# Can Multipole Magnetic Fields Play a Useful Role in Transporting, Polarizing and Focusing Neutron Beams on Small Samples? 

V. J. Ghosh<br>A.U. Luccio<br>L. Passell

Brookhaven National Laboratory
Upton, NY 11973

## Sextapole Magnetic Field



Force on a Neutron in a Sextapole Magnetic Field

$$
\begin{gathered}
\mathrm{F}= \pm \mu \operatorname{gradB} \\
\mathrm{U}=\mathrm{Cr}^{\mathrm{n}} \operatorname{cosn} \varphi \\
\mathrm{~B}(\mathrm{r})=\left(\mathrm{B}_{\mathrm{r}}^{2}+\mathrm{B}_{\varphi}^{2}\right)^{1 / 2}=\mathrm{cnnr}^{\mathrm{n}-1} \\
\mathrm{~B}(\mathrm{r})=\mathrm{B}_{0}\left(\mathrm{r} / \mathrm{r}_{\mathrm{w}}\right)^{\mathrm{n}-1} \\
\text { Sextapole field (n=3)} \\
\mathrm{F}_{\mathrm{r}}= \pm 2 \mu\left(\mathrm{~B}_{0} / \mathrm{r}_{\mathrm{w}}\right)\left(\mathrm{r} / \mathbf{r}_{\mathrm{w}}\right)
\end{gathered}
$$

The Trajectory of a Neutron in a Sextapole Magnetic Field

$$
\begin{gathered}
\mathrm{d}^{2} \mathrm{r} / \mathrm{dt} \mathrm{t}^{2}=\mathrm{F}_{\mathrm{r}} / \mathrm{m}_{\mathrm{n}}= \pm\left[\left(2 \mu \mathrm{~B}_{0} / \mathrm{r}_{\mathrm{w}}\right)\left(\mathrm{r} / \mathrm{r}_{\mathrm{w}}\right)\right] / \mathrm{m}_{\mathrm{n}}= \pm\left(\mathrm{k} / \mathrm{m}_{\mathrm{n}}\right) \mathrm{r} \\
\mathbf{m}_{\mathrm{n}} \equiv \text { the mass of the neutron. } \\
\mathbf{r}_{\mathrm{w}} \equiv \text { the radius of the beam tube wall } \\
\mathbf{B}_{0} \equiv \text { the value of the field at } \mathbf{r}_{\mathrm{w}}
\end{gathered}
$$

If ( $\mathrm{S} \uparrow \mathbf{B}$ )

$$
\mathbf{r}_{\underline{1}}(\mathbf{t})=(\mathrm{v} \sin \theta / \omega) \sin \omega \mathrm{t} .
$$

$$
\mathbf{v} \equiv \text { the neutron velocity }
$$

$\theta \equiv$ the angle of the incident neutron trajectory with respect to the beam tube axis

$$
\begin{gathered}
\omega \equiv\left(k / m_{n}\right)^{1 / 2}=\left[2 \mu B_{0} / m_{n} r_{w}^{2}\right]^{1 / 2} \\
z(t)=v(\cos \theta) t .
\end{gathered}
$$

If (S $\downarrow \mathbf{B})$

$$
\begin{gathered}
\ln \left\{(\mathrm{r} \omega / \mathrm{v} \sin \theta)+\left[(\mathrm{r} \omega / \mathrm{v} \sin \theta)^{2}+1\right]^{1 / 2}\right\}=\omega \mathrm{t} \\
\mathrm{z}(\mathrm{t})=\mathrm{v}(\cos \theta) \mathrm{t} .
\end{gathered}
$$

## Neutron Trajectories in a Sextapole Magnetic Field


spins parallel to the magnetic field

spins anti-parallel to the magnetic field

## Transmission of Parallel Spin $\left(\mathrm{S}_{\underline{n}} \uparrow \mathrm{~B}\right)$ Neutrons

For neutron confinement amplitude of oscillation:

$$
\begin{gathered}
v \sin \theta / \omega \leq r_{w} \\
v \sin \theta \leq \omega r_{w}=\left(2 \mu B_{0} / m_{n}\right)^{1 / 2}
\end{gathered}
$$

If we assign $B_{0}$ an upper limit value of, say, 2.5 T then

$$
\theta<0.001358 \mathrm{radians} / \AA=0.07780 \text { degrees } / \AA \AA
$$

A sextapole beam transport system with $B_{0}=2.5 \mathrm{~T}$ would thus be equivalent to an

$$
\mathrm{m}=0.78 \text { guide }
$$

## Focusing of Parallel Spin $\left(\mathrm{S}_{\underline{n}} \uparrow\right.$ B) Neutrons

The focal length $f$ is velocity dependent.

$$
\mathbf{f}=\pi \mathbf{v}_{\mathbf{a}} / 2 \omega
$$

$\mathbf{v}_{\mathrm{a}} \equiv \mathrm{v} \cos \theta$ is the axial component of the incident neutron velocity.

$$
\begin{gathered}
\text { If } B_{0}=2.5 \mathrm{~T} \text { and } r_{w}=1.5 \mathrm{~cm} \\
\omega=357 \text { radians } / \mathrm{sec}(57 \mathrm{cycles} / \mathrm{sec})
\end{gathered}
$$

For 5 meV neutrons $(\mathrm{v}=978 \mathrm{~m} / \mathrm{sec}, \lambda=4 \AA)$ the primary focal length is

$$
\mathrm{f}=4.3 \mathrm{~m}
$$

## Angular divergence $=0.312$ degrees.fwhm

Subsequent focii at $\mathbf{1 2 . 9} \mathbf{~ m}, \mathbf{2 1 . 5} \mathbf{~ m}, \ldots$. .

## Angular Distribution on the Focal Plane

Central spot composed of neutrons that cross the entrance plane parallel to the axis. .
Neutrons entering at larger angles of incidence intersect the focal plane at progressively larger radii.

Density on the focal plane varies as $1 / \mathbf{r}_{\mathrm{f}}$.

## Beam Polarization

How efficient would a sextapole field be as a polarizer of a Be-filtered beam if the beam tube had absorbing walls?

$$
\begin{aligned}
& \text { Sextapole field of length } 12.9 \mathrm{~m} \\
& B_{0}=2.5 \mathrm{~T} \\
& r_{w}=1.5 \mathrm{~cm}
\end{aligned}
$$

0.1 percent of the 5 meV anti-parallel spin neutrons from a point source at the object position on the axis would reach the focal plane.

The longer wavelengths (for which the focal plane represents progressively higher order focii i.e. $\lambda=6.67,9.33,12,14.67,17.33,24 \AA$ ) would be even more efficiently polarized. Thus in this (highly) idealized model

## Getting Real

Do the neutron moments always maintain their alignment with respect to the sextapole magnetic field?.

What about neutron trajectories that are not in planes containing the beam tube axis?

Sextapole-produced neutron polarization is not uni-directional. Can the beam be brought out of the field without significant loss of polarization?

Small angular acceptance (a $\mathbf{3} \mathbf{~ c m}$ diameter polarizer equivalent to a guide with $\mathbf{m}=1$ requires a field of about 4 T). Are fields this large realistic?

Only one spin state is both transmitted and focused.
Practical applications require electromagnets that produce large and (in some cases) rapidly varying fields. Are such magnets realistic?

## Computer-Based Monte-Carlo Simulation of Neutron Spin Orientations and Trajectories in Magnetic Fields

- Force $\mathbf{F}=\operatorname{grad}\left(\boldsymbol{\mu}_{\mathrm{n}} \cdot \mathbf{B}\right)$
- Torque dS/dt=2 $\pi\left(\boldsymbol{\mu}_{\mathrm{n}} \mathrm{xB}\right) / \mathrm{h}$
- Either analytic representations of fields or computer-generated or experimentally-measured field maps can be used
- Fields can be super-imposed
- Beam tube walls can be either absorbing, transparent or super-mirror coated


## Density Profile on the Focal Plane

Variation of neutron flux with $r$
Beam energy 15 meV , divergence 0.7 deg .


## Spin Progression in a Region of Rapidly Varying Magnetic Field



## Focusing at Different Neutron Energies



## Trajectories of Anti-Parallel Spin Neutrons



## Focusing with Different Field Strengths



