Can Multipole Magnetic Fields Play a Useful Role in Transporting, Polarizing and Focusing Neutron Beams on Small Samples?

> V. J. Ghosh A.U. Luccio L. Passell Brookhaven National Laboratory Upton, NY 11973

Sextapole Magnetic Field

Force on a Neutron in a Sextapole Magnetic Field

 $F=\pm \mu \ grad B$

U=crⁿcosnφ

 $B(r) = (B_r^2 + B_{\omega}^2)^{1/2} = cnr^{n-1}$

 $B(r) = B_0 (r/r_w)^{n-1}$

Sextapole field (n=3)

 $\mathbf{F}_{\mathbf{r}} = \pm 2\mu (\mathbf{B}_{0}/\mathbf{r}_{w})(\mathbf{r}/\mathbf{r}_{w})$

The Trajectory of a Neutron in a Sextapole Magnetic Field

 $d^{2}r/dt^{2}=F_{r}/m_{n}=\pm[(2\mu B_{0}/r_{w})(r/r_{w})]/m_{n}=\pm(k/m_{n})r$

 $m_n \equiv$ the mass of the neutron. $r_w \equiv$ the radius of the beam tube wall $B_0 \equiv$ the value of the field at r_w

If (**S**↑**B**)

 $r(t) = (v \sin \theta / \omega) \sin \omega t.$

 $v \equiv$ the neutron velocity $\theta \equiv$ the angle of the incident neutron trajectory with respect to the beam tube axis $\omega \equiv (k/m_n)^{1/2} = [2\mu B_0/m_n r_w^2]^{1/2}$

 $z(t)=v(\cos\theta)t.$

If $(S \downarrow B)$

 $\ln{(r\omega/v\sin\theta)+[(r\omega/v\sin\theta)^2+1]^{1/2}}=\omega t$

 $z(t)=v(\cos\theta)t.$

Neutron Trajectories in a Sextapole Magnetic Field

spins anti-parallel to the magnetic field

Transmission of Parallel Spin (S_n↑B) Neutrons

For neutron confinement amplitude of oscillation: $v\sin\theta/\omega \le r_w$

 $vsin\theta \le \omega r_w = (2\mu B_0/m_n)^{1/2}.$

If we assign B_0 an upper limit value of, say, 2.5 T then

θ<0.001358 radians/Å= 0.07780 degrees/Å

A sextapole beam transport system with $B_0=2.5$ T would thus be equivalent to an

m = 0.78 guide

Focusing of Parallel Spin (S_n↑B) Neutrons

The focal length f is velocity dependent.

$f=\pi v_a/2\omega$.

 $v_a \equiv v \cos \theta$ is the axial component of the incident neutron velocity.

If $B_0 = 2.5 \text{ T}$ and $r_w = 1.5 \text{ cm}$

ω=357 radians/sec (57 cycles/sec)

For 5 meV neutrons (v=978 m/sec, λ =4Å) the primary focal length is

f = 4.3 m

Angular divergence = 0.312 degrees fwhm

Subsequent focii at 12.9 m, 21.5 m,

Angular Distribution on the Focal Plane

Central spot composed of neutrons that cross the entrance plane parallel to the axis. .

Neutrons entering at larger angles of incidence intersect the focal plane at progressively larger radii.

Density on the focal plane varies as 1/r_f.

Beam Polarization

How efficient would a sextapole field be as a polarizer of a Be-filtered beam if the beam tube had absorbing walls?

Sextapole field of length 12.9 m $B_0=2.5T$ $r_w=1.5$ cm

0.1 percent of the 5 meV anti-parallel spin neutrons from a point source at the object position on the axis would reach the focal plane.

The longer wavelengths (for which the focal plane represents progressively higher order focii i.e. λ =6.67,9.33,12, 14.67,17.33, 24 Å) would be even more efficiently polarized. Thus in this (highly) idealized model

P>0.999

Getting Real

- Do the neutron moments always maintain their alignment with respect to the sextapole magnetic field?.
- What about neutron trajectories that are not in planes containing the beam tube axis?
- Sextapole-produced neutron polarization is not uni-directional. Can the beam be brought out of the field without significant loss of polarization?
- Small angular acceptance (a 3 cm diameter polarizer equivalent to a guide with m=1 requires a field of about 4 T). Are fields this large realistic?
- Only one spin state is both transmitted and focused.
- Practical applications require electromagnets that produce large and (in some cases) rapidly varying fields. Are such magnets realistic?

Computer-Based Monte-Carlo Simulation of Neutron Spin Orientations and Trajectories in Magnetic Fields

- Force \mathbf{F} =grad($\boldsymbol{\mu}_{\mathbf{n}}$. \mathbf{B})
- Torque $d\mathbf{S}/dt=2\pi(\mathbf{\mu}_{n}\mathbf{x}\mathbf{B})/h$
- Either analytic representations of fields or computer-generated or experimentally-measured field maps can be used
- Fields can be super-imposed
- Beam tube walls can be either absorbing, transparent or super-mirror coated

Density Profile on the Focal Plane

Spin Progression in a Region of Rapidly Varying Magnetic Field

Focusing at Different Neutron Energies

Trajectories of Anti-Parallel Spin Neutrons

Focusing with Different Field Strengths

