Here’s a rough list of commissioning activities in the near future – of course, the times are just our best guesses at this point and are subject to change as things progress.

1. February 14-21: First ~week of cycle is planned to be without neutrons, to check for and fix guide vacuum leaks under the mezzanine in the target building. The reason for this delay was a lack of certain craft resources that were fully occupied during the accelerator outage.
 a. The degree of success in this section determines whether we check and fix the guide vacuum in 8714 under the T1B/Fermi chopper racks which would cause further delay without neutrons.
 b. During the time without neutrons, we will study the prompt pulse background – there were shielding changes made at other beamlines during the outage which we hope will greatly reduce this background.
 c. Fixing detector vessel stage motion and encoding will occur in parallel

2. When we get neutrons:
 a. Compare December performance for ~1 week (T0 offset, flux, etc.).
 i. February 29: do another image plate and gold foil test, now that we have the mpg (monochromator goniometer PG) steering/encoder issue solved. This should give us a good handle on the flux on sample – we will use energies similar to those Igor provided earlier.
 b. Early March: demo Reciprocal space / UB Matrix code used at SEQUOIA – this should help us to understand the current status of the software and its applicability to HYSPEC.
 c. March: Begin using the CCR-10 or the HYSPEC CCR with an air-cooled chiller. For this we will be using KTaO3 and other single crystals, and a much larger sample rotation range than in the previous cycle (because it seems we have fixed the hanging of cables on the sample rotation stage!). If you have specific samples you’d like us to use in these early tests, please let me know – we’d prefer something that has been measured on other neutron instruments for comparison purposes.
 d. March: check Heusler and guide field system’s polarization using the portable 3-He filter cell and the optical-rail guide fields. This needs to be done at several incident energies.
 e. Early April: Demo UB Matrix, refined