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a b s t r a c t

We present a code implementing the linearized quasiparticle self-consistent GW method (LQSGW) in
the LAPW basis. Our approach is based on the linearization of the self-energy around zero frequency
which differs it from the existing implementations of the QSGW method. The linearization allows us to
useMatsubara frequencies instead ofworking on the real axis. This results in efficiency gains by switching
to the imaginary time representation in the sameway as in the space timemethod. The all electron LAPW
basis set eliminates the need for pseudopotentials. We discuss the advantages of our approach, such as
its N3 scaling with the system size N , as well as its shortcomings.

We apply our approach to study the electronic properties of selected semiconductors, insulators, and
simple metals and show that our code produces the results very close to the previously published QSGW
data. Our implementation is a good platform for further many body diagrammatic resummations such as
the vertex-corrected GW approach and the GW+DMFT method.
Program summary
Program Title: LqsgwFlapw
Program Files doi: http://dx.doi.org/10.17632/cpchkfty4w.1
Licensing provisions: GNU General Public License
Programming language: Fortran 90
External routines/libraries: BLAS, LAPACK, MPI (optional)
Nature of problem: Direct implementation of the GW method scales as N4 with the system size, which
quickly becomes prohibitively time consuming even in the modern computers.
Solution method: We implemented the GW approach using a method that switches between real space
andmomentum space representations. Some operations are faster in real space, whereas others are more
computationally efficient in the reciprocal space. This makes our approach scale as N3.
Restrictions: The limiting factor is usually the memory available in a computer. Using 10 GB/core of
memory allows us to study the systems up to 15 atoms per unit cell.

Published by Elsevier B.V.

1. Introduction

The GW method was proposed by Hedin [1] and was first
applied to real materials by Hybertsen and Louie [2] and by Godby
et al. [3]. One can find many successful implementations of this
method using plane wave basis sets in the literature such as

✩ This paper and its associated computer program are available via the Computer
Physics Communication homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).

* Corresponding author.
E-mail address: kutepov@physics.rutgers.edu (A.L. Kutepov).

BerkeleyGW [4], ABINIT [5], and West [6]. There is also code im-
plementing the GW in an all electron basis set such as exciting [7]
and SPEX [8].

Numerous computational developments exist in this area (see
for example [9–11] and references therein). Our present study
builds on work by Rieger et al. on the space–time method [12] and
from the work by Ku and Eguiluz on the application of Matsubara
time in GW calculations [13].

In this paper we focus on the implementation and testing of
the self-consistent quasi-particle GW (QSGW) method which is a
promising tool for studying the electronic structure of the mod-
erately correlated solids, atoms, and molecules [14]. While the
QSGW usually overestimates the widths of the spectral features in
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materials (such as band gaps, bandwidths, and exchange splitting),
it is generally more accurate than the local density approximation
(LDA). The QSGW also has clear advantages in comparison with
another popular approximation — the so called ‘‘one shot’’ GW
method (one GW iteration after the self-consistent LDA calcula-
tion), as it does not depend on the starting point.

All previous implementations of the QSGW method [15–17]
are real frequency implementations. We have found however, that
similar results can be obtained with an approach based on the
imaginary frequency representation (Matsubara). We exploit the
fact that one can easily transform the functions from the imaginary
frequency to the imaginary time (and back) to improve the compu-
tational efficiency.We use all-electron approximation (Linear Aug-
mented Plane Wave method, LAPW) as a basis for our approach,
thus avoiding the need in pseudopotentials. We use abbreviation
LQSGW for our (linearized) version of QSGWmethod.

Our implementation of the GW method was outlined in our
previous work [18], where we presented the general scheme of
the approach with detailed description of the self-consistent GW
method (scGW) in its fully relativistic form and the application
of the scheme to Am and Pu. Also, we provided there the total
energy evaluation which was used earlier in Ref. [19]. In this work
we present the non-relativistic version of scGW/LQSGW method
with special emphasis on the scaling of the most time consum-
ing steps of the algorithm. Particularly, we stress on the overall
scaling N3 with the system size which is similar to the scaling of
LDA. In the end we present a few numerical examples obtained
using quasiparticle approximation. The code, implementing the
scGW approach was used (as an initial step) to solve the Hedin’s
equations [1] with a non-trivial vertex function for a number of
materials [20,21]. The implementation of the LQSGW approach
was used recently in Ref. [22] in the combination of the LQSGW
and the one-shot DMFT (Dynamical Mean Field Theory).

2. The basics of the GWmethod

Below we outline the basic formulas of the method introduced
earlier in Ref. [18]. In a self-consistent calculation, one has to
perform a certain number of iterations until the self-consistency
is achieved. In the GW method, the input for every iteration is the
Green function G. For a given G, we need to perform a few interme-
diate steps, such as calculation of the function of the polarizability

P(12; τ ) = −G(12; τ )G(21; β − τ ), (1)

the screened interaction

W (12; ν) = V (12) +

∫
d(34)V (13)P(34; ν)W (42; ν), (2)

the self-energy

Σ(12; τ ) = −G(12; τ )W (21; τ ), (3)

and the new Green’s function

G(12; ω) = G0(12; ω) +

∫
d(34)G0(13; ω)Σ(34; ω)G(42; ω). (4)

In the above equations, the numbers (e.g. 12, 34) are used to
denote combined space+spin variables, τ is the Matsubara’s time,
ν and ω are the Matsubara’s frequencies (bosonic and fermionic
correspondingly), and β is the inverse temperature. In the LQSGW
approach, the last step (Eq. (4)) is replaced with a special construc-
tion of the quasiparticle Green’s function, which was introduced in
[18]

G[G0; Σ] → G. (5)

The details of this step in our implementation of the LQSGW
approach are given in Section 5.

3. Representation of the band states in the LAPWmethod

In the LAPWmethod [23], one represents the band states in the
interstitial region as a linear combination of the plane waves

Ψ αk
λ (r) =

1
Ω0

∑
G

Aαkλ
G ei(k+G)r, (6)

where α is the spin index, k is the point in the Brillouin zone,
G labels the plane waves, and Ω0 is the volume of the unit cell.
Index λ stands for the band states, which in this work are the
eigen states of an effective Hartree–Fock Hamiltonian constructed
with the quasi-particle Greens function [18]. Inside the muffin-tin
sphere (MT) at atom t, it is convenient to represent the band states
as linear combinations of the orbitals belonging to that MT sphere

Ψ αk
λ (r)|t =

∑
L

Zαkλ
tL ϕαt

L (r), (7)

where index L combines angular momentum indexes l,m and any
additional indexes to distinguish the orbitals inside the sphere (for
example, it distinguishes between the solutions of radial equations
and their energy derivatives). Representations (6) and (7) will be
used throughout the paper.

4. Product basis conventions

We define the product basis functionsMq
K (r) as the plane waves

in the interstitial region and as the optimized basis functions inside
the MT spheres. We use a joint index K to label the product basis
functions in all of the MT spheres and in the interstitial region.
WhenK runs over the functions inside theMT sphere t, the product
basis functions can be written as the following

Mq
K (r + R) =

{
0 r ̸∈ t

eiqRMt
K (r) r ∈ t. (8)

When K runs over the functions in the interstitial region, we
associate the index with the plane waves GK :

Mq
K (r + R) =

{
eiqRei(q+GK )r r ∈ Int

0 r ̸∈ Int. (9)

The word ‘‘optimized’’ means that we build the space of all
products of the orbitals ϕαt

L (solutions of the radial Kohn–Sham
equations, as well their energy derivatives) in each MT sphere and
construct linearly independent ortho-normal basis in this space,
following the Ref. [8].

The product basis defined above is not ortho-normal in the
interstitial region. We also define the dual product basis

M̃q
K (r) =

⎧⎨⎩
∑
K ′∈Int

⟨Mq
K ′ |M

q
K ⟩

−1Mq
K ′ r ∈ Int

Mq
tK (r) r ∈ t,

(10)

which is ortho-normal to the basis (8): ⟨M̃q
K ′ |M

q
K ⟩ = δKK ′ .

We expand the polarizability in dual basis

P(r; r′; τ ) =
1
Nk

∑
q

∑
KK ′

M̃q
K (r)P

q
KK ′ (τ )M̃

∗q
K ′ (r′), (11)

with Nk being the number of points in the Brillouin zone.
To express the interaction (in the product basis), we calculate

the integral

W q
KK ′ (τ ) =

∫ ∫
drdr′M̃

∗q
K (r)W (r; r′; τ )M̃q

K ′ (r′). (12)

Because of the orthogonality of the original and dual product
basis sets it is convenient to think of the interaction as an expansion
in the original product basis set:

W (r; r′; τ ) =
1
Nk

∑
q

∑
KK ′

Mq
K (r)W

q
KK ′ (τ )M

∗q
K ′ (r′). (13)
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5. Quasiparticle approximation

Our method is exclusively based on imaginary axis data, con-
trasting with previously proposed methods (see for example
Kotani et al. [15]) .

We proceed as follows. In the Dyson equation for the Green
function

G−1
λλ′ (k; ω) = (iω + µ − εk

λ)δλλ′ − Σ c
λλ′ (k; ω), (14)

with the band indices (λ, λ′) corresponding to the effective ex-
change Hamiltonian [18], we approximate the frequency depen-
dence of the self-energy by a linear function

Σ c
λλ′ (k; ω) = Σ c

λλ′ (k; ω = 0) +
∂Σ c

λλ′ (k; ω)
∂(iω)

|ω=0(iω). (15)

With this approximation, the Dyson equation can be simplified

G−1
λλ′ (k; ω) = Z−1

λλ′ (k)(iω) + (µ − εk
λ)δλλ′ − Σ c

λλ′ (k; 0), (16)

where we have introduced a renormalization factor Z matrix (not
to be confused with the expansion coefficients in Eq. (7)):

Z−1
λλ′ (k) = δλλ′ −

∂Σ c
λλ′ (k; ω)
∂(iω)

|ω=0. (17)

Representing Z-factor as a symmetrical product

Z−1
λλ′ (k) =

∑
λ′′

Z−1/2
λλ′′ (k)Z−1/2

λ′′λ′ (k), (18)

we reduce the Dyson equation to the following form∑
λ′′λ′′′

Z1/2
λλ′′ (k)G−1

λ′′λ′′′ (k; ω)Z1/2
λ′′′λ′ (k) = iωδλλ′

+

∑
λ′′λ′′′

Z1/2
λλ′′ (k)[(µ − εk

λ′′ )δλ′′λ′′′ − Σ c
λ′′λ′′′ (k; 0)]Z1/2

λ′′′λ′ (k). (19)

The second term on the right hand side of this equation is a
Hermitian matrix. It is diagonalized in subroutine BANDS_QP

µδλλ′ − Hk
λλ′

=

∑
λ′′λ′′′

Z1/2
λλ′′ (k)[(µ − εk

λ′′ )δλ′′λ′′′ − Σ c
λ′′λ′′′ (k; 0)]Z1/2

λ′′′λ′ (k)

=

∑
i

Q k
λiE

k
i Q

†k
iλ′ , (20)

where Ek
i are the effective eigenvalues. After the diagonalization,

we can rewrite (19) as follows∑
λ′′λ′′′

Z1/2
λλ′′ (k)G−1

λ′′λ′′′ (k; ω)Z1/2
λ′′′λ′ (k)

=

∑
i

Q k
λi

[
iω + µ − Ek

i

]
Q

†k
iλ′ , (21)

or, for the Green function

Gk
λλ′ (ω) =

∑
i

(Z1/2Q )kλi(Q
†Z1/2)kiλ′

iω + µ − Ek
i

. (22)

This expression differs from the full GW Greens function by a
linear approximation for the frequency dependent self-energy.

At this point, we construct the quasiparticle Greens function
(step (5) in Section 2) by setting Zk

λλ′ = δλλ′ in the above equation
to obtain

Gk
λλ′ (ω) =

∑
i

Q k
λiQ

†k
iλ′

iω + µ − Ek
i
. (23)

6. Polarizability calculation and scaling

In accordance with the MT geometry, there are essentially
three different contributions to the polarizability corresponding to
(i) when both space arguments of P belong to MT spheres
(Mt-Mt); (ii) one of them belongs to a MT sphere and another be-
longs to the interstitial region (Mt-Int); (iii) both arguments belong
to the interstitial region (Int-Int). Below we consider three cases
separately, describing how the Green function is transformed from
the band representation to the real space.We also show the details
of the polarizability calculations and theway it is transformed from
the real to the reciprocal space.

Our parallelization strategy here is to use the two-dimensional
grid of the MPI-processes. The first MPI-dimension in the polar-
izability calculations is associated with the variable τ in such a
way that each process performs the calculation only on its own
set of the τ indexes. This is very efficient because all formulas in
this section are totally independent for different τ ’s. The second
dimension of the MPI grid is used whenever it is appropriate as
described briefly below. Namely, every process associatedwith the
second dimension of theMPI grid carries out the calculations on its
own set of k points, or on its own set of the triplets Rtt′ (with t and
t′ being the coordinates of the atoms, belonging to the unit cells
separated by a translation vector R).

In the following sectionswewill present the scalings associated
with the principle steps of the algorithm. For convenience, we
summarize main notations here: Nat is the number of atoms in
the unit cell; Norb is the number of the basis functions (per atom)
in the LAPW + LO representation (we provide typical numbers
below). The number of bands is equal toNatNorb, sowewill not use a
separate variable for the number of bands. Furthermore, the num-
ber of plane waves in the interstitial region used to represent the
fermionic functions approximately equals the number of bands, so
we do not introduce a new variable for it as well. Bosonic functions
have a major impact on the calculation time, so it is practical to
take into account their numbers more carefully. NMt

pb is the number
of the product basis orbitals inside MT sphere (per atom); N Int

pb is
the number of plane waves associated with product basis in the
interstitial region (per atom); Nr is the number of points in the
regular real spacemesh in the unit cell (per atom);Nk is the number
of points in the whole Brillouin zone; Nτ is the number of points
in τ -mesh. The number of points in the fermionic and bosonic
frequency meshes is about the same as the number of τ -points, so
we use the latter in all cases.

6.1. Mt-Mt part of the polarizability

When both space arguments belong to MT-spheres, real space
representation means that we represent G as an expansion in local
orbitals inside the spheres at t and t′ in the unit cells separated by
a translation vector R

Gα(r; r′; τ )|t+R;t′ =

∑
LL′

ϕαt
L (r)GαR

tL;t′L′ (τ )ϕ
αt′
L′ (r′), (24)

where the coefficients GαR
tL;t′L′ (τ ) are found using (7):

GαR
tL;t′L′ (τ ) =

1
Nk

∑
k

eikR
∑
λλ′

Zαkλ
tL Gαk

λλ′ (τ )Z
∗αkλ′

t′L′ . (25)

The first step in Mt-Mt case is to transform Green’s func-
tion from the band representation to the representation (24) us-
ing (25). The scaling associated with the evaluation of (25) is[
(NatNorb)3Nk + (NatNorb)2Nk lnNk

]
Nτ . The first term corresponds

to the sum over (λ, λ′) indexes which scales as (NatNorb)3 for every
k-point and τ . The second term is related to the fast Fourier trans-
form (FFT) from k-space to the R-space which scales as Nk lnNk for
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each matrix element and τ . We use the second dimension of the
MPI-grid to calculate matrix products (sums over band indexes)
distributing different k’s over the MPI processes. Then we switch
the MPI parallelization to perform FFT for different indexes (t′L′).
In the above code, the Green function transformation is performed
in G_RS_FROM_KS_MM subroutine.

The expression for the polarizability then follows from
(1) and (24)

PR
tK ;t′K ′ (τ ) = −

∑
α

∑
LL′′

⟨Mt
K |ϕαt

L ϕαt
L′′ ⟩

×

∑
L′

GαR
tL;t′L′ (τ )

∑
L′′′

Gα;R
tL′′;t′L′′′ (β − τ )

× ⟨ϕαt′
L′ ϕαt′

L′′′ |M
t′
K ′⟩. (26)

The scaling of (26) is
[
2N3

orbN
Mt
pb + (NorbNMt

pb )
2
]
N2

atNkNτ . To eval-
uate (26) we use second MPI dimension to parallelize the triplets
(R; t; t′). In the code, Eq. (26) is implemented in P_MM_R subrou-
tine.

The transformation to the reciprocal space consists of a single
FFT operation

Pq
tK ;t′K ′ (τ ) =

∑
R

e−iqRPR
tK ;t′K ′ (τ ), (27)

which is implemented in the subroutine P_MM_Q_FROM_R. The
scaling of (27) is (NMt

pb Nat )2Nk lnNkNτ .
As one can see, some steps in the polarizability calculation scale

as N3
at whereas others scale as N2

at . However, for the systemswith a
manageable number of atoms (less than 20), the steps which scale
as N2

at (Eq. (26)) have a larger prefactor. Namely, comparing (25)
with (26) one can estimate that the number of atoms should be
equal toNMt

PB (2+NMt
PB /Norb) in order tomake (25) as time consuming

as (26) is. Realistically, NMt
PB is of order of a few hundred, so the

turning point for the Mt-Mt polarizability (when it starts to scale
as N3

at ) would be around Nat ≈ 1000.
For large systems, Nk is small, so that lnNk ≪ Norb. Thus, the

steps which haveNklnNk in their prefactors are not important from
the point of view of the time consumption.

One point about the scaling should be clarified here. The above
relations assume that the number of points in the Brillouin zone
(Nk) does not change when Nat changes. This assumption is justi-
fied for the very large unit cells when onemay use just one k-point.
However, for the systems of moderate size (up to 10 atoms/unit
cell), the Nk is roughly proportional to 1/Nat (the volume of the
Brillouin zone is inversely proportional to the volume of the unit
cell). This fact should be kept in mind when one compares the
timings (see for example the Table 3).

6.2. Mt-Int part of the polarizability

In this case, the second space argument in Eq. (28) runs over the
regular r-mesh in the whole unit cell, whereas for the first space
argument, we use an expansion in local orbitals:

Gα(r; r′; τ )|r∈t+R
r′∈Int =

∑
L

ϕαt
L (r)GαR

tL;r′ (τ ). (28)

The corresponding coefficients GαR
tL;r′ (τ ) are obtained in two

steps (subroutine G_RS_FROM_KS_MI):

Gαk
tL;G′ (τ ) =

1
√

Ω0

∑
λλ′

Zαkλ
tL Gαk

λλ′ (τ )A
∗αkλ′

G′ , (29)

and

GαR
tL;r′ (τ ) =

1
Nk

∑
k

eikR
∑
G′

e−i(k+G′)r′Gαk
tL;G′ (τ ). (30)

The scaling of (29) is N3
atN

3
orbNkNτ . The scaling associated with

the evaluation of (30) isN2
atNorbNrNkNτ [ln(NatNr ) + lnNk]. The sec-

ond dimension of the MPI grid is used in (29) and (30) to perform
calculations for different k’s independently.

The expression for the polarizability follows from (28) and (1)

PR
tK ;r′ (τ ) = −

∑
α

∑
LL′

⟨Mt
K |ϕαt

L ϕt
L′⟩G

αR
tL;r′ (τ )G

αR
tL′;r′ (β − τ ). (31)

The scaling of (31) is (NatNorb)2NMt
pb NrNkNτ . The second dimen-

sion of the MPI grid of the processes is used in (31) to perform the
calculations for different R’s independently (subroutine P_IM_R).

The reciprocal space representation in the product basis is ob-
tained after two FFTs:

P̃q
tK ;G′ (τ ) =

1
Nr

∑
r′

ei(q+G′)r′
∑
R

e−iqRPR
tK ;r′ (τ ). (32)

The scaling of (32) is N2
atNkNτNMt

pb Nr [lnNk + ln(NatNr )]. Repre-
sentation in the dual basis is obtained using an additional step

Pq
tK ;K ′ (τ ) =

∑
G′

P̃q
tK ;G′ (τ )⟨ei(q+G′)r′

|Mq
K ′⟩Int , (33)

where ⟨ei(q+G′)r′
|Mq

K ′⟩Int represents the integral of the product of
two plane waves over the interstitial region and it is done analyti-
cally.

The scaling of (33) is N3
atNkNτNMt

pb N
2Int
pb . The second dimension

of the MPI grid is used in (32) and (33) to perform independent
calculations for different q’s (subroutine P_IM_Q_FROM_R).

Similar to the Mt-Mt case, the most time consuming step (for
practically achievable system sizes) scales as N2

at (Eq. (31)). Again,
the reason is that it has a prefactor which scales roughly at least as
N4

orb (both Nr and NMt
PB are a few times larger than Norb). The steps

which scale as N3
at or N

2
at lnNat (Eqs. (29), (30), (32) and (33)) have

lesser prefactors.

6.3. Int-Int part of the polarizability

In this case, both space arguments run over the regular mesh in
the unit cell. The real space representation for G is obtained in two
steps (subroutines G_K_G_R1 and G_RR_R_R1_STAR):

Gαk
G;G′ (τ ) =

1
Ω0

∑
λλ′

Aαkλ
G Gαk

λλ′ (τ )A
∗αkλ′

G′ , (34)

and

GαR
r;r′ (τ ) =

1
Nk

∑
k

eikR
∑
G;G′

ei(k+G)rGαk
G;G′ (τ )e−i(k+G′)r′ . (35)

The scalings of (34) and (35) are (NatNorb)3NkNτ and (NatNr )2
NkNτ [2 ln(NatNr ) + lnNk] respectively. The second dimension of
the MPI grid is used in (34) and (35) to perform calculations for
different k’s independently.

The formula for the polarizability is very simple in this case

PR
rr′ (τ ) = −

∑
α

GαR
rr′ (τ )G

αR
rr′ (β − τ ). (36)

The scaling of (36) is (NatNr )2NkNτ . In (36) we use the MPI
processes associated with index r′ and τ .

The reciprocal space representation in the original product basis
is obtained using three FFTs:

P̃q
GG′ (τ ) =

1
Nr

∑
r

ei(q+G)r 1
Nr

∑
r′

e−i(q+G′)r′

×

∑
R

e−iqRPR
r;r′ (τ ). (37)
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The scaling of Eq. (37) is N2
atNrNkNτ

[
(Nr + N Int

pb ) ln(NatNr ) +

Nr lnNk
]
. Representation in the dual basis follows as additional

matrix multiplications

Pq
K ;K ′ (τ ) =

∑
GG′

⟨ei(q+G)r
|Mq

K ⟩
∗

Int P̃
q
GG′ (τ )⟨ei(q+G′)r′

|Mq
K ′⟩Int . (38)

The scaling of (38) is (NatN Int
pb )

3NkNτ . The second dimension of
theMPI grid is used in (37) and (38) to perform the calculations for
different q’s independently. Formulas (36)–(38) are implemented
in the subroutine P_II_SOLID.

Looking at the scaling relations, one can conclude that in the
Int-Int case the most time consuming step (Eq. (38)) scales as
N3

at . However, the corresponding prefactor is still not big enough
(N Int

PB ≈ 5 − 10Norb), and, the overall scaling of the polarizability
evaluation is N2

at for the systems of practically achievable size.

7. Screened interaction

Eq. (2), written in the reciprocal space, reads as the following

W q
KK ′ (ν) = V q

KK ′ +

∑
K ′′K ′′′

V q
KK ′′P

q
K ′′K ′′′ (ν)W

q
K ′′′K ′ (ν). (39)

The scaling of (39) is (Nat [NMt
pb + N Int

pb ])3NkNτ . We asso-
ciate the two-dimensional grid of the MPI-processes with vari-
ables q and ν. Formula (39) is implemented in the subroutine
WS_K_NU_SOLID_0. As one can see, this step scales as N3

at . The
prefactor is big enough to make the time needed to accomplish
this operation comparable to the time needed for the polarizability
evaluation. For example, comparing (39) with (26) which scales
as N2

at , one can conclude that the turning point (when (39) takes

roughly the same time as (26) does) is Nat =
NMt
PB (2N3

orb+NMt
PB N2

orb)

NMt
PB +N Int

PB
,

which is approximately equal to 7 atoms/unit cell in practice
(assuming Norb = 100 and NMt

PB = N Int
PB = 500).

8. Dynamic self-energy

Due to the division of the screened interaction into the bare
Coulomb interaction V and the dynamic part W̃ (W = V + W̃ )
the self-energy is also divided into static and dynamic. Here we
consider the evaluation of the dynamic part only. The static part is
evaluated similarly with obvious simplifications in the formulas.

Similar to the polarizability, there are essentially three different
contributions to the self-energy corresponding to (i) when both
space arguments of belong toMT spheres (Mt-Mt); (ii) one of them
belongs to a MT sphere and another belongs to the Interstitial
(Mt-Int); (iii) both arguments belong to the interstitial region
(Int-Int). Below we consider the three cases separately, describing
how the screened interaction is transformed from the reciprocal
space to the real space, how we calculate the dynamic self-energy,
and howwe transform it from the real space back to the reciprocal
space and band representation.

Our parallelization strategy here is similar to the strategy we
use in the polarizability calculations. Also, the details of the scaling
relations are very similar to the scaling in the polarizability evalu-
ation, so we do not discuss their details here.

8.1. Mt-Mt part of the self-energy

When both space arguments belong to MT spheres, the real
space representation means that we represent W̃ as an expansion
in the product basis functions inside the spheres at t and t′ in the
unit cells separated by the translation vector R (compare with the
formula (13))

W̃R
tK ;t′K ′ (τ ) =

1
Nk

∑
q

eiqRW̃ q
tK ;t′K ′ (τ ). (40)

We use the second dimension of the MPI grid to calculate the
matrix products (sums over the band indexes) spreading different
q’s over the MPI processes. Formula (40) is implemented in the
subroutine W_MM. The scaling of (40) is (NatNMt

pb )
2NτNk lnNk.

The expression for the self-energy follows from (24) and (3)
(subroutine SIGC_MM_R)

ΣαR
tL;t′L′ (τ ) = −

∑
L′′L′′′

∑
KK ′

⟨ϕαt
L |ϕαt

L′′M
t
K ⟩

× GαR
tL;t′L′ (τ )W̃

R
tK ;t′K ′ (β − τ )

× ⟨ϕαt′
L′ |ϕαt′

L′′′ M
t′
K ′⟩. (41)

The scaling of (41) is
[
2N3

orbN
Mt
pb + (NorbNMt

pb )
2
]
N2

atNkNτ . To eval-
uate (41) we use the second MPI dimension to parallelize the
triplets (Rtt′).

The transform to the reciprocal space consists in one FFT trans-
form (subroutine SIGC_MM_K_FROM_R).

Σk
tL;t′L′ (τ ) =

∑
R

e−ikRΣR
tL;t′L′ (τ ), (42)

which scales as (NatNorb)2NτNk lnNk.

8.2. Mt-Int part of the self-energy

In this case the transform of W to the real space involves two
FFT’s (subroutine V_IM_R_FROM_K):

W̃R
tK ;r(τ ) =

1
Nk

∑
q

eiqR
∑
G

e−i(q+G)rW̃ q
tK ;G(τ ). (43)

The scaling of (43) is N2
at ln(NatNr )NMt

pb NrNkNτ . The second di-
mension of the MPI grid is used in (43) to perform the calculations
for different q’s independently.

The expression for the self-energy follows from (28) and (3)

ΣαR
tL;r′ (τ ) = −

∑
L′K

⟨ϕαt
L |ϕt

L′M
t
K ⟩GαR

tL;r′ (τ )W̃
R
tK ;r′ (β − τ ), (44)

which scales as N2
atN

2
orbN

Mt
pb NrNkNτ .

The second dimension of theMPI grid is used in (44) to perform
calculations for different R’s independently. Formula (44) is imple-
mented in the subroutine SIGC_IM_R.

The transform to the band states representation is achieved
in a few steps. They are implemented in the subroutine
SIGC_IM_K_FROM_R.

First we apply FFT

Σαk
tL;r′ (τ ) =

∑
R

e−ikRΣαR
tL;r′ (τ ), (45)

with scaling N2
atNorbNrNτNk lnNk.

At this point the function is represented by its values at the
homogeneous r′-mesh in the whole unit cell. In order to perform
integration over the interstitial region we again apply FFT to trans-
form it into an equivalent linear combination of plane waves

Σαk
tL;r′ (τ ) =

∑
G′

Σ̃αk
tL;G′e−i(k+G′)r′ , (46)

with the coefficients

Σ̃αk
tL;G′ (τ ) =

1
Nr

∑
r′

ei(k+G′)r′Σαk
tL;r′ (τ ). (47)

The scaling of (47) isN2
atNorbNrNkNτ ln(NatNr ). The form (46) allows

us to integrate over the interstitial region analytically, and in doing
so we obtain

Σαk
tL;G′ (τ ) =

1
√

Ω0

∑
G′′

Σ̃αk
tL;G′′ (τ )SkG′′G′ , (48)
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which scales as N3
atN

2
orbN

Int
pb NkNτ . SkG′′G′ in (48) is the integral of the

product of two planewaves (e−i(k+G′′)r and ei(k+G′′′)r) taken over the
interstitial region.

Finally, the contribution to the band state representation fol-
lows

Σαk
λλ′ (τ )|Mt

Int =

∑
tL

∑
G′

Z
∗αkλ
tL Σαk

tL;G′ (τ )Aαkλ′

G′ + H.C . (49)

The scaling of (49) is (NaNorb)3NkNτ . The second dimension of
the MPI grid is used in (45)–(49) to perform the calculations for
different k’s independently.

8.3. Int-Int part of the self-energy

In this case, both space arguments run over the regular mesh
in the unit cell. A real space representation for W is obtained with
three FFT’s (subroutines W_Q_G_R1 and W_RR_R_R1_STAR):

W̃R
r;r′ (τ ) =

1
Nk

∑
q

eiqR
∑
G

e−i(q+G)r
∑
G′

ei(q+G′)r′
× W̃ q

GG′ (τ ), (50)

with scalingN2
atNrNkNτ×

[
N Int

pb ln(NatNr ) + Nr ln(NatNr ) + Nr lnNk
]
.

The second dimension of theMPI grid is used in (50) to perform
the calculations for different k’s independently.

The formula for the self-energy is very simple in this case

ΣαR
rr′ = −GαR

rr′ (τ )W̃
R
rr′ (β − τ ). (51)

The scaling of (51) is (NatNr )2NτNk. In (51), the second dimen-
sion of the MPI grid is associated with the index r′.

Then we apply FFT

Σαk
rr′ (τ ) =

∑
R

e−ikRΣαR
rr′ (τ ). (52)

The scaling of (52) is (NatNr )2NτNk lnNk. Similar to the Mt-Int
case, we use the FFT to transform it into an equivalent linear
combination of the plane waves

Σαk
rr′ (τ ) =

∑
G

∑
G′

ei(k+G)rΣ̃αk
G;G′ (τ )e−i(k+G′)r′ , (53)

with the coefficients

Σ̃αk
G;G′ (τ ) =

1
N2

r

∑
rr′

e−i(k+G)rei(k+G′)r′Σαk
rr′ (τ ). (54)

The scaling of (54) is N2
atNr ln(NatNr )NkNτ

[
Nr + N Int

pb

]
. The form

(53) allows us to integrate over the interstitial region analytically
and, as a result, we obtain

Σαk
G;G′ (τ ) =

1
Ω0

∑
G′′G′′′

SkGG′′Σ̃
αk
G′′;G′′′ (τ )SkG′′′G′ , (55)

with scaling N3
atN

Int
pb NorbNkNτ

[
N Int

pb + Norb
]
.

Finally, the contribution to the band state representation from
the interstitial region is given by

Σαk
λλ′ (τ )|IntInt =

∑
GG′

A
∗αkλ
G Σαk

G;G′ (τ )Aαkλ′

G′ . (56)

The scaling of (56) is (NatNorb)3NkNτ . The second dimension of
the MPI grid is used in (52)–(56) to perform the calculations for
different k’s independently. Formulas (51)–(56) have been imple-
mented in the subroutine SIGC_II_SOLID.

Table 1
Band gaps (eV) of selected semiconductors and insulators in comparison with the
experimental data. We also include the error (%) relative to the experiment. For
the materials with known effects of the electron–phonon and/or the spin–orbit
interaction (Si, SiC, C, GaAs, MgO, ZnS, ZnSe, LiF, BN, AlP), the corresponding effects
were excluded from the raw experimental data to facilitate the comparison with
the calculations. Experimental data have been cited from Refs. [17,24,15,25–27].

[15,24] [16] [17] Present work Exp.

Si 1.23 1.41 1.47 1.41(14.8%) 1.22
SiC 2.14 2.88 2.90 3.08(22.7%) 2.51
C 6.52 6.18 6.40 6.71(14.1%) 5.88
GaAs 1.93 1.85 1.75 2.08(23.1%) 1.69
ZnO 3.87 3.8 4.61 4.47(24.2%) 3.60
MgO 9.16 9.29 9.42(18.0%) 7.98
ZnS 4.04 4.15 4.19(6.3%) 3.94
ZnSe 3.08 3.17(5.7%) 3.00
LiF 15.9 16.63(14.8%) 14.48
NaCl 9.81(15.4%) 8.5
BN 7.14 7.51 7.06(7.0%) 6.6
AlP 2.90 3.10 2.80(13.4%) 2.47
NiO 4.8 4.97 4.47(3.9%) 4.3
Cu2O 2.36 2.65 2.42(10.0%) 2.20
TiO2 3.78 4.22 3.80(22.6%) 3.1
Sr TiO3 4.19 4.01(21.5%) 3.3
CeO2 ∼5 5.83(70.1%) 3–3.5

Table 2
Band widths (eV) of alkali metals. Experimental data have been taken from
Refs. [28] and [29]. For the present results we also include the error (%) relative
to the experiment.

[24] Present work Exp.

Na 3.0 3.16(19.2%) 2.65
K 2.07(29.4%) 1.60

9. Results

In this section we demonstrate performance of our version of
the linearized QSGW program and compare our results and results
obtained with other non-linearized implementations of the QSGW
method with experimental data. Let us also notice that other im-
plementations are done exploiting different basis set. In Table 1we
provide results for calculated band gaps of selected semiconduc-
tors and insulators obtainedwith our code and compare themwith
previously published by other groups results and experimental
data. As one can see, our results and the non-linearized SQGW
results are very close and all systematically overestimate the band
gaps. The overestimation is generally in the 10–24% range for all
studied materials, excluding antiferromagnetically ordered NiO
(error is only 3.9%) and the f -electron compound CeO2 where the
error is large (70%). Let us mention that other QSGWmethods also
produce large error for this material.

Table 2 presents the band widths of the alkali metals Na and
K. Formally, alkali metals belong to the s-materials, but as one can
see from the table, the error in the calculated bandwidth (20–30%)
is a bit larger than the error in the calculated band gaps for sp-
semiconductors/insulators. Let us point out that the error increases
when the density of valence electrons is reduced (when going from
Sodium to Potassium). This fact was expected because the electron
gas of lower density corresponds to a more correlated situation.

As an example of the code scaling with the number of MPI
processes, we provide Fig. 1 where we plot computation time
for TiO2 versus number of MPI processes used. This material has
6 atoms in the unit cell and the corresponding calculations are
rather expensive in terms of computer time. As one can estimate
from the graph, the overall efficiency of the parallelization (time
reduction/increase in the number of the processes) when the num-
ber of MPI processes is increased from 64 to 384 is 0.7 (=4.2/6).
Taking into account the complexity of the code (one has to switch
many times from one parallelization strategy to another during



A.L. Kutepov et al. / Computer Physics Communications 219 (2017) 407–414 413

Table 3
Main parameters of the calculations and timings. Time is measured in seconds during one iteration. Natom is the number
of atoms in the unit cell. NPB is the size of product basis. Nk is the number of k-points in the Brillouin zone. In all cases
24 processes were used along the τ -dimension of the MPI grid and 4 processes were used along the k-dimension of the
MPI grid.

Natom NPB NLAPW+LO Nk P W Σ G

Si 2 1316 288 83 260 76 494 16
SiC 2 1237 202 83 317 109 555 12
C 2 1202 186 83 193 64 337 2
GaAs 2 1178 212 63 148 38 258 7
NiO 4 1906 388 4 × 4 × 3 255 124 399 34
Cu2O 6 4232 926 43 337 895 560 228
TiO2 6 3268 668 2 × 2 × 4 249 329 299 84
Sr TiO3 5 3163 562 43 263 416 422 87
CeO2 3 1633 292 63 172 137 331 20
K 1 741 78 163 393 154 586 4
Ni 1 724 126 123 368 81 467 10

Fig. 1. Full calculation time as a function of the number ofMPI processes used (TiO2).
The calculation consisted of 36 LDA iterations followed by 30 LQSGW iterations.

Fig. 2. Calculation time for supercells of Na atoms. The time for one LQSGW iteration
is presented as a function of square of the number of atoms in the supercell.

the calculation) and the fact that we did not use the fastest inter-
process communication (infiniband) allow us to think about the
obtained efficiency as a satisfactory one. One of the possible ways
to improve the efficiency (besides of using infiniband) is to use the
SCALAPACK routines to assistwith the diagonalization/inversion of
large matrices, particularly when evaluating the screened interac-
tion W (Eq. (39)).

In Fig. 2 we show how the calculation time scales with the
number of atoms in unit cell. To make the plot we used artificial

supercells of Na atoms. In this figure, the results obtained with Nat
equal to 1, 2, 4, 8, 12, and 18 are presented as a function of N2

at .
As one can see, in materials containing only a few atoms per unit
cell the calculation time scales almost quadratically (we see almost
linear dependence in the plot) with only slight admixture of N3

at
dependence which begins to get noticeable when Nat > 8. The
Fig. 2 supports our estimations made above in Sections 6–8.

Table 3 shows the detailed timings in the evaluation of themain
quantities (P, W, Σ , and G) during one iteration. As one can see
for the materials studied, the calculation of the self-energy is the
most time consuming step. However, the increase in the size of the
product basis (which is proportional to the number of atoms in the
unit cell) will eventually make the evaluation of W the most time
consuming step. This is clear from the scaling considerations,while
many parts of the algorithm scale as N3

at , the evaluation of W has
the biggest prefactor.

Conclusions

We presented an implementation of the LQSGWmethod in the
LAPW basis set which scales for large systems as N3

at with the
number of atoms. The scaling is N2

at for small number of atoms.
Further improvements of the algorithm for large systems would
require a removal of the computational bottleneck which is the
matrix inversion in Eq. (39). In its current form, this code can serve
as a starting point for further diagrammatic many body studies on
theMatsubara axis in an all electron basis. Recently, self-consistent
vertex-corrected GW calculations were performed for a number of
semiconductors/insulators and simplemetals in Refs. [20,21]. Also,
the non-self-consistent implementation of the GW+DMFT method
was presented in the Ref. [22]. Our code was also used in Ref. [30]
for the calculation of spin susceptibilities in 3d metals.

The computer code realizing our implementation of the
LQSGW approach can be obtained from https://github.com/
andreykutepov65/LqsgwFlapw repository.
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