
field at 5 K and (d) 20 K. Red lines represent fits to the WAL formula,
Eq. (2), as discussed in the text. For the initial magnetoresistance
data used to obtain σ (B), the measurements were performed after a
significant waiting time (5 days at 5 K, 2 days at 20 K) due to slow
relaxation in the resistance [22].

where ψ is the digamma function and α is a number equal
to 1/2 times the number of conduction channels; Bφ =
�0/(8πl2

φ), with �0 = h/e and lφ being the electronic phase
coherence length. For our system, one expects four Dirac cones
crossing the Fermi surface [30,31], which would give α = 2.
The fit to the 5-K data yields α = 0.78 and lφ = 123 nm; at
20 K, the fit gives α = 2.65 and lφ = 58 nm. The reduction in
coherence length with temperature is consistent with the drop
in mobility. The magnitude of α is qualitatively consistent
with expectations, though the temperature dependence is
unexpected. Note that for the x = 0.5 and y = 0.06 sample,
the magnetoresistance was measured at 5 K; a fit of the WAL
formula to the data yields lφ = 100 nm and α = 2.25, close to
the expected α = 2.

VII. CONCLUSIONS

In conclusion, we have shown that crystals of In-doped
Pb1−xSnxTe with x ∼ 0.3 have true bulk-insulating resistivity,
and we have presented evidence for conductivity by nontrivial
topological surface states below 20 K for x = 0.35. This allows
one to exploit the unusual properties of the surface states
in transport measurements without the need to apply a bias
voltage to the surface. There is also strong interest in inducing
topological superconductivity at surfaces or interfaces [2],
and we note that there are exciting possibilities to create
interfaces between the present topological insulators and
superconductors of closely related alloys [20,32], such as
In-doped SnTe and Pb0.5Sn0.5Te.
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