The HYSPEC Polarized Beam Spectrometer

Barry Winn, Mark Hagen, Mark Lumsden, Melissa Graves-Brook David Anderson, Xin Tony Tong

B2.5, rm G, 3:15-3:30 PM

HYSPEC History and People

Initial Proposal:

BROOKHAVEN NATIONAL LABORATORY

Principal Investigators & BNL Engineer:

IDT Executive also includes:

Steve Shapiro

THE Ames Laboratory

Creating Materials & Energy Solution

U.S. DEPARTMENT OF ENERGY

R. McQueeny

os Alamos

ATIONAL LABORATO

The World's Greatest Science Protecting America

J. Rhyne

Bill Leonhardt

M. Kenzelmann

Instrument construction complete

Commissioning with unpolarized neutrons mostly done

Polarized neutron commissioning beginning

2 Managed by UT-Battelle for the U.S. Department of Energy

MarkBarryTonyDavidHagenWinnTongAnderson

Melissa Graves-Brook

Novel Material Science Using Polarized Neutron Tohoku University, Sendai, January 7, 2011

Hybrid Spectrometer: a cross between

A direct geometry spectrometer that selects Ei and E resoultion, and measures variable Ef of scattered neutrons using ToF

Hybrid Spectrometer: a cross between

...and a triple-axis spectrometer's vertical focusing array

and a variable direction final flight path

The focusing element focuses neutrons from a vertical trumpet guide system

Pyrolitic Graphite

- 15 cm high guide, PG focusing array focused at sample with ~2 cm high spot size
- Gold foil measurement at sample position, 1.8 m between focus element and sample, Ei=15 meV, Fermi Chopper frequency 180 Hz : 4.2E5 c/s/MW/cm²
- Vanadium incoherent isotropic scatter to detector array at 70°

Vanadium 6.4 mm dia rod

5 Managed by UT-Battelle for the U.S. Department of Energy

Novel Material Science Using Polarized Neutrons Tohoku University, Sendai, January 7, 2011

And we have the option to polarize the incident beam with a Heusler crystal array

Heusler (polarizing)

Energy(meV)	Flipping Ratio of
	Heusler and guide
	fields pre-sample
50	23.01
14.59	25.44
7.5	28.41

Flux / Resolution tradeoff using Fermi

Chopper Frequency

• V rod 6.4 mm diameter

Straight-blade Fermi chopper, 30-420 Hz

Flux tradeoff with Fermi Frequency

Useful to study phonon excitations on single crystals

T=300K K=[-0.1,0.1] H=[-0.1,0.1]

FeSb₂, Ei=51.58 meV, Fermi chopper 420 Hz, <u>High</u> Detector Vessel angle, Multiple sample θ , 30 min/angle, Mantid to NxSPE, Dave Mslice: T=3, 100, 300 K

0.010 0.008 20 0.006 E (meV) 0.004 -20 0.002 0.000 20 25 3.0 3.5 4.0 4.5 [0,0,L]

I. Zaliznyak (BNL), A. Savici, A. Christianson, B. Winn, M. Hagen, R. Hu and C. Petrovic (in preparation)

Or magnetic excitations in single crystals or powders

Very dispersive magnetic excitations in the ground state of the quantum magnet La(2-x)Ba(x)CuO4 with x=0.025 can be seen emanating out of ~ 1/2 1/2 L. These particular data, taken with HYSPEC at T=4 K, integrate over much of the direction normal to L, that is normal to the two dimensional copper-oxide planes in this layered magnet. These spin excitations are gapless and are known to extend to very high energies (~ 200 meV). Acoustic phonons can also be seen emanating out of the nuclear zone centers near 11L.

K. Fritsch, B. Gaulin (McMaster U), in preparation

Getting ready for your samples

Dedicated Cryostat

Larger OVC's and new heat shields for both CCR's

Spare CCR

Dedicated closed cycle refrigerator compatible with ³He polarization analysis

Novel Material Science Using Polarized Neutrons Tohoku University, Sendai, January 7, 2011

Minimizing background...

- <u>70% already removed</u> by shielding BL 10 near monolith
- One frame shown (1/60 sec), with HYSPEC shutters closed
- Leading edge coincides with subsequent spallation events
- Tail is epi-cadmium (>500 meV)
- Ei not yet useful at 4 meV, 9 meV and 27-38 meV
- STILL HUNTING!

And preparing to commission for polarization analysis

Option 1: 3He polarization analyzer and Filling Station

Status: See T Tong's talk, Wednesday at 11:00 AM, B4.2, and D. Brown's poster Tuesday at BP2.8 Option 2: Polarizing supermirror array from PSI

Novel Material Science Using Polarized Neutrons Tohoku University, Sendai, January 7, 2011

Summary

- Unpolarized commissioning mostly complete
- Polarized commissioning has begun
 - Through spring 2013
- Limited availability in user program in spring 2013
 - Unpolarized neutrons only
- Expanding Instrument Team at ORNL

It takes a village

- Engineering & Design
 - J. Terrell, R. Huerto
- Installation
 - R. Connatser, S. Proffitt
 - D. Engle, W. Dawkins, C.
 Fletcher, S. Vasques, J. Brackett
 - HAZELWOOD
- Electrical & Controls
 - J. Moss, R. Saethre
 - A. Groff, R. Morgan
 - Research Mechanics
- Interlocks & Safety
 - P. Wright, J. Proulx
 - G. Rowland, P. Abston

- Vacuum
 - J. Price, C. Stone, R. Morton
- Choppers
 - W. McHargue, J. Garrett
- DAS
 - A. Parizzi, T. Thompson, G. Greene, M. Ruiz-Rodrigues
 - M. Yao, J. Kohl, M. Sundaram, P. Zivanovic
- Data Reduction & Analysis
 - S. Campbell, A. Savici

