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1. INTRODUCTION 

Much of our understanding of the atomic-scale magnetic structure and 
the dynamical properties of solids and liquids was gained from neutron-
scattering studies. Elastic and inelastic neutron spectroscopy provided 
physicists with an unprecedented, detailed access to spin structures, 
magnetic-excitation spectra, soft-modes and critical dynamics at magnetic- 
phase transitions, which is unrivaled by other experimental techniques. 
Because the neutron has no electric charge, it is an ideal weakly interacting 
and highly penetrating probe of matter’s inner structure and dynamics. 
Unlike techniques using photon electric fields or charged particles (e.g., 
electrons, muons) that significantly modify the local electronic environment, 
neutron spectroscopy allows determination of a material’s intrinsic, 
unperturbed physical properties.  The method is not sensitive to extraneous 
charges, electric fields, and the imperfection of surface layers. Because the 
neutron is a highly penetrating and non-destructive probe, neutron 
spectroscopy can probe the microscopic properties of bulk materials (not just 
their surface layers) and study samples embedded in complex environments, 
such as cryostats, magnets, and pressure cells, which are essential for 
understanding the physical origins of magnetic phenomena. 

Neutron scattering is arguably the most powerful and versatile 
experimental tool for studying the microscopic properties of the magnetic 
materials. The magnitude of the cross-section of the neutron magnetic 
scattering is similar to the cross-section of nuclear scattering by short-range 
nuclear forces, and is large enough to provide measurable scattering by the 
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ordered magnetic structures and electron spin fluctuations. In the half-a- 
century or so that has passed since neutron beams with sufficient intensity 
for scattering applications became available with the advent of the nuclear 
reactors, they have became indispensable tools for studying a variety of 
important areas of modern science, ranging from large-scale structures and 
dynamics of polymers and biological systems, to electronic properties of 
today’s technological materials. Neutron scattering developed into a vast 
field, encompassing many different experimental techniques aimed at 
exploring different aspects of matter’s atomic structure and dynamics.  

Modern magnetic neutron scattering includes several specialized 
techniques designed for specific studies and/or particular classes of 
materials. Among these are magnetic reflectometry aimed at investigating 
surfaces, interfaces, and multilayers, small-angle scattering for the large-
scale structures, such as a vortex lattice in a superconductor, and neutron 
spin-echo spectroscopy for glasses and polymers. Each of these techniques 
and many others offer exciting opportunities for examining magnetism and 
warrant extensive reviews, but the aim of this chapter is not to survey how 
different neutron-scattering methods are used to examine magnetic 
properties of different materials. Here, we concentrate on reviewing the 
basics of the magnetic neutron scattering, and on the recent developments in 
applying one of the oldest methods, the triple axis spectroscopy, that still is 
among the most extensively used ones. The developments discussed here are 
new and have not been coherently reviewed. Chapter 2 of this book reviews 
magnetic small-angle scattering, and modern techniques of neutron magnetic 
reflectometry are discussed in Chapter 3.  

In the first part of this chapter, we give an extensive, coherent 
introduction to magnetic neutron scattering. It includes an overview of the 
scattering problem with the derivation of the differential cross-section and its 
application to the neutron’s magnetic interaction with an atom, the 
evaluation and properties of the magnetic form factors, and, finally, the 
general properties of the magnetic elastic and inelastic neutron scattering for 
the spin system of localized atomic electrons in the crystal. We describe 
magnetic neutron scattering at the “top level”, concentrating on the highest-
level formulae, but not giving particulars, which can be found in several 
books [1-5]. Further, rather than being exhaustive, we attempt to summarize 
those results that are general yet simple, and which, therefore, are most 
commonly used in everyday research.  

The important issue of the magnetic form factors deserves special 
mention. A very complete theory was developed, accounting quite generally 
for the spin and the orbital magnetization density of atomic electrons, [3]. 
However, the general expressions in Ref. [3] are cumbersome so that they 
are rarely used in practice, and are replaced by the simple, but often highly 
inaccurate, “dipole approximation”. Here, we derive simple formulae for the 
atomic spin magnetic form factors that accurately account for their angular 
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anisotropy, a tremendous improvement over the dipole approximation. 
Although these expressions are not as completely general as those of Ref. 
[3], they accurately describe most situations encountered in magnetic 
neutron scattering. An example of where using the correct, anisotropic 
magnetic form factor is crucial for interpreting the experimental results is 
that of Cu2+ spins in topical cuprate materials. This issue gains more 
importance as magnetic neutron scattering conquers new heights in 
accessible energy transfers with the development of pulsed spallation 
neutron sources, such as ISIS in the UK and SNS in the United States. With 
energy transfers of 0.5 eV and above (see Figure 1-1 for an example) the 
measured intensity is collected at very large wave vectors, where the 
magnetic form factor is small and often pronouncedly anisotropic. 

 

Figure 1-1. Color contour maps of the raw neutron-scattering intensity from a sample of the 
high-Tc-relative, chain cuprate SrCuO2. The data was collected on MAPS time-of-flight 
neutron spectrometer at the ISIS pulsed spallation neutron source. Four measurements with 
the incident neutron energy Ei § 100, 250, 500 and 850 meV are shown stacked in the figure. 
They probe the energy transfers up to §���������������DQG�����PH9��UHVSHFWLYHO\�� 

  In the second part, we describe the modern uses of the triple-axis 
spectrometer based on employing a large, multicrystal analyzer and/or the 
position-sensitive detector (PSD) to analyze the neutrons scattered by the 
sample. In many instances, the volume of the sample’s phase space probed at 
each spectrometer setting can be increased by about an order-of-magnitude 
by using the PSD, thereby raising the rate of data collection. These advanced 
techniques, as known to the authors, were conceived and implemented on 
SPINS triple axis neutron spectrometer at the NIST Center for Neutron 
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Research (NCNR) in Gaithersburg, MD, United States. Collin Broholm 
pioneered the PSD setup at the NCNR, with our active participation. It is a 
natural extension of SPINS capabilities based on employing a large 
multicrystal analyzer, originally designed for horizontal monochromatic 
(Rowland) focusing. Reportedly, a similar PSD setup was implemented on 
RITA spectrometer at the Risoe National Laboratory, Denmark. However, 
because the Risoe research reactor was permanently shutdown, the 
possibilities of RITA were not adequately explored. Subsequently, the 
spectrometer was moved to SINQ’s continuous spallation neutron source at 
the Paul Sherrer Institute in Switzerland, where it now operates.   

While an extensive literature addresses various aspects of neutron-
scattering techniques, including several excellent books and monographs on 
magnetic neutron scattering [1-5], the advances outlined above are recent 
enough not to be described elsewhere. The general outline of this chapter is 
as follows. First, we review the fundamentals of neutron scattering: neutron 
interactions with matter, and magnetic scattering cross-section. We give a 
detailed exposition on magnetic form factors, deriving some simple and 
general formulae for the anisotropic form factors of the atomic orbitals that 
are not readily available elsewhere. Then, we summarize the properties of 
the two-point magnetization correlation functions in different classes of 
magnetic materials, paying special attention to pure spin scattering, where 
we derive the sum rules for the spin correlation function and review the 
single-mode approximation. Finally, we describe recent advances in triple 
axis spectroscopy, probably the most powerful technique for studying the 
dynamical properties of magnetic materials. 
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2. NEUTRON INTERACTION WITH MATTER AND 
SCATTERING CROSS-SECTION 

In this section, we review some important facts about the neutron, its 
properties, interaction with matter, and scattering cross-section.  

The neutron is one of the basic constituents of matter. Together with its 
charged relative, the proton, it is a building block of the atomic nuclei 
(neutrons and protons are fermionic hadrons that, according to the “standard 
model”, are the baryons, respectively composed of one “up” and two “down” 
quarks, and two “up” and one “down” quarks). Table 2-1 summarizes the 
basic properties of a neutron. Although the neutron is electrically neutral, it 
has a non-zero magnetic moment, similar in magnitude to that of a proton ( n 
§� ����� p), but directed opposite to the angular momentum, so that the 
neutron’s gyromagnetic ratio is negative.  

 Table 2-1. Basic properties of a neutron (mainly in Gauss CGS units). n denotes the 
neutron’s angular momentum, N  = e /(2mpc) = 5.0508•10-24 erg/Gs is the nuclear magneton. 

Electric 
charge 

Spin 
Sn = 

n/  

Mass  
mn (g)  

mnc
2/e  

(V) 
Magnetic 
moment n  
(erg/Gs) 

Gyromagne
tic ratio n,  

n� � n n   
(s-1/Gs) 

g-factor 
gn, n = 
-gn NSn 

Life
tim
e 
(s) 

Decay 
reaction 

0 1/2 1.675•10-24  0.94•109 9.662•10-24  -1.832•104 3.826 887  n �S�H- 
e 

Outside the nucleus, a free neutron’s lifetime is only about 15 minutes, 
DIWHU� ZKLFK� LW� XQGHUJRHV� D� –decay into a proton, an electron, and an 
antineutrino. Nevertheless, this lifetime is long enough for neutron- 
scattering experiments. A neutron extracted through the beam-tube in a 
nuclear reactor typically has reached thermal equilibrium with the water that 
cools the reactor in a number of collisions on its way out (such neutrons 
usually are called thermal neutrons). Assuming the water has “standard” 
temperature of 293 K, the neutron’s most probable velocity would be about 
2200 m/s. It would spend only a fraction of a second while it travels in the 
spectrometer, is scattered by the sample, and arrives in the detector.  

Generally, as widely accepted in the neutron-scattering literature, 
particle-physics notation is followed, and the energies both of a neutron and 
that of an excitation created in the scattering process are measured in 
millielectronvolts (meV). To ease comparison with the notations used in 
other techniques and in theoretical calculations, we list several different 
ways of representing the neutron’s energy, En = 1 meV, in Table 2-2. The 
different energy notations shown in the Table can be used interchangeably, 
as a matter of convenience.  

Table 2-2. Different notations used to represent the neutron’s energy. e is the electron charge, 
h is the Plank’s constant, c is the velocity of light, B  = e /(2mec) = 0.927•10-20 erg/Gs is the 
Bohr’s magneton, kB is the Boltzman constant. Also shown are the corresponding neutron 
wave vector and deBroglie wavelength. 
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En  
(erg) 

En /e 
(meV) 

En /h  
(THz) 

En /(hc) 
(cm-1) 

En /(2 B) 
(Gauss) 

En/kB  
(K) 

n 
 (Å) 

kn   
(Å-1) 

1.602•10-15 1 0.2418 8.0655 8.638•104 11.604 9.0437 0.69476 
Neutrons used in scattering experiments are non-relativistic. Therefore, 

the neutron’s energy, En, is related to its velocity, vn, wave vector, 
kn=(mnvn)/ , and the (de Broglie) wavelength, n=(� )/kn, through 

2

2222

222 nnn

nnn
n m

h

m

kvm
E

λ
=== =

. 

In a typical experiment, neutrons with energies well in sub-eV range are 
used, although in some recent ones, the incident neutron energies were as 
high as 1 eV and more, Figure 1-1. The neutron’s wavelength and its wave 
vector are usually measured in Å (1 Å = 0.1 nm = 10-8 cm) and Å-1, 
respectively. A useful relation connecting these quantities with the energy in 
meV follows from Table 2-2, 

2
2 7981

07172
n

nn kE
λ

== .
. . 

2.1 Basic scattering theory and differential cross-section 

The general idea of a (direct geometry) scattering experiment is to place a 
sample in the beam of incident particles of mass m, with a well-defined wave 
vector ki and known incident flux i(ki), and to measure the partial current, 
-f(kf), scattered into a small (§� LQILQLWHVLPDO�� YROXPH� RI� WKH� SKDVH� VSDFH��

( ) fffffff ddEmkddkkd 223
===k , at a wave vector kf (Figure 2-1).  

 

Figure 2-1. Typical geometry of a scattering experiment, (a) elastic, (b) inelastic. 

The phase space density of the scattered current, normalized to the 
incident flux, defines the differential scattering cross-section with respect to 
the corresponding phase variables. The one most commonly measured and 
calculated is the double differential scattering cross-section, 

( )
( )

( )
( )
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f

ff

ii

f

ff

ff

ii d

Jmk

ddE
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(2.1) 

E , kf f
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E, ki i

Q=k-ki f

E, kf f

sample
E, ki i

Q=k-ki f

θ=2θs θ=2θs

a) b)

dΩf

dΩf
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Here, the laws of conservation determine the energy, E, and the wave vector, 
Q, transferred to the sample, 

( ) ( )
fi

fi

m

k

m

k
E kkQ −=−= ,

22

22 ==
. 

(2.2) 
Lippmann and Schwinger [5,6] most elegantly formulated the general 

solution of the scattering problem. Let  denote the complete set of variables 
that describe the state of the scatterer, and let the state of the scattered 
particle be described by its momentum, k, and its spin quantum number, Sz. 
The state of the composite system, target sample (scatterer) + scattered 
particle that satisfies the boundary conditions of the scattering problem and 

has the energy ( ) ( ) ( )mkEEE iii
tot

i
tot

f 22
=+== )()( , is called the 

scattering state, f
z
ff S ,,k . It is obtained from the initial state, 

i
z
ii S ,,k , by applying the evolution operator ( )GT+1 ,  

( ) i
z
iif

z
ff SS ,,GT,, kk += 1 .  

(2.3) 
Here, T is the so-called transition operator, or T-matrix, and G is the 
retarded Green’s function,  

( )00
1 ⋅+−=− iE tot

i HG )( .  
(2.4) 

Here, H0 = Hs + ( ki)
2/(2m) is the part of the total Hamiltonian, H =  H0 + V, 

which describes the sample and the scattered particle in the absence of their 
interaction, V. The rate of transition, i I, from the initial to the final state, 

f
z
ffi

z
ii SS ,,,, kk →  (i I), is given by the appropriate matrix 

element of the transition operator, 

( ) ( ) ( )
k

k
kk

3

32

2
2

d

J
EESS fftot

f
tot

ii
z
iif

z
fffi

δ
π=−δπ=Γ →

)()(,,T,,
=

. 

(2.5) 
It determines the scattered current, -f(kf), and, therefore, the scattering 

cross-section. ( ) ( ) ( )mkEE fff
tot

f 22
=+=)(  is the energy of the system in 

the scattered state, so that the energy transfer to the sample is 

( ) ( ) ( ) ( )
m

k

m

k
EEE fi

iiff 22

22 == −=−= , 

(2.6) 
as required by the laws of energy conservation, Eq. (2.2). For the initial state 
of the incident particle in the form of a plane wave normalized to unity 

probability density, rkkr ii
i e= , the incident flux is ( ) mkiii ==k . 
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Substituting this in Eqs. (2.1) and (2.5), the following general expression is 
straightforwardly obtained for the partial differential scattering cross-section 
corresponding to the transition i I,  

( ) ( ) ( ) ( )( )EEESS
k

k

dEd

Ed
ffiii

z
if

z
f

i

f +−δ−=σ 22

,b,
,

Q
Q

. 

(2.7) 
Here, the numerical pre-factor in front of T was conveniently absorbed into 
the definition of the scattering length operator b,  

Tb
22 =π

−= m
. 

(2.8) 
By definition, b(-Q) �b(-Q,S, ) in Eq. (2.7) is the Fourier transform of the 
matrix element of the scattering length with respect to the coordinate of the 
scattered particle,  

( ) ( ) ( ) if
i de kkrrrq rq S,r,bS,r,bb =′′′≡ ∫ ′− 3 , 

(2.9) 
for the wave vector q = kf – ki = -Q that is transferred to that particle.  

Finally, the T-matrix operator satisfies the Lippmann-Schwinger 
equation, T = V + TGV. Its iterative solution can be found in the form of the 
Born perturbation series (more generally, the von Neumann series) [5], 

( ) 




 +=+++= ∑ n

n

GVV...VGVGVVGVVT 1 , 

(2.10) 
that completes the general solution of the scattering problem (provided the 
perturbation series converge). In many important cases, it appears sufficient 
to retain only the first-order term in this expansion, and use 

VT = , Vb
22 =π

−= m
, 

(2.11) 
that is known as the Born approximation. An expression for the transition 
rate in this approximation, obtained by substituting T=V into Eq. (2.8) is one 
of the cornerstone results of Quantum Mechanics [7,8], and is universally 
used to describe scattering processes. Following Fermi, this expression often 
is called the “golden rule” [1,4]. 

2.2 Neutron interactions and scattering lengths  

Two fundamental interactions govern the scattering of neutrons by an 
atomic system and define the neutron scattering cross-section measured in an 
experiment. The residual strong interaction, also known as the nuclear force, 
gives rise to scattering by the atomic nuclei (nuclear scattering). The 
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electromagnetic interaction of the neutron’s magnetic moment with the 
sample’s internal magnetic fields gives rise to magnetic scattering. The 
sample’s internal magnetic fields mainly originate from unpaired electrons in 
the atomic shells.   

2.2.1 Nuclear scattering length 

While magnetic interaction is relativistic and extremely weak, the nuclear 
force is not (as it is responsible for holding together protons and neutrons in 
the nucleus). However, it has extremely short range, 10-13 cm to 10-12 cm, 
comparable with the size of the nuclei, and much smaller than the typical 
neutron’s wavelength. Consequently, away from the conditions of the 
resonance neutron capture, the probability of a neutron being scattered by an 
individual nucleus is very small, and can be treated in the scattering theory 
on par with the probability of magnetic scattering. In fact, it appears that 
nuclear scattering length, bN, for the majority of natural elements is close in 
magnitude to the characteristic magnetic scattering length, rm=-(gn/2)re=-
5.391 fm (1 fm = 10-13 cm, re=e2/(mec

2) is the classical electron radius).  
 To describe the neutron’s interaction with the atomic system in which 

the typical distances are about 1 Å, the nuclear scattering length operator can 
be effectively treated as a delta-function in the coordinate representation, 

( )Rr −δ= nNN bb , 
(2.12) 

where rn is a coordinate of a neutron and R is that of a nucleus. 
Alternatively, in the momentum representation it is just a number (for the 
nucleus fixed at the origin), bN(q) = bN, independent of the incident neutron’s 
wave-vector and of the wave-vector transfer, q. This again indicates that the 
applicability of such treatment is limited to neutrons whose wavelength is 
large enough compared to the size of the nuclei. In the Born approximation, 
Eq. (2.12) for the scattering length would correspond to the neutron-nucleus 
interaction, 

( ) ( )RrRr −δπ−= nN
n

nN b
m

22 =
,V , 

(2.13) 
generally known as the Fermi pseudopotential [1,9]. In Eqs. (2.12) and 
(2.13), the scattering length refers to the fixed nucleus and is called the 
bound scattering length. Usually, it is treated as a phenomenological 
parameter that is determined experimentally [10]. In general, the bound 
scattering length is considered to be a complex quantity, bN = b  – ib , 
defining the total scattering cross-section, s, and the absorption cross-
section far from the nuclear resonance capture, a, through 
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b
k

b
i

as ′′π=σπ=σ 4
4

2
, . 

(2.14) 
Ref. [11] tabulates the bound scattering lengths and cross sections of the 
different elements and their isotopes.  

2.2.2 Magnetic scattering length 

Because the magnetic interaction of a neutron with a single atom is very 
weak, the Born approximation, Eq. (2.11), very accurately describes the 
magnetic scattering length. The main contribution to magnetic scattering 
arises from the neutron’s interaction with the total dipole magnetic moment 
of the atomic electrons; all other electromagnetic interactions are at least two 
orders-of-magnitude smaller and can be safely neglected [5]. The 
fundamental starting point for evaluating the neutron magnetic scattering 
length is the Hamiltonian of the electrons in the atom in the presence of the 
neutron’s magnetic field [2,4]. The interaction Hamiltonian is 

( ) ( )( ) ( )( ) { }∑∑ +=






 ⋅+⋅=

e
sele

e
eneBeen

B
enm VV,V rHsprArr 2

2

=
, 

(2.15) 
where the sum extends over all electrons in the atom, indexed by e. rn and re 
are the position of the neutron and that of the electron, respectively, pe is the 
momentum, and se is the spin angular momentum of the electron. An(re) is 
the vector-potential, so that 

( ) ( )[ ]enen e
rArH r ×∇=   

(2.16) 
is the magnetic field of the neutron at the position of the eth electron, re. The 
first term in Eq. (2.15), Vle, describes the interaction of the neutron magnetic 
field, Hn(re), with the electric current produced by the electron’s orbital 
motion. The second term, Vse, accounts for the neutron’s magnetic 
interaction with the spin magnetic moment of the electrons.  

The characteristic size of the inner structure of a neutron is extremely 
small, so that in describing the magnetic interaction with an electron in an 
atom it can be treated as a point dipole with the magnetic moment n� � n n, 

n is the neutron’s gyromagnetic ratio, and n = sn is its spin angular 
momentum (see Table 2-1). The corresponding expression for the neutron’s 
magnetic field vector potential at the position of the electron is  

( ) 



 ×∇=












−

×∇=












−
−×=

r
n

ne

n

ne

ne
nen e rrrr

rr
rA r3

, 

(2.17) 
r = re – rn is the spacing between the neutron and the electron [2,3-5,12]. 
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On account of Eq. (2.17), the orbital part of the interaction Hamiltonian 
(2.15) can be recast in the following form, 

( )
3

2
1

rcm

e

r
en

Be
e

nle

l
p

⋅=























×∇⋅−=V , 

(2.18) 
which also could be semirigorously derived from the Biot-Savart law [1,12]. 
Here pe is the momentum of the electron, and le = [r × pe] is its orbital 
angular momentum in the neutron’s rest frame. Eq. (2.18) is just the energy 
of the neutron’s dipole magnetic moment, n, in the magnetic field,  

( ) ( )













 −×∇=








×





∇=












×

−
−= eee

ne

ne
nle crcrc n

III
rr

rr
rH r

1111
3

,  

(2.19) 
of the electron’s orbital electric current Ie, [12]. The latter is formally 
defined by ( ) eee me pI −=  [note, that ( ) ( ) ( )rfrfrf

ne rr −∇=∇=∇ ]. 

The second term in Eq. (2.15), describing the neutron’s interaction with 
the spin magnetic moment of the electron, eBse s2−= , can be rewritten 

symmetrically as the interaction of the two magnetic point dipoles at a 
distance r = |re  – rn| from each other, 

( ) 

















 ×∇×∇⋅−=

















 ×∇×∇⋅−=

rr
se

n
n

sese rV . 

(2.20) 
This expression contains essential singularity at r = 0 and needs to be treated 

carefully when evaluating the derivatives. By using ( ) ( )rπδ−=∇ 412 r/ , 
Eq. (2.20) can readily be transformed to the form perhaps most commonly 
used for the interaction between  two point dipoles [13-15], 

( ) ( ) ( ) ( ) ( )( )






 ⋅⋅+⋅−δ⋅π−=

53

3

3

8

rr
sensen

sense

rr
rrV . 

(2.21) 
The first, singular term here is called the Fermi contact interaction.  The rest 
is the potential part that describes the interaction between the dipoles at large 
distances. Because the neutron’s wave function overlaps with those of the 
electrons, it is essential to account for the contact term in the magnetic 
scattering length. Although less conventional, Eq. (2.20) is more convenient 
for evaluating the scattering cross-section. Not only does it correctly contain 
the singular part of the dipole-dipole interaction, but it also can be readily 
Fourier-transformed to obtain the spin contribution to the neutron’s magnetic 
scattering length in the momentum representation 



1. Magnetic Neutron Scattering. 13
 

( ) ( ) [ ][ ]( )se
i

nnense
i

se
en e

q

m
de qqrrrq qrqr −− ××⋅−== ∫ 22

3 4

2 =
,bb .  

(2.22) 
This expression is an important, fundamental result that governs the essential 
properties of the magnetic neutron scattering cross-section.  

In many important cases, the contribution of the orbital currents to the 
magnetic scattering cross-section (2.7) is zero, or small, and can be 
neglected. This happens when the corresponding matrix elements of the 
orbital contribution (2.18) to the magnetic interaction are small, or vanish, as  
is the case, for example, for scattering by the s-electrons that are in the le= 0 

state and, consequently, 0=ilef V . For atoms of the transition 

elements in the crystal, the local crystal electric field typically quenches 
orbital angular momentum [14]. Hence, the orbital contribution to the 
magnetic scattering cross-section also is very small. On the other hand, 
accurately accounting for the orbital scattering is rather cumbersome, much 
more so than for spin-only scattering. This is because the matrix elements of 
the orbital part of the magnetic interaction, (2.18), depend significantly on 
the electron’s wave functions and, in general, require specific calculations 
for each particular case of electronic configuration in the atom [17-22]. On 
these grounds, the orbital contribution is often discarded in the textbook 
treatments of the magnetic neutron scattering cross-section, [2,5,15].  

Accounting for the orbital magnetic moment is important for the 
scattering by the 4f- and 5f-electrons in the rare earths. In this case, the 
crystal field is usually well screened by the filled outer atomic shells, and the 
total angular momentum, J = L + S, is a good quantum number. Fortunately, 
the useful general expressions for the magnetic neutron scattering length and 
for the corresponding cross-section can be derived without first evaluating 
the matrix elements of the orbital part of the neutron’s magnetic interaction 
with the electrons. This task can be postponed till the end, where it becomes 
a part of the general problem of evaluating the atom’s magnetic form factor.  

One proceeds as follows. Under very general assumptions, the orbital 
contribution to the magnetic neutron-scattering length can be transformed to 
a form similar to the spin part, Eqs. (2.20) and (2.22). Consequently, they 
can be combined and treated together. The simplest way to do this is to 
assume that the main contribution to the matrix elements of the interaction of 
the neutron in the plane-wave state with the orbital electron current, (2.18), 
comes from the region rn>>re. This approximation clearly holds if the 
neutron’s wavelength is much greater than the characteristic size of the 
atomic wave functions, i.e., for slow neutrons. Then, 1/|rn-re| can be 
expanded in the power series and, to the leading order, the matrix element of 
the orbital magnetic field at the neutron’s position becomes [12] 
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(2.23) 
The first term in the inner brackets here does not contribute to the result 
because, for an electron that remains localized on an atomic orbital, the 

average momentum is zero, 0=ief p , [12,13]. The second term can 

be transformed by separating the full time derivative, whose matrix element 
for an electron in an atom is also zero, and using eeem pr =� , [13],  

( ) ( )( ) ( ) ( )






 ∇⋅+∇⋅−∇⋅=∇⋅ eeeeeeeee nnnn dt

d
m prprrrpr rrrr 2

1
. 

(2.24) 
It then follows that, 

( ) [ ][ ] ieefieef nn
prpr rr ××∇−=∇⋅ ,  

 
and, as a result, Eq. (2.23) becomes 

( ) ie
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

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

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
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1
.  

(2.25) 
This brings the matrix element of the orbital part of the magnetic interaction 
to the same form as that for the spin part, Eq. (2.20), but with rn in place of r 
and with the orbital magnetic moment,   

[ ] eBee
B

le lpr −=×−=
=

, 

(2.26) 
replacing the spin magnetic moment, se = -2 Bse. 

Both contributions can be combined into a simple final expression for the 
matrix element of the atom’s magnetic neutron scattering length, 

( )[ ][ ]( )ifniimff q

m
qMqqkk ××⋅−=

22

4

2 =
,b, , 

(2.27) 
where q = kf – ki is the neutron’s wave vector change, as in Eq. (2.9). The 
approximation adopted above in deriving the Eq. (2.25) gives only the 
lowest-order, q-independent orbital contribution to the operator M(q). In this 
approximation ( ) ( ) { } ( )SLslMqM 220 +−=+−=≈ ∑ Be eeB  [16]. 

Trammel [17] developed a more accurate accounting for the orbital part of 
the magnetic interaction. His treatment is essentially similar to the above, but 
the terms of all orders are consistently retained in the series expansion. 
Consequently, M(q) in the right-hand side of Eq. (2.27) becomes 
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where  
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∞
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(2.29) 
Eq. (2.25) retains only the first, zero-order, ~O(q0), term in this  expression.  

Clearly, the first term in Eq. (2.28) is simply the Fourier-transform of the 
density of the spin magnetic moment of the atomic electrons 
 

( ) ( ) ( )( ) rrSrrrsqM rqqr ′′−=′−′δ−= ∫∑∫ ′−− 33 22 dede B
i

e
ee

i
BS

e . 

(2.30) 
It also can be shown, [18,19], that the second (orbital) term in Eq. (2.28) is 
the Fourier-transform of the atom’s orbital magnetization density 

 ( ) ( )∑∫ ′′= ′−

e
el

i
L de rrqM rq 3 . 

(2.31) 
Here, the density of the orbital magnetization for an electron in the atom, 

( )rel , is defined by the relation ( ) ( )[ ]rrj ele c ×∇= , so that it 

determines the density of the orbital electric current   

( ) ( ) ( ){ } ( )[ ]rprrrrprj eleeee
e

e c
m

e ×∇=−δ+−δ−=
2

, 

(2.32) 
and accounts for the magnetic field arising from the electron’s orbital 
motion. Consequently, the contribution of the orbital electric currents to the 
magnetic interaction in Eq. (2.15) can be recast in the form of the double 
cross product, as in Eq. (2.27), using  

( ) ( )[ ]∫∫ ′′×∇=′′= ′
′−′−− rrrrjI r

rqrqqr 3311
ded
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e
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i
e

i
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(2.33) 
Therefore, the matrix element of the neutron magnetic scattering length is 
expressed by the Eq. (2.27), where M(q) is the Fourier-transform of the 
total, spin and orbital, electronic magnetization density in the atom,  

( ) ( ) ( ) ( ) ( ){ } rrrrsqMqMqM rq ′′+−′δ−=+= ∫ ∑′− 32 de
e

eleeB
i

LS .  

(2.34) 
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2.3 Factorization of the magnetic scattering length and 
the magnetic form factors 

By applying the Wigner-Eckart theorem, a matrix element of the atom’s 
magnetization density operator (2.34) can be factorized into the product of 
the reduced matrix element that does not depend on the direction of the 
atom’s angular momentum, and the Wigner 3j-symbol, which entirely 
accounts for such dependence [8,13]. The first factor contains the q-
dependence of the matrix element, while the second describes its symmetry 
with respect to rotations and relates them to the magnetic neutron scattering 
cross-section. Such factorization is extremely useful in understanding 
magnetic neutron scattering by macroscopic samples. It splits the task of 
calculating the scattering cross-section for a system of many atoms in two 
separate major parts that address different aspects of the problem. One is that 
of evaluating the neutron magnetic form factor, which describes the q-
dependence of the scattering by a single atom and is determined by the 
reduced matrix element(s). The other one is that of properly adding the 
contributions from the correlated (and/or the uncorrelated) rotations of the 
magnetic moments of different atoms in the sample to obtain the total 
scattering cross-section.  

Because M(q) in Eq. (2.27) contains both spin and orbital contributions 
[cf Eq. (2.34)], its matrix elements must be expressed through those of the 
atom’s total angular momentum, J = L + S = �e {le + se}. Consequently, the 

Wigner-Eckart theorem applies directly to ( ) if qM  only if i  and 

f  are approximately the eigenstates of J and Jz, i.e., if J is an integral of 

motion for the scattering atom. In practice, this is the case if the spin-orbit 
interaction (LS-coupling) is much larger than any other interaction that 
depends on the atom’s orbital and/or spin angular momentum, such as the 
interaction with the crystal field. We consider such a situation first. 

From Eq. (2.28) we see that the matrix elements of the operators MS(q) 
and ML(q) between the eigenstates of the atom’s total angular momentum, J, 
satisfy the “dipole” selection rules, [7,8]. Hence, for each of the two 
operators only the matrix elements between the states with J = J( f) – J( i) 
= 0, ±1 can differ from zero. Therefore, only such transitions are allowed in 
the magnetic neutron scattering. This also is evident from the conservation 
of the total, neutron’s and atom’s angular momentum, since Jz has to be 
offset by the change in the neutron’s spin, which can only be 10 ±=∆ ,z

ns . 

While the Wigner-Eckart decomposition of the matrix element is quite 

tedious for a general tensor and for an arbitrary states i  and f , it is 

greatly simplified for a vector operator such as M(q) that is a tensor of rank 
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one [3,13]. As discussed above, the matrix elements of a vector satisfy the 
“dipole” selection rules, i.e., they can only be non-zero between the states 
whose angular momentum quantum numbers differ by no more than 1 [13]. 
Therefore, no more than three different reduced matrix elements appear in 

the decomposition of ( ) if qM  in Eq. (2.27) and, consequently, in the 

magnetic neutron scattering cross-section. These reduced matrix elements 
completely account for the q-dependence of magnetic neutron scattering 
from a single atom. Normalized to 1 at q = 0, they define the atom’s neutron 
magnetic form factors for the corresponding scattering channels, in complete 
analogy with the usual x-ray atomic form factors.  

In most cases of practical importance for magnetic neutron scattering, 

both the initial and the final states of the atom, i  and f , belong to the 

same angular momentum multiplet, z
fifi JJ ,, ,,′= . There are no 

transitions between atomic states with different angular momenta, i.e., J( f) – 
J( i) = 0. Hence, the cross-section involves only a single reduced matrix 
element, that for the ground-state multiplet. Normalized appropriately, it 
defines what is usually called the neutron magnetic form factor of an atom. 

In this case, the expression for ( ) if qM  is simple. The 3j-symbols are 

just the matrix elements of a vector operator J, and the statement of the 
Wigner-Eckart theorem is reduced to the well-known relation for the matrix 
elements of a vector [7,8], 

( )
( )1+

′⋅′
′′=

JJ

JJ
JJJJ z

i
z
fif

,,
,,,,

JA
JA , 

(2.35) 
that also is expected from general symmetry arguments [13]. This expression 
is valid for any vector-operator A that has appropriate commutation relations 
with J, in particular, for A = M(q). Applying it to A = L + 2S = J + S and for 

the states i  and f  that also belong to the same spin and orbital 

multiplets, S2 = S (S + 1) and L2 = L (L + 1), the famous Lande result for the 
spectroscopic g-factor in the theory of the Zeeman effect is immediately 
obtained,  

( ) ( ) ( )
( )12

111
1

+
+−++++=

JJ

LLSSJJ
g  . 

(2.36) 
Upon applying Eq. (2.35) to A = M(q), and introducing the atom’s 

magnetic form factor, FJ(q), we obtain 

( ) ( ) ifJBif Fg JqqM −= . 

(2.37) 
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FJ(q) is the normalized average expectation value of the Fourier-transform of 
the atom’s net magnetization density within the J2 = J (J + 1) multiplet, 

( ) ( )( )
( )1+−

′⋅′
=

JJg

JJ
F

B
J

,, JqM
q . 

(2.38) 
These expressions can be directly applied to describe the neutron’s magnetic 
scattering length in cases where the total angular momentum of the atom is a 
good quantum number, and the matrix elements of M(q) for J ��� are zero, 
or negligible. Typically, this is a good approximation for the rare earths 
where the spin-orbit interaction is strong, while the unpaired electrons in the 
unfilled 4f and 5f shells are well screened from the crystal field by the filled 
outer shells. Hence, the splitting between the different J-multiplets is much 
larger than the level splitting in the crystal field, and the mixing of states 
with different J and transitions between them can be ignored [4,13,14,17]. 

With an intermediate, or strong (with respect to the spin-orbit coupling) 
crystal field, J is not a good quantum number, and the simple relation (2.37) 

cannot be used. Here, i  and f  are not even approximately the 

eigenstates of J, but are the mixtures of states from the different J multiplets, 
so Eq. (2.35) does not apply. This situation is typical for the ions of the 3d, 
4d, and 5d groups where the unpaired magnetic electrons occupy the outer 
valence d-shells. Hence, their interaction with the ligand crystal field is 
comparable in strength to, or stronger than, the spin-orbit LS-coupling [14]. 
Fortunately, in many important cases, a strong crystal field also fully lifts the 
orbital degeneracy, so that the orbital moment is quenched in the atom’s 
ground state, and the orbital contribution to the magnetic scattering length is 
small and can be neglected [1-5,14,18].  

In the general case there is no simple relation between the matrix element 
of the magnetic scattering length (2.27), and those of the atom’s angular 
momentum, J. Nevertheless, a simple, independent factorization for the spin- 
and the orbital-contributions, similar to Eqs. (2.37), (2.38), is nearly always 

possible. In the general case, i  and f  are not (approximate) 

eigenstates of J and Jz, but are the superpositions of states described by the 
full set of spin and orbital quantum numbers, {S,Sz,L,Lz}, as in the Russel-
Saunders LS-scheme,  

( ) zz

LLSS

zz
fifi LLSSLLSSC

zz

,,,,,,,
,,,

,, ′= ∑ . 

(2.39) 
Consequently, the matrix element of the atom’s magnetization density in Eq. 
(2.27) is the sum of the contributions  

{ } ( ) ( ) { }i
zz

LSf
zz LLSSLLSS ,,,,,,,, ′+′ qMqM .   

(2.40) 



1. Magnetic Neutron Scattering. 19
 
Here, the spin part of the atom’s magnetization density operator, MS(q), acts 
only on the spin variables, while the orbital part, ML(q), acts only on the 
coordinate part of the atomic wave function. Therefore, the only non-zero 
matrix elements of MS(q) are those between the states with the same orbital 
quantum numbers, L = 0, Lz = 0, that satisfy the selection rules on spin 
angular momentum, S = 0, ±1. On the other hand, the only non-zero matrix 
elements of ML(q) are between the states with the same spin quantum 
numbers, S = 0, Sz = 0, and satisfy L = 0, ±1. Hence, the Wigner-Eckart 
theorem can be applied separately to the spin and to the orbital contributions 
in Eq. (2.40). The matrix elements of MS(q) are expressed through those of 
the atom’s spin operator, S, while the matrix elements of ML(q) through 
those of its orbital angular momentum, L.  

In nearly all cases of interest both i  and f  are, to a good 

approximation, the eigenstates of S and L (although the S and L eigenvalues 
in the initial and the final states might differ). In particular, this holds for the 
atomic configurations that satisfy Hund’s rule. In other words, there is little 
or no mixing of states from different spin or orbital multiplets in the initial 

and final states of the scattering atom, i  and f . Consequently, there is 

only one term in the sum over S and L in Eqs. (2.39), (2.40). Therefore, the 
Wigner-Eckart theorem can be applied directly to the matrix elements of the 
spin and the orbital parts of the atom’s magnetization density in Eq. (2.27). 
The spin part is factorized into a reduced matrix element, 

( ) iSf SS ,, ′′ qM , and a 3j-symbol that depends only on the atom’s 

spin quantum numbers. Similarly, the orbital part is a product of a reduced 

matrix element, ( ) iLf LL ,, ′′ qM , and a 3j-symbol that depends only 

on the atom’s angular momentum quantum numbers. Consequently, the 
magnetic neutron scattering length is expressed as a sum of the function of 
the atom’s spin operator, S, and the function of its orbital angular 
momentum operator, L, each weighted with its own, q-dependent magnetic 
form factor. The latter quantifies the probability of the transition between the 
S and L multiplets to which the atom’s initial and final states belong. In 
either case, the relations essentially repeat those between the matrix elements 
of M(q) and J in the case of strong LS-coupling discussed above. 

2.3.1 Magnetic form factors for Hund’s ions: vector formalism 

While the matrix elements between the states from the different atomic 
multiplets, i.e., those with S� �����RU� L = ±1can be factorized in Eq. (2.27) 
using the Wigner-Eckart theorem, both the calculation itself and the results 
are very unwieldy [3,17,20], and are of limited practical importance. 
Fortunately, such a calculation is rarely needed. Firstly, the neutron’s energy 
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typically is not sufficient to cause the transitions between different atomic 
multiplets. Secondly, both the initial and the final states of the scattering 
atom usually satisfy the Hund’s rule and, therefore, belong to the same L and 
S multiplets. Among the notable exceptions to this rule are the ions with the 
electronic configuration 3d6, such as Co3+, in a strong crystal field. There, 
the energies of states from the different spin multiplets are close, and the 
ground state may have a low spin, S = 0, or an intermediate spin, S = 1, in a 
clear violation of Hund’s rule. In such a situation there might be significant 

mixing of the different spin states in i  and f . Transitions between 

these spin states can contribute to inelastic magnetic neutron scattering.  
In the overwhelming majority of experimental situations, though, atoms 

in the sample remain in the states that belong to the same Hund’s multiplet, 

SLfifi ,,,, ′= , i.e., L� ���� S = 0. Restricting our attention to such 

cases we can write  

( ) ( ) ( ) ifLBifSBif FF LqSqqM −−= 2 . 

(2.41) 
Here the spin, FS(q), and the orbital, FL(q), magnetic form factors of the 
atom are defined in the same way as FJ(q), Eq. (2.37), but with g=2 and S 
replacing J in the first case, and with g=1 and L replacing J in the second. 
Substituting MS(q) and ML(q) from Eq. (2.28) gives the following explicit 
expressions,  
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(2.42) 
and,  
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(2.43) 
The spin form factor (2.42) is the Fourier-transform of the atom’s total spin 
density, projected on its total spin. It describes the q-distribution of the 
unpaired electron density in the atom. The orbital form factor (2.43) 
describes the q-distribution of the net orbital angular momentum of the 
atomic electrons. Both satisfy the important normalization condition  

( ) ( ) 100 == LS FF , 
(2.44) 

that is evident from the definitions (2.42), and (2.43). 

When J is conserved and i , f  belong to the same J-multiplet, the 

matrix elements of S and L are proportional to those of J, 
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( ) ifif g JS 1−= , ( ) ifif g JL −= 2 , where g is 

the Lande g-factor defined by Eq. (2.36). Upon substituting these into Eq. 
(2.41), the following relation is obtained for the magnetic form factors,  

( ) ( ) ( )qqq LSJ F
g

F
g

F 





−+
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
−= 1

22
2 . 

(2.45) 
In a great variety of important cases, the matrix elements of S and L 

within the lowest atomic multiplet to which the scattering states i  and 

f  belong, can be described by the effective spin operator S
~

,  

ifSif g SS
~=2 , ( ) ifSif gg SL

~−= . 

(2.46) 
Here, g is the effective g-factor that describes the Zeeman splitting of the 
multiplet, and gS is the effective spin-only g-factor. Consequently, Eq. (2.41) 
for the matrix element of the magnetization becomes  

( ) ( ) ifBif Fg SqqM
~−= .  

(2.47) 

This is the same as Eq. (2.37), but with S
~

 in place of J, and with FJ(q) 
replaced by the generalized, effective magnetic form factor F(q), 

( ) ( ) ( )qqq L
S

S
S F

g

g
F

g

g
F 





−+= 1 . 

(2.48) 
Eqs. (2.41)-(2.48), together with Eq. (2.27), rather accurately describe the 

neutron magnetic scattering length in nearly all cases of interest, and are the 
most widely used ones.  They are exact descriptions in cases of a J-multiplet 
and a pure spin multiplet (e.g., with L = 0, where g = gS and the orbital 
contribution to the magnetic scattering is absent). They give the leading-
order approximation in other cases. Eq. (2.45) follows from Eq. (2.48) upon 

substituting JS =~
 and gS = 2(g - 1), as is appropriate for the J-multiplet. If 

the orbital moment is nearly quenched, as it is for the ions of the magnetic d-

elements in strong crystal field, then SS ≈~
, gS §� �, and the orbital 

contribution to F(q), proportional to (g - gS), is small, [18]. Usually, Eqs. 

(2.47), (2.48) are adopted, with S in place of S
~

, implying that it denotes an 
effective spin. 

The simple equations derived above, starting with the expression for the 
matrix elements of a vector operator, Eq. (2.35), are usually referred to as 
vector formalism, [3,21]. It is nearly always sufficient for understanding the 
neutron magnetic scattering cross-section, which can be expressed in terms 
of the atom’s magnetic form factors, Eqs. (2.42)-(2.45). In a few important 
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cases, the multiplet mixing in the states of the scattering atom is essential, 
and the vector approach does not suffice. Then, the scattering cross-section 
cannot be simply factorized, and a tensor formalism based on Racah algebra 
for the tensor operators must be employed. Although the calculations are 
very tedious, explicit expressions can be obtained for the spin- and orbital-
contributions to the magnetic scattering cross-section [3,20,21,22].  

2.3.2 Evaluating the form factors and dipole approximation 

Within Hund’s spin-S atomic multiplet, the operator (seÂS) can have only 
two different values. They are equal to (S +1)/2 for the “spin-up” electrons, 
whose spin adds to the total spin of the atom, and -(S +1)/2 for the “spin-
down” electrons, whose spin subtracts from the total. Substituting these 
values into the reduced matrix element in Eq. (2.42), the expression for the 
spin magnetic form factor becomes, 

( ) ( ) ( )∑∑∫
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(2.49) 
where e  numbers only the unpaired electrons. The contributions from the 
paired electrons cancel out, leaving 2S terms in the sum. The right-hand side 
of Eq. (2.49) is simply the average of the Fourier-transforms of the unpaired 
electron densities in the atom. Similarly, the orbital form factor is the 
Fourier-transformed average density of the uncompensated orbital currents.  

The typical shapes of the spin magnetic form factor for 3d electrons are 
illustrated by the equal-level surfaces shown in the right-hand columns of all 
four panels in Figure 2-2, (a)-(d). These were obtained by the numeric fast 
Fourier transformation of the “hydrogenic” electron wave functions whose 
density distributions appear in the left columns of the corresponding panels 
in this figure. Although the radial wave functions in the real multi-electron 
magnetic ions may differ significantly from those of the hydrogen atom, the 
angular dependence of the electron density distribution is similar. It is 
determined by the eigenfunctions of the orbital angular momentum, the 

spherical harmonics ( )ϕ�Y m
l . 

The radial distribution of the 3d electron density in the Ni2+ ion was 
calculated using the Hartree-Fock approximation in Ref. [23]. Its maximum 
is at a distance that is about 1.5 times smaller than for the corresponding 
hydrogen-like orbital, the full width at half maximum (FWHM) is about 
10% larger, and the decay at larger distances is noticeably slower. Therefore, 
the calculation for the hydrogen-like wave functions shown in the Figure 2-2 
is unsuitable to quantitatively analyze the magnitudes of spin magnetic form 
factors. Nevertheless, it correctly describes the form factors’ anisotropy 
arising from the particular shape of an electronic orbital.  
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Figure 2-2. Electron densities (left columns) and the corresponding spin form factors (right 
columns) of Eq. (2.49) for the hydrogen-like 3d orbitals (n=3, l=2). (a) m=±2; (b) m=±1;  (c) 
m=0, eg (3z2-r2) orbital; (d) eg (x

2-y2) orbital. The three rows in (a)-(d) show the iso-surfaces 
at a level e-1, e-2, and e-4 of the corresponding maximum, from top to bottom, respectively. 

Anisotropic magnetic form factor of a single 5d hole of the magnetic Ir4+ 
ion localized on the t2g orbital in the cubic K2IrCl6 was studied by Lynn, 
Shirane and Blume in Ref. [24]. They found that the anisotropy of the 
magnetic form factor is very large, with an additional enhancement coming 
from the hybridization of the Ir 5d-orbital with the Cl p-orbitals. For the eg, 
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d(3z2-r2) orbital, which is elongated in the z-axis direction, the form factor is 
squashed along z and has a slower decay within the xy plane. On the other 
hand, the spin form factor for an electron in the eg, d(x2-y2) orbital is 
extended in the z-direction, and has a faster decay in the xy plane. Such is the 
situation for the Cu2+ ions in La2CuO4, YBa2Cu3O6+y, and related cuprate 
materials, including the high-Tc superconductors, where a single unpaired 
magnetic electron occupies a 3d(x2-y2) orbital. Shamoto and colleagues [25] 
showed that properly accounting for the anisotropy of the Cu2+ magnetic 
form factor is essential for understanding the magnetic Bragg intensities 
measured in YBa2Cu3O6+y at large wave vectors q, and can also explain the 
peculiar q-dependence of the inelastic magnetic cross-section in this 
material. Accounting for the anisotropic Cu2+ form factor also was very 
important in analyzing neutron scattering by the high-energy spin waves in 
La2CuO4, [26]. The bandwidth of the magnetic excitations in this material 
exceeds 300 meV. Consequently, the measurements require very large wave 
vector transfers, for which the anisotropy of the Cu2+ form factor is very 
pronounced. 

The single-electron density in Eq. (2.49), ( ) 2
re , is most generally 

determined from the multi-electron atomic wave function as  

( ) ( ) SLSL ee ,,,, ′−′δ′=′ rrr
2

. 
(2.50) 

In calculating the magnetic form factors, the multi-electron atomic wave 
function is usually assumed to take the form of a Slater determinant made of 
the single-electron wave functions that then are used in Eq. (2.49). For 
unpaired electrons, these functions are usually considered to be the 
eigenfunctions of the electron’s angular momentum, le = [r × pe], with the 
same eigenvalue of le

2 =  l (l + 1), and are tagged by the n, l, m = lz quantum 
numbers. Consequently, the radial and the angular parts of ( )re  are 

separated, as in the case of the Hartree-Fock one-electron wave functions,  
( ) ( ) ( )ϕ= �YrR m

llnmln ,,, r , 
(2.51) 

where Rn,l(r) is the appropriately normalized radial wave function, and 
( )ϕ�Y m

l  is the normalized spherical harmonics. 

For such separation to be rigorous, it is necessary that the average 
potential acting on the electron in the atom on the level of the Hartree-Fock 
self-consistent mean field theory has spherical symmetry; this is a familiar 
central field approximation. It is a well-justified or ‘mild’ approximation for 
the unpaired electrons that belong to a single incomplete atomic shell, [8]. In 
fact, it is exact for an almost-filled shell with only a single electron, or a 
single hole, because the average net potential of the closed shell is, indeed, 
spherically symmetric. For the atomic configurations that obey the Hund’s 
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rule, the latter is also true for a half-filled shell, such as the 3d5 shells of the 
Mn2+ or Fe3+ ions. 

Although Eq. (2.51) is sufficient in nearly all cases of interest, when it is 
not, a single-electron wave function can always be expanded in a series in 
spherical harmonics. In each term of such an expansion, the radial and the 
angular parts are again factorized, and the right-hand side of the equation 
simply becomes a sum of terms with different l and m. The same kind of an 
expansion is encountered in calculating the orbital contribution to the 
magnetic form factor. A single-electron orbital current density is defined in 
the same way as a single-electron density of Eq. (2.50), but with the current 
density operator, Eq. (2.32), instead of the delta-function. It is also expanded 
in a series in spherical harmonics (this is known as a multipole expansion, 
[20-22]), and then Fourier-transformed. 
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Figure 2-3.  The wave vector dependence of the j0, j2, and j4 radial integrals for some typical 
magnetic 3d ions, calculated using the 3-Gaussian approximation of Ref. [11]. 

In the general case, the calculation of the magnetic form factors is ion-
specific [3]. The general expressions can be obtained only for the leading 
contributions within the limit of small wave vector transfer q, 

( ) ( ) ( ) ( ) ( ){ }qjqjFqjF LS 200 2

1 +== qq , , 

(2.52) 
known as the dipole approximation. However, although this approximation 
is very widely used in analyzing neutron scattering experiments, it is 
extremely crude. In particular, it does not account for the anisotropy of the 
magnetic form factors that is apparent in Figure 2-2, and can be very 
important for ions with only one or two unpaired electrons. For a given 
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orbital, ( )rmln ,, , the dependence of the form factor on the length of q is 

contained in the so-called radial integrals, 

( ) ( ) ( ) drrrRqrjqj lnklnk
22

22 ,, ∫= , 

(2.53) 

where Rn,l(r) is the radial part of the wave function, Eq. (2.51), and ( )qrj k2  

are the spherical Bessel functions. While only ( )qj0  and ( )qj2  appear 

in the dipole approximation of Eq. (2.52), generally, the magnetic form 
factor of a shell with the orbital quantum number l is expressed as a sum of 

the radial integrals ( )qj k2  with k = 0,1,2,…,l, and with the coefficients 

that depend on the direction of q, i.e., on the polar angles ( )qq ϕ,  (discussed 

in more detail in the next section). 
The radial integrals for most known magnetic atoms and ions were 

calculated numerically from the appropriate Hartree-Fock or Fock-Dirac 
wave functions. Practically, they can be rather accurately approximated by 
the sum of the three Gaussians, multiplied by q2 for k > 0, [11]. The 
coefficients and accuracy of such analytical approximations are tabulated in 
Ref. [11]. Figure 2-3 shows the first three radial integrals (2k = 0,2,4) for 
several typical magnetic 3d ions, calculated using these approximate 
expressions. An increase in the ion’s size, from the smaller Cu2+ to the larger 
V2+, is apparent from the correspondingly smaller extent of the radial 

integral ( )qj0 .  
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Figure 2-4. Splitting of the radial integrals in the spin magnetic form factor of Mn2+ ion in a 
cubic crystal field. The data is adapted from the early Hartree-Fock calculation by Freeman 
and Watson [27]. 

Finally, the single-electron radial wave function for an atom in the crystal 
environment may also depend on m because the crystal field splitting the l-
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multiplet causes expansion, or contraction, of the corresponding orbitals (in 
addition to the overall expansion/contraction of the outer electron wave 
functions) [27]. Typically, this is a small effect. It was first quantified in the 
early Hartree-Fock calculation of Ref. [27]. For the Mn2+ ion in an external 
cubic field of point charges, the authors obtained a small splitting of the 
magnetic spin form factors for eg and t2g orbitals, illustrated in Figure 2-4. 
There is a small, barely distinguishable difference corresponding to the net 
expansion of the t2g and the contraction of the eg orbitals.  

2.3.3 One-electron spin form factor beyond dipole approximation; 
anisotropic form factors for 3d electrons 

The magnetic form factors are calculated [3,4,20-22] by expanding the 

exponent eie qr−  under the integral in the Fourier-transform of the atom’s 
magnetization density in the series in spherical Bessel functions, ( )en qrj , 

[13]. The coefficients that contain the angular dependence in the expansion 

are the products of spherical harmonics, ( ) ( )ϕϕ �Y,Y m
l

m
l qq

* . Therefore, the 

dependencies on the polar angles, ( )ϕ�  and ( )qq ϕ, , that respectively 

parameterize the directions of r and q in the corresponding spherical 
coordinates are separated in each term of the expansion. This is convenient 
because upon substituting this expansion and the wave functions of Eq. 
(2.51) into Eqs. (2.40)-(2.43), the angular part of the d3r integration can be 
performed explicitly, using the orthogonality and the normalization of the 
spherical harmonics [8]. 

 Consequently, a general analytical expression can be obtained for the 
one-electron spin magnetic form factor. Allowing for the transitions between 
the m and m  electronic states of the l-multiplet, we generalize the definition 
of the form factor as follows,  

( ) ( ) ( )∫ ′
−

′→ = rrrq qr 3deF mlnmln
i

mmlS ,
*

,,,, . 

(2.54) 
For the wave functions given by Eq. (2.51), the result is expressed in the 
form of a finite series with ��l+1 terms, where each term is a product of the 

radial integral, ( )qj k2 , and a spherical harmonic, ( )qq ϕ−′ ,Y mm
k2 , 

accounting for the form factor’s angular dependence, 

( ) ( ) ( ) ( ) ( )∑
′−

=

−′
′

−′
′→ ϕ−+π=

l

mm
k

mm
k

k
mlml

mm

lnkmmlS ,YCqjkF

2

2
2

2 1144 qqq ,,,,,, . 

(2.55) 
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The coefficients k
mlmlC 2

′,,,  can be expressed as the product of two Clebsch-

Gordan coefficients, ml
mlmlC ,

,,, 2211
, which appear in the theory of addition of 

angular momentum [8], 

( ) 00
0012

12
1 ,

,,,
,

,,,,,,
l

mlml
l

ll
ml

mlml CC
l

l
C ′

′−
′′′

′ +′
+−= . 

(2.56) 
Racah [28] obtained a closed analytical formula for the Clebsh-Gordan 
coefficients, which are related in a simple way to the 3j-symbols. It is readily 
available in many textbooks [8,13], and the values of the Racah coefficients 

are tabulated in the literature. 0
00

,
,,,

l
llC ′  is the particular case for which there is 

an explicit expression [8,13].  
An important particular case of Eq. (2.55) is that of m = m . It defines the 

diagonal form factor, FS,l,m(q), that  describes scattering by an electron whose 
wave function is an eigenstate of l and lz = m. In this case,  

( ) ( ) ( ) ( ) ( )qq θ+−= ∑
=

cos,,,,,, k
k

mlml

l

k
lnk

k
mlS PCqjkF 2

2

0
2141 , 

(2.57) 

where ( )qθcoskP2  are the Legendre polynomials [13]. This form factor does 

not depend on qϕ , and is axially symmetric. Further, the coefficient 

10 =mlmlC ,,,  for all m. Therefore, the leading k = 0 term in the series (2.55), 

(2.57) is just ( )qj0 ; this is exactly the result obtained in the dipole 

approximation. It also coincides with the angle-averaged form factor,  

( ) ( ) ( )qjddFqF mmmmlSmmlS 04

1
′′→′→ δ=ϕθθ

π
= ∫∫ ,,,,, sin qqqq . 

(2.58) 
This result is a straightforward consequence of the orthogonality of the 
spherical harmonics. Only the term with m = m  and k = 0 in Eq. (2.55) (i.e., 
only the k = 0 term in Eq. (2.57) survives the spherical averaging.  

For the d-electrons (l=2, m=0,1,2), there are only three terms in the 
series in (2.55) and (2.57). In this case, the following explicit expression for 
the anisotropic spin magnetic form factors can be obtained, 

( ) ( )

( ) ( ) ( ) .coscos
~

cos
~

,,

,,

qjCqjC

qjF

mm

mS

4
424

22
22

2

02

3
35

10131 




 θ+θ−+θ−+

+=

qqq

q

 

 (2.59) 
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Table 2-3 lists the coefficients k
mC 2

2,

~
 in this equation. The same formulas can 

also be derived from the expressions given in Ref. [29]. In this way, Eq. 
(2.59) for m=2 was obtained in Ref. [25].  

Table 2-3. The coefficients 
k
mC 2

2,

~
 in Eq. (2.59) for the form factors of the d-electrons. 

 m=0 m=1 m=2 
2
2 mC ,

~
 5/7 5/14 -5/7 

4
2 mC ,

~
 27/28 -9/14 9/56 

Figure 2-5 shows the |FS,2,m(q)|2 equal-level surfaces, at a level e-2 §�����, 
depicting the axially anisotropic spin form factors of Eq. (2.59) for a 3d 
electron in Cu2+, and for m=0, 1, and 2. Their shapes are similar to the 
“hydrogenic” form factors depicted in Figure 2-2. Here, however, the form 
factors are obtained from the realistic single-electron wave functions and, 
therefore, the axes now quantify the realistic wave vector transfer q in Å-1, 
which is relevant for experiments.  

Figure 2-5.  The isosurface of the anisotropic magnetic spin form factor (squared) for the 
Cu2+ ion with the single electron in (a) m=2 state, (b) m=1 state, and (c) m=0 state. 

Figure 2-6 emphasizes the importance of the anisotropy of the spin 
magnetic form factor for a single unpaired d-electron for the topical Cu2+ 
ion. The difference between the form factor squared, |F(q)|2, for two q 
orientations grows rapidly at non-zero q, as the form factor decreases. At a 
wave vector q = 2.66 Å-1, which is typical for the thermal-neutron 
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measurements, the anisotropy of the form factor already is about a factor 
two, and cannot be ignored.  

Finally, for a 3d-ion in a crystal the electronic wave functions are not 
necessarily the axially symmetric eigenfunctions of lz, but are their linear 
combinations, often with lower symmetry, corresponding to the energy 
levels in a crystal field. In a cubic crystal field they correspond to the so-
called eg and t2g orbitals [14,15]. One of the two eg orbitals, d(3z2-r2), 
corresponds to lz = m = 0 eigenfunction, Figure 2-2 (c). Therefore, its form 
factor is axially symmetric, and is given by Eq. (2.59). For the other eg 

orbital, d(x2-y2), the wave function is proportional to ( ) ( )ϕ+ϕ − �Y�Y 2
2

2
2 , 

and the electron’s density depends on both angles,  and ϕ . It has a four-
fold rotational symmetry around the z-axis, shown in Figure 2-2 (d).  

Figure 2-6.  The wave vector dependence of the spin magnetic form factor squared for the 

m=2 3d-electron in Cu2+ for two directions of the wave vector q. The solid line is ( ) 2

0 qj , 

corresponding to the angle-averaged form factor. Except for q ��, the anisotropy is large. 

The spin magnetic form factor for the electron in the d(x2-y2) orbital can 
be straightforwardly derived from Eq. (2.55). Compared with the l = 2, m = 2 
form factor of Eq. (2.59), it contains an additional, qϕ -dependent term, 

given by ( ) ( )( ) 2222222 qq −→→− + ,,,, SS FF ,  

( )( ) ( ) ( ) ( )qqqq ϕθ+=
−

4
8

15 4
42222 cossin,,,

qjFF SyxdS
. 

(2.60) 
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This formula describes the four-fold anisotropy in the xy-plane. With the 
appropriately redefined coordinate axes, it also describes the anisotropic spin 
magnetic form factors for the t2g, xy, yz, and xz orbitals. This is because both 
the electron densities and form factors for these orbitals are related to those 
for the (x2-y2) orbital through the reflections and/or 90° rotations. 

3. MAGNETIC SCATTERING BY A CRYSTAL  

The Hamiltonian of the neutron’s magnetic interaction with the crystal is 
the sum of the interactions (2.15) where re is replaced by Rj + rej

 over the 
lattice positions Rj where the magnetic atoms are located. Here ej labels the 
electrons that belong to the jth atom; the adiabatic approximation for the 
electrons is adopted in assuming that they can instantly follow any change in 
Rj in a non-rigid crystal lattice. Hence, the neutron’s total magnetic 
scattering length in the Born approximation is the sum of the atomic 
scattering lengths and, using bm(rn, re) = bm(rn - re), 

( ) ( ) ( )∑∫ ∑ −− =+=
j

jm

i

n
j

jejnjm
i

m
jn ede qrrRrq qRqr

,,, b,bb 3 . 

(3.1) 
The matrix elements of the scattering length bm,j(q) are defined by Eqs. 
(2.27) and (2.34); in the latter, the sum encompasses the unpaired electrons ej 
that belong to the atom at Rj. If there are several magnetic atoms in the unit 
cell of the crystal, the sum in (3.1) can be separated into a sum over the sites 
of the Bravais lattice of the crystal, and another over the different magnetic 
atoms within the crystal’s unit cell.  

Alternatively, the sum in Eq. (3.1) can be thought of as running only over 
the sites of the Bravais lattice, and the scattering length bm,j(q) as being the 
total magnetic scattering length for the crystal’s unit cell, determined by the 
Fourier-transform of the total magnetization density of the unit cell, Mj(q). 
The latter is defined by Eq. (2.34) that includes in the sum all unpaired 
electrons that belong to the unit cell. Where necessary, the density of the unit 
cell’s magnetization can be expressed as a sum of the magnetizations of its 
individual atoms. Evidently, for the Bravais crystal, the magnetization of the 
unit cell is that of the single magnetic atom.  

On account of (3.1) and (2.27), the matrix element of the neutron 
magnetic scattering length for a crystal can be expressed as 

( ) ( )∑ −





 ⋅−=
j

ij

i

f
n

niimff e
q

m j qM
qq

kk qR

22

2

=
,b, , 

(3.2) 
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where q = kf - ki is the wave vector transfer to the neutron. Hence, the 
magnetic scattering length is determined by the appropriate matrix element 
of the Fourier-transformed magnetization density in the crystal, 

( )∑ −=
j

j

i je qMM qR
q . 

(3.3) 
The polarization-dependent pre-factor in (3.2) selects only those components 
of magnetization that are perpendicular to the wave vector transfer q, and 
parallel to the direction of the neutron spin, nNnn g S−= . If the 

neutron’s spin polarization changes during scattering, then the appropriate 
matrix element of the pre-factor between the neutron’s initial and final 
polarization states must be used; see Ref. [3] for details. Because the 
corresponding scattering length is zero, the neutron’s magnetic scattering 
cross-section is not sensitive to magnetization directed along the wave vector 
transfer, q. This fact is widely used in analyzing the polarizations of the 
magnetic densities and fluctuations measured by neutron scattering. 

To obtain the total differential scattering cross-section for the scatterer in 

a stationary state i , the cross-sections of Eq. (2.7) for all possible 

stationary final states, f , must be added. If the scattering sample is not 

initially in a stationary state (e.g., if it is in thermal equilibrium at a finite 

temperature), an appropriate statistical averaging over i  must be 

performed. Van Hove [29] proposed an elegant and general way to proceed 
with these tasks, based on employing the integral representation for the 
delta-function in Eq. (2.7). Then, the exponents that depend on the energies 
Ei and Ef of the scatterer’s initial and final states can be absorbed into the 
time-dependent (Heisenberg) magnetization operator,  

( ) ( ) ( ) ( ) i
j

j

ti

fifif

tEE
i

tete j
fi ∑ −−−

== ,qMMM qR
qq

= . 

(3.4) 

This allows the summation/averaging over f  and i  described above. 

While the cross-sections for scattering with particular polarizations of the 
incident and scattered neutrons can be derived straightforwardly from Eqs. 
(2.7) and (3.2), the corresponding expressions are lengthy and beyond our 
present scope [1,3]. Restricting our attention to scattering experiments with 
unpolarized neutron beams, we can average the expression for the squared 
magnetic scattering length over the neutron polarization. Then, the following 
general expression is obtained for the total differential cross-section of 
magnetic scattering of the unpolarized neutrons by a crystal, 
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(3.5) 
Here, q = ki - kf is the wave vector transfer to the sample (cf. Eq. (2.7); also, 
note the sign change compared to e.g., Eqs. (2.9), (3.2)). The cross-section is 
determined by the scattering function in the form of the temporal Fourier 
transform of the time-dependent pair-correlation function of the Fourier-
transformed magnetization density in the crystal,  
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(3.6) 
It is also often called the dynamical structure factor, or the dynamical 
correlation function, although the latter term, strictly speaking, is only 
correct in the absence of static order (see the discussion in the next section).  

For the magnetization carried by the atoms in the crystal the expression 
(3.6), as well as the cross-section (3.5), incorporate dependence on disorder 
and on the dynamics of the crystal lattice. It is contained in the exponent 

( )ti je
qR−

 in the lattice Fourier transform of the unit cell magnetization density 
that appears inside the matrix element, cf. Eq. (3.4). Properly treating this 
dependence allows us to describe the effects of magneto-vibrational 
scattering and other interesting magneto-structural interferences in magnetic 
neutron scattering. However, in most cases, such effects can be neglected, 
and the rigid lattice approximation adopted. The leading correction to this 
approximation is obtained simply by multiplying the rigid-lattice cross-

section by the Debye-Waller factor, e-2W(q), where ( ) ( ) 32 2quq =W  

quantifies the average squared displacement of an atom from its equilibrium 
position at a lattice site Rj. 

With the definition (3.6), then Eq. (3.5) can be rewritten in its usual, 
more compact form,  
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(3.7) 
where  
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(3.8) 
is the characteristic magnetic scattering length. With Eq. (3.7) the analysis of 
neutron magnetic scattering cross-section in a crystal is reduced to 
considering the corresponding correlation function (3.6), the quantity that 
theorists typically calculate. 
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We note that although the probability of magnetic scattering of a neutron 
by a single atom is small, its coherent interaction with a large number of 
atoms in a perfect crystal can result in a scattering probability that is not 
small. Experimentally, this means that a significant part of the incident 
neutron beam is coherently reflected out as it penetrates the sample, 
extinguishing the beam inside the sample. This process is known as primary 
extinction; the beam’s penetration depth is called the extinction length.  
Then, the first-order perturbation theory of the Born approximation is not 
applicable to describing the sample’s scattering cross-section. In practice, the 
situation is usually remedied because large crystalline samples typically 
consist of many tiny perfect crystallites that are slightly misaligned, at 
random, to each other (within the “mosaic” angular spread, ). Because 
scattering from the different crystallites is not coherent, the Born 
approximation accurately describes the crystal’s total scattering cross-section 
provided that the individual crystallites are small enough (i.e., much smaller 
than the extinction length). While primary extinction can be described by the 
dynamical theory of diffraction [5], in practice, it is almost never a concern 
in magnetic neutron scattering. With few notable exceptions (such as the 
coherent Bragg scattering in a ferromagnet), the combined magnetic cross-
section of the magnetic ions in the crystal’s unit cell typically is too small to 
give an extinction length comparable to the size of the (magnetic) crystallites 
in the sample.   

3.1 Elastic and quasi-elastic magnetic scattering 

Elastic scattering is the characteristic defining feature of a solid. Apart 
from the trivial q = 0 forward-scattering channel, it is absent in a liquid or a 
gas [1]. Elastic magnetic scattering at a wave vector q = Q exists provided 

the correlation function ( )tMM β
−

α
QQ  has a non-zero time average  

( ) ( ) ( ) 0≠=== β
−

αβ
−

αβ
−

αβ
−

α
QQQQQQQQ MMtMMtMMtMM .  

(3.9) 
The bar over M here denotes time averaging. Decoupling the correlation 
function in Eq. (3.9) is usually justified by noting that the time average over 
the large time interval ∞→∆t  can be carried out starting at any finite, 
although arbitrarily large, time t0. If t0 is larger than any characteristic 
relaxation time in the system, then MQ = M-Q* (t = 0) and M-Q(t > t0) are 
uncorrelated and can be replaced in Eq. (3.9) by their averages [1-4].  

Formally, decoupling in Eq. (3.9) is obviously permitted for the 
correlation function with the system in its non-degenerate ground state (or in 
any pure, non-degenerate quantum mechanical state). This is because the 

time-averaged operator ( )tM β
−Q  is diagonal; the non-diagonal, oscillating 
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matrix elements vanish upon time averaging. For a correlator ( )tMM β
−

α
QQ  

with the system in thermal equilibrium, straightforward quantum mechanical 
time-averaging leads to 

( ) ( ) nnnn
T

E

tMMetMM
nn

n

λλ′λ′λ= β
−

α

λ′λ

−β
−

α ∑ QQQQ
,

. 

(3.10) 
The right-hand side of Eq. (3.10) becomes a product of thermal averages, as 
in Eq. (3.9), upon assuming ergodicity, i.e., if the time-averaged operator is 
replaced with its expectation value in thermal equilibrium, 

( ) QQ MM −− =t . Note that ergodicity relies on the existence of the 

dissipative interactions which are not included in the quantum mechanical 
Hamiltonian of the pure isolated system. 

It is clear that Eq. (3.9) implies the existence of static magnetic order in 
the system. It corresponds to a non-zero expectation value of the Fourier-

component of the magnetization, ( ) 0≠== −− tQQQ MMM * , at a 

wave vector ±Q. Consequently, the static and the fluctuating parts of the 
scattering function (3.6) can be separated, 

( ) ( ) ( ) ( )ESESES MMM ,, QQQ mm
αβαβαβ +δ= , 

(3.11) 

where ( ) β
−

ααβ = QQQ MMS M . The first term here describes the elastic 

scattering resulting from the static order of magnetic moments in the system. 
The second term describes the inelastic magnetic scattering arising from 
their motion.  

Substituting ( ) *βαβ
−

ααβ == QQQQQ MMMMS M  for ( )Qαβ
MMS  in 

Eq. (3.7) we obtain the following general expression for the cross-section of 
magnetic elastic neutron scattering,  

( ) ( ) ( ) ( )
( ) ( )E

r
E

Q
r

dEd

Ed

B

m

B
m

el δ=δ
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




×=σ ⊥ 2

2

2
2

2
2

22 Q
Q M

MQQ,
. 

(3.12) 

Here MQ  is the projection of the Fourier-transformed magnetization density 
[Eqs. (3.3), (2.34)] on the plane perpendicular to the wave vector transfer, Q. 
Eq. (3.12) shows that elastic magnetic neutron scattering directly measures 
the magnitude of the system’s average inhomogeneous static magnetization.  

The elastic term in Eq. (3.11), being a delta-function in energy, usually 
dominates the scattering at zero energy transfer, i.e. ( )0,Qαβ

MM5 , in systems 
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with static magnetic order. However, it is not the only source of scattering at 

E = 0. In many cases, there is also a quasi-elastic contribution, ( )0,Qmm
αβ

5 . 

It may coexist with the elastic scattering, or may replace it, as happens in a 
critical region of the system near the phase transition to the magnetically 
ordered state. When static magnetic order is absent, or weak, the quasi-
elastic scattering is the dominant E = 0 contribution, and may even diverge 
as E ��. Such is the situation for a S = 1/2 Heisenberg antiferromagnetic 
chain, which is critical at T = 0 [33,34].  

The commonest type of quasi-elastic scattering corresponds to the 
relaxational motion of magnetization described by a simple exponential 
decay in the time evolution of the correlation function [31], 

( ) !+= τ
−αββ

−
α

t

eCtMM QQQ . 

(3.13) 
Substituting this expression into Eq. (3.6) and subsequently integrating, 
straightforwardly gives a Lorentzian contribution to the scattering function  

( ) !+
+π

= αβαβ
22

1

E

E

E
CES Qmm Q, . 

(3.14) 
It is centered at E = 0; the energy width is determined by the characteristic 
decay time of the magnetization correlation function (3.13), E = � .  

This relaxation-type time-dependence (3.13) is typical when the 
temperature is in the critical region above the transition to a magnetically 
ordered phase. It naturally arises where the motion of the real-space 
magnetization density obeys the diffusion equation, 

( ) ( ) ( ) ( )tDQt
t

tDt
t QQ MMMM 22 −=

∂
∂∇=

∂
∂

, . 

(3.15) 
The corresponding quasi-elastic scattering is often called diffuse scattering. 
Its presence at non-zero q is a characteristic feature of a classical liquid 
(there is only quasi-elastic scattering at q = 0 in a gas, while, in an 
incompressible quantum liquid, there is a spectral gap, and hence, no low-E 
scattering apart from an acoustic mode at q = 0).  

On approaching the transition temperature, Tc, to the “magnetic solid” 
phase with static magnetic order, the diffusion constant tends toward zero 
and the magnetization relaxation time diverges,  

( ) ∞→=τ→





−

−1201 DQ
T

T
D

x

c

,~ , 

(3.16) 
where the exponent x > 0. This is usually called a critical slowing down of 
magnetic fluctuations. Consequently, the quasi-elastic energy width, E = 
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� , vanishes, and the Lorentzian in Eq. (3.14) transforms into a delta-

function. The theoretical value of the critical exponent x in Eq. (3.16) must 
be calculated from the microscopic model. For example, for a three-
dimensional ferromagnet near the Curie point D obeys (3.16) with x = 1, 

while in the paramagnetic region far from Tc, ( )1+SSTD c /~  [2]. 

3.2 Dynamical correlation function and dynamical 
magnetic susceptibility 

The inelastic part of the scattering function (3.6), (3.11), is recognized as 
the dynamical correlation function of the Fourier-transformed magnetization 
density. It is defined as the correlation of its fluctuations around the 

equilibrium expectation value, ( ) ( ) qqq MMm −= tt ,  

( ) ( ) ( ) ( )EMMES
dt

tmmeES MM

Et
i

mm δ−=
π

= β
−

ααβ
∞

∞−

β
−

α−αβ ∫ qqqq qq ,,
=

=

2
. 

(3.17) 
mq(t) is the appropriate dynamical variable for describing the system’s 
response to the external magnetic field because its expectation value is zero 

when such a field is absent, ( ) 0=tqm . The thermal expectation value 

( ) qq MM =t  is time-independent, as the system’s density matrix in 

thermal equilibrium is diagonal and stationary.  
The dynamical correlation function (3.17) has two important properties 

that are derived in response theory [3,4,31]. First, is the detailed balance 
constraint that relates the energy gain and the energy loss scattering,  

( ) ( )ESeES mm
T

E

mm ,, qq αβ−αβ =− , 

(3.18) 
where T is the system’s temperature. The second is the fluctuation-
dissipation theorem that relates the scattering intensity with the imaginary 
part of the dynamical magnetic susceptibility, 

( ) ( )ωχ ′′
π

=





− αβ

αβ−
,, qq

1
1 ESe mm

T

E

. 

(3.19) 

The dynamical magnetic susceptibility, ( )ωχαβ ,q , describes the system’s 

linear response to a small, inhomogeneous magnetic field with a wave vector 
q��RVFLOODWLQJ�LQ�WLPH�ZLWK�D�IUHTXHQF\� ��H(q, ),  
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( ) ( ) ( ) ( )ωωχ≡=ω βαβ
α

∞

∞−

ωα ∫ ,, qqqq Hdttmem ti . 

(3.20) 

Its imaginary part, ( )ωχ ′′αβ ,q , determines the mean energy dissipation rate in 

the system under the action of such field [31,32].  
The relations (3.18) and (3.19) are extremely useful in analyzing neutron 

magnetic scattering. First, they establish a direct way of comparing the 
results with those of absorption measurements, such as electron spin 
resonance (ESR) that probe ( )ωχ ′′αβ ,q  directly. Second, dynamical 

susceptibility often is the quantity that arises in theoretical calculations, for 
example, in the random phase approximation (RPA) [4]. Third, dynamical 
susceptibility often can be described by a very simple physical model, e.g., a 
damped harmonic oscillator. Most importantly, dynamical susceptibility has 
several fundamental properties reflecting its analyticity and the causality 
principle, such as Kramers-Kronig relations, and the Onsager relation 
[4,31,32]. In fact, the condition of detailed balance (3.18) follows 
immediately from the fluctuation-dissipation theorem and the second of the 
causality relations below [31], 

( ) ( ) ( ) ( )ωχ ′′−=ω−χ ′′ωχ′=ω−χ′ αβαβαβαβ ,,,,, qqqq . 
(3.21) 

Furthermore, it follows from Eqs. (3.18), (3.19), that at zero temperature the 

energy-gain scattering is absent, ( ) 0=−αβ ES mm ,q , while for E > 0 the 

dynamical correlation function and the imaginary part of the dynamical 

VXVFHSWLELOLW\�FRLQFLGH�XS�WR�D�IDFWRU� �� ( ) ( )ES mm ,, qq αβ
αβ π=ωχ ′′ . 

3.3 Magnetic Bragg scattering 

Elastic Bragg scattering is a characteristic feature of a crystalline solid. It 
results from the breaking of translational invariance and the appearance of 
spatial periodicity associated with the crystal lattice. The latter is determined 
by the lattice’s primitive translations, vectors a �� � ����«��D, where D is the 
lattice dimension. Any equilibrium physical quantity in the crystal, S(r), is 
lattice-periodic, S(r + na ) = S(r) (n is an integer), and can be represented as 
a Fourier series, 

( ) ( )∫∑ ⋅−

=τ

⋅ τ

ττ

τ ==
001

1

V

Di
N

i de
V

e rrSSSrS rQ
QQ

rQ ; . 

(3.22) 
Here, the sum runs over the sites of the (dual) reciprocal lattice; the integral 
is over the volume V0 of the unit cell of the direct lattice. For a three-
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dimensional, D = 3 lattice, V0 = (a1Â>a2×a3]). N is the total number of unit 
cells, which is the same for both lattices. The reciprocal lattice is determined 

by D primitive translations, a 
 *, such that α′α

∗
α′α πδ=⋅ ,2aa . Consequently, 

the reciprocal lattice vectors, Q , which point to the sites of the reciprocal 
lattice, satisfy (Q Âa ) = 2 Q , where n  is an integer.  

Eq. (3.22) shows that any equilibrium physical property of the crystal, 
S(r), can be defined by a discrete set of its Fourier components, SQ , on the 

sites of the crystal’s reciprocal lattice, Q . In particular, this is true for the 
spatial density in the crystal of the equilibrium expectation value of the 

(microscopic) scattering length operator, ( )rb , whose integral Fourier 

transform, ( )qb , determines the cross-section for elastic scattering by 

virtue of Eqs. (2.7), (2.9). Applying Eqs. (3.22) and (2.9) to ( )rb , we 

obtain the elastic Bragg scattering cross-section for the crystal  

( ) ( ) ( ) ( ) ( )EF
V

N
dEd

Ed N
el δ−δπ=σ ∑

=τ
ττ

1

2

0

32 2
QqQ

q,
. 

(3.23) 
Here F(Q ) is the Fourier integral of the scattering length within a unit cell,  

( ) ( )∫ ⋅−
τ

τ=
0V

Di deF rrQ rQ b , 

(3.24) 
usually called the unit cell structure factor. It accounts for the effects of 
interference on scattering by a single unit cell. Note the absence of the 1/V0 
pre-factor, which is present in the second part of Eqs. (3.22). It was absorbed 
in the pre-factor before the sum in Eq. (3.23), together with the multipliers 

arising from the different normalization of the Fourier integral for ( )rb , 

Eq. (2.9), and Fourier series, Eqs. (3.22).  In obtaining Eq. (3.23) we used 
that for large N,  

( ) ( ) ( )τ
⋅−− −δπ≅δ≅

τ

τ∫ Qqr Qq
rQq VVde

V

Di 32

2

2, , 

(3.25) 
where V = NV0 is the total volume of the crystal, [8].  

In the simple and very frequent case where the unit cell scattering cross-
section is associated with a number of point scatterers (e.g., atoms, magnetic 
moments), F(Q ) is reduced to the usual, commonly cited form [1-5,47],  

( ) ( ) ( ) ∑∑
ν

⋅−
ντ

ν
νν

ντ=⇒−δ= uQQurr iebFbb . 

(3.26) 
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Here,  numbers the scatterers, and u  and b  are their position in the unit cell 
and the scattering length, respectively. In principle, we could have also 
considered directly the spatial density of the (microscopic) elastic scattering 
cross-section in the crystal. Hence, Eqs. (3.23) and (3.24) establish the 
important relationship between the Fourier-transformed scattering cross-
section of a unit cell and its Fourier-transformed scattering length, F(Q ). 

When the system’s equilibrium magnetization density possesses spatial 
periodicity, we can write, following Eq. (3.22), 

( ) ( )∫∑ ⋅−==
m

m

m

m

m

m

V

Dii

m

dee
V

rrMMMrM rQ
Q

rQ

Q
Q ;

1
. 

(3.27) 
Here Qm are the reciprocal lattice vectors for the magnetic lattice, whose unit 

cell of volume Vm contains one period of magnetic structure. 
2

QM  can be 

straightforwardly calculated from the above series expansion for ( )rM , 

and using Eq. (3.25). Substituting the result into expression (3.12), the 
following cross-section is obtained for magnetic Bragg scattering,  
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2
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12,
, 

(3.28) 
which is similar to Eq. (3.23). In fact, Eq. (3.28) also follows directly from 
(3.23) if the magnetic scattering length (2.27) is used in the expression for 
the unit cell form factor (3.24). For scattering by point-like magnetic 
moments  localized at the positions u  in the unit cell, the magnetic unit 
cell form factor is 
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
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(3.29) 

where ⊥
ν  is the component of the magnetic moment perpendicular to Q, 

and Sn is the neutron’s spin operator. In order to obtain the cross-section, 
matrix elements between the appropriate neutron spin states must be 
considered, and appropriate averaging has to be performed. 

The expressions obtained above describe magnetic Bragg scattering by 
spatially periodic magnetic structures in terms of the corresponding magnetic 
lattice and do not rely on the existence of crystalline atomic order. In 
principle, they apply to such exotic cases as magnetically ordered structural 
glasses or structurally disordered alloys, where the crystal lattice is absent 
but there is a periodic magnetic structure. Although this description is 
general, allowing the use of magnetic symmetry groups to analyze magnetic 
structures, in many cases it is not the best choice. Indeed, describing Bragg 
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scattering in terms of the magnetic lattice is natural where the magnetic unit 
cell is not significantly larger, or more complicated, than that of the 
underlying, paramagnetic crystal lattice. In fact, for materials with a complex 
crystal structure, the magnetic lattice may be even simpler and of higher 
symmetry than the crystal’s lattice. Then, using the magnetic lattice may 
actually simplify indexing of the magnetic Bragg reflections.  

On the other hand, with a simple crystal structure, the magnetic lattice’s 
period may contain a number of paramagnetic crystal unit cells. This number 
can be very large, so that the magnetic unit cell is huge and contains many 
atoms that are equivalent in the paramagnetic phase. Then, switching to the 
magnetic reciprocal lattice with correspondingly smaller unit cell clearly is 
not a satisfactory way to describe the magnetic Bragg scattering. Indeed, the 
lower translational symmetry of the magnetically ordered phase arises from 
the spontaneous symmetry breaking associated with that order, and does not 
reflect the symmetry of the underlying magnetic Hamiltonian. Furthermore, 
switching to a large magnetic unit cell compatible with the periodicity of the 
underlying crystal lattice is impossible if magnetic order is incommensurate. 
Therefore, often it is desirable to describe magnetic Bragg scattering using 
the higher translational symmetry of the crystal lattice in the paramagnetic 
phase (which determines the symmetry of the magnetic Hamiltonian).  

Magnetic ordering usually is associated with the appearance of a 
superlattice modulation of the magnetization density in a crystal with a 
single wave vector, Q. Such breaking of lattice’s translational invariance is 
most generally described by adding the appropriate irreducible 
representation of the translation group to the magnetization density [31]. In 
other words, the spatial structure associated with the magnetic order 
parameter has a modulation with wave vector Q, superimposed on a 
modulation with the period of the underlying crystal lattice, 

( ) ( ) ( ) ( ) rQrQ rmrmrmrM ⋅−∗⋅ ++= ii ee0 , 
(3.30) 

where the “Bloch amplitudes” m0(r) and m(r) are lattice-periodic vector-
functions. m0(r) describes the density of the “homogeneous” magnetization, 
which is real and the same for all unit cells in the crystal. m(r) is complex, in 
general, and describes the “staggered” part of the magnetization that is 
modulated from one unit cell to another. Since m0(r) and m(r) are lattice-
periodic, they can be expanded in the Fourier series,  

( ) ( ) ( ) ( )∫∑ ⋅−
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(3.31) 
These are similar to (3.27), but are based on the paramagnetic crystal lattice. 
Note, that the m0(r) term describes the uniformly magnetized and the 
ferromagnetic cases, where there is a non-zero homogeneous magnetization 
in the crystal. Hence, only wave vectors Q ����mod (Q ) are considered. 
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Substituting the above Fourier series for m(r) and m0(r) in Eq. (3.30), we 

obtain the following, equivalent expression for ( )rM , 

( ) ( ) ( ) ( ) ( ) ( ){ }∑
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V 0

0

1
. 

(3.32) 

Its integral Fourier transform, qM , as well as 
2

qM , are 

straightforwardly evaluated using (3.25). Substituting the result in Eq. 
(3.12), the following expression for the magnetic Bragg scattering cross-
section for a single-Q magnetic structure in the crystal is obtained,  
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(3.33) 
Here, the sum extends over the sites of the crystal’s paramagnetic reciprocal 
lattice. The intensities of the magnetic Bragg satellites are determined by the 
Fourier-series coefficients of the magnetization “Bloch amplitudes”, m0(r) 
and m(r), for the corresponding wave vectors, Q  [i.e. by the Fourier 
integrals over a single unit cell, Eq. (3.31)]. If the unit cell’s magnetization is 
carried by point magnetic moments localized at positions u , 
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(3.34) 
the magnetic Bragg intensities are determined by the usual unit cell magnetic 
form factors, commonly cited in the literature [1-4], 

( ) ( )
2

2
2

0

2

0 ∑∑
ν

⋅−⊥
ντ

⊥

ν

⋅−⊥
ντ

⊥ ντντ == uQuQ mQmmQm ii ee , . 

(3.35) 
We note that Eqs. (3.30)-(3.33) apply in the most general case of the 

magnetic ordering with a single wave vector Q. They describe equally well a 
variety of particular situations, such as a flat spiral, a longitudinal spin-
density wave, a helimagnet, an antiferromagnet [e.g., for Q = ( , , )], and a 
ferromagnet [for m(r) ��]. Finally, the fundamental reason for the practical 
importance of single-Q modulated structures is that only such states arise in 
a single second-order phase transition. A single Q corresponds to a unique 
magnetic order parameter associated with spontaneous breaking of the 
magnetic symmetry [31]. 
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3.4 Scattering from short-range nanoscale correlations 

In many important cases, the crystal’s magnetic phase has only short-
range order. Specifically, the crystal possesses static magnetic density (at 
least on the time scale probed by neutron scattering), but long-range, 
macroscopic coherence of the magnetic superstructure is lacking. In the 
absence of macroscopic spatial coherence, a non-trivial representation of the 
translation group (such as that with wave vector Q in Eq. (3.30)) does not 
appear in the crystal’s equilibrium magnetization density. Consequently, 
elastic magnetic scattering does not have the form of Bragg peaks as in Eq. 
(3.33), but rather, is diffuse and broad.  

In practice, such situations are usually described by replacing the delta-
functions in the Bragg cross-section (3.33) with normalized Lorentzians, 

( ) ( ) ( )21

1

ξ+
ξ

π
≡→δ ξ

q
qLq , 

(3.36) 
where  is the correlation length. In one dimension, this is expected on the 
basis of general physical arguments, such as the analogy with the response 
function of the harmonic oscillator with damping. However, for several 
reasons, such an ad hoc approach is not completely satisfactory. Firstly, the 
Lorentzians (3.36) are not periodic in the crystal’s reciprocal lattice. 
Therefore, apart from the limit of vanishing width, they do not correspond to 
the crystal’s real physical quantities. Nor do m ( Q ), which have a physical 
meaning only when they weight delta-functions in Eq. (3.33). More 
fundamentally, for systems in more than one dimension it is not obvious 
whether a delta-function should be replaced with the product of Lorentzians, 
as follows 
( ) ( ) ( ) ( ) ( ) ( ) ( )zyxzyx qLqLqLqqq

zyx ξξξ→δδδ=δ q , 

(3.37) 
or with a single, “multi-dimensional” Lorentzian,  

( ) ( ) ( ) ( ) ( )2222 11 zzyyxx qqq
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q , 

(3.38)  
where C is a constant, and � � x�� y�� z are the correlation lengths.  

Eq. (3.38) can be derived in the Ornstein-Zernike-type theory that 
describes critical scattering at small wave vectors q in ferro- and antiferro-
magnets above the ordering temperature [2,3]. While the expression is also 
commonly employed to describe scattering in the presence of short-range 
static magnetic order, this use has an important inconsistency. The scattering 
function of Eq. (3.38) cannot be normalized in more than one dimension: the 
corresponding integral on the right-hand side of Eq. (3.38) diverges. This 
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problem does not occur if the 2D or 3D Lorentzian expression is truncated to 
within the region of validity of the Orstein-Zernike theory, (T ) << 1, and set 
to zero outside it. However, this restricts the applicability of Eq. (3.38) to the 
immediate vicinity of the peak position, and essentially negates its 
practicality. In this region, the multi-dimensional Lorentzian of Eq. (3.38) 
does not differ from the “factorized Lorentzian” of Eq. (3.37), whereupon 
multiplying the denominators of the 1D Lorentzians the terms of the fourth 
and higher orders in (q ) can be neglected in the Orstein-Zernike 
approximation.  

(a)

0

0.2

0.4

0.6

0.8

1(b)

qx qx

q y

 
Figure 3-1. Two-dimensional contour maps of the intensity described by (a) a “2D 
Lorentzian”, as in Eq. (3.38), and (b) a product of two 1D Lorentzians, as in Eq. (3.37). 

Two-dimensional intensity distributions described by Eqs. (3.38) and 
(3.37) with x�  � y are illustrated in panels (a) and (b) of the Figure 3-1, 
respectively. The difference between them arises for wave vectors 
sufficiently far away from the peak position. The Ornstein-Zernike-like 
“multidimensional Lorentzian” retains full rotational symmetry even outside 
the long-wavelength region where it is rigorously expected. The symmetry 
of the “factorized Lorentzian” is lower. As we discuss below, it corresponds 
to the point symmetry of the order-destroying defects in the crystal lattice. 

The scattering cross-section in the form of the product of 1D Lorentzians 
naturally arises in the problem of structural disorder introduced by antiphase 
domains in binary alloys, e.g., in Cu3Au [35]. It is free from the 
normalization problem, as both sides of Eq. (3.37) are rigorously normalized 
to 1 in any dimension. It is also straightforward to extend the derivation of 
Ref. [35] to the antiphase disclinations in the antiferromagnet, introduced by 
dislocations in the crystal lattice [36]. Furthermore, the factorized-
Lorentzian cross-section describes a broad class of problems where disorder 
arises from independent linear phase slips that occur along different 
crystallographic directions. Below we show, under rather general 
assumptions, how the corresponding correlation function can be derived for 
a short-range correlated magnetic structure. 

Consider the situation where the static magnetic structure exists locally 
(on the nanoscale), but macroscopically, the average translational symmetry 
of the crystal remains unbroken. We thus envision long-range coherence is 
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destroyed by independent linear topological defects, such as disclinations, 
domain or grain boundaries, along the principal crystallographic directions. 
Note, that the effective “disorder potential” describing these defects only has 
the rotational symmetry of the point group of the crystal lattice. It results in a 
glass-like, short-range correlated magnetic structure that can be anisotropic, 
with different correlation ranges along different crystallographic directions. 

Where the magnetic correlations are between localized magnetic 
moments, it is more appropriate to express the magnetization in terms of 
“Wannier functions” describing the magnetization density of a crystal’s unit 
cell, rather than in terms of “Bloch waves”, as in Eq.  (3.30). In the presence 
of the long-range magnetic order, magnetization is written as a lattice sum, 
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(3.39) 
Using Mq from Eq.  (3.3), the magnetic elastic scattering cross-section of Eq. 
(3.12) can be recast in terms of the crystal-averaged correlation of the 
Fourier-transformed, equilibrium magnetization densities of the unit cell,  
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(3.40) 
Here, N is the number of unit cells in the crystal, and 
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(3.41) 
denotes the crystal-averaged product.  

The existence of a system of magnetic disclinations in the crystal 
generates an additional random phase difference between the unit cell 
magnetizations in Eq. (3.41), which is not included in (3.39). This can be 
generally described by replacing 

( ) ( ) ( ) ( )qMqMqMqM ⊥⊥ϕ−⊥⊥ −→− j

i

j
je 00 , 

(3.42) 

while still using Eq. (3.39) for ( )qM j . The averaging of the phase 

multiplier can be decoupled in view of its randomness. Then, assuming that 
system self-averages, the average over the sample’s volume can be replaced 
with the Gaussian statistical average, i.e., using the Bloch identity,  
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1
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(3.43) 
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Here 2
jϕ  is the mean-square phase deviation between two unit cells at a 

distance Rj on the lattice, introduced by the disorder-generating defects.  
Finally, we assume that this random phase-difference is described by 

independent random walks along the principal crystallographic directions 
(labeled by ). Consequently, we write 
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(3.44) 
where nj  label positions of the lattice sites in lattice units, Rj = �  nj a , and 
D  are the phase “diffusion coefficients”. This is certainly an appropriate 
approach for modeling the independent linear disclinations considered here, 
which are a natural generalization of the “antiphase domains” picture 
described in Ref. [35]. The random phase disorder (3.42) causes an 
exponential decay of magnetic correlations. The correlation function (3.41), 
(3.42) is factorized into a product of decaying harmonic modulations along 
the principal lattice directions. The correlation lengths in dimensionless 
lattice units (lu) are  = 2D -1. 

Substituting Eqs. (3.41)-(3.44) and (3.39) into (3.40) and summing over 
the crystal lattice, the following expression is obtained for the elastic 
scattering cross-section in the presence of such short-range magnetic order, 
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(3.45) 
The elastic scattering cross-section is described by the product of the 
independent lattice-Lorentzian functions,  

( ) ( )α
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−
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sinh~

1

1

qL , 

(3.46) 

along the principal crystallographic directions. Function ( )αξα
qL

~
 has peaks 

for q  = Q , whose half width at half maximum is ~(a )-1. For large  it is 
approximated by a set of Lorentzians (3.36) centered at q  = Q , and 
transforms into a set of delta-functions for  ��. For  >> 1 lu the 
scattering cross-section (3.45) adopts the form implied by Eq. (3.37). Note 
that the lattice-Lorentzians (3.46) are co-periodic with the reciprocal lattice. 
Hence, Eq. (3.45) lacks the summation over the reciprocal lattice sites Q . 
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3.5 Spin scattering and spin correlation function  

If the magnetization density in the crystal is carried by the localized 
electrons of the magnetic ions, the magnetic scattering cross-section can be 
expressed in terms of the lattice correlation between the atomic spin and 
orbital variables using the results of Section 2.3. In the commonest case, the 
magnetization of an atom is described by an effective spin, Eqs. (2.46)-
(2.48). Substituting Eq. (2.47) into Eq. (3.5) we obtain the following 
expression for the magnetic scattering cross-section, 
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(3.47) 
Here j either labels the lattice sites where, in this case gj, Fj(q) and Sj  denote 
the corresponding effective values for the unit cell, or labels the magnetic 
atoms to which gj, Fj(q) and Sj  refer.  

For a system of identical magnetic atoms Eq. (3.47) becomes 
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(3.48) 

( )ES ,qαβ  denotes the Fourier transform of the two-point spin correlation 

function and is usually called the dynamical spin structure factor, 
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(3.49) 
It is also known as the dynamical spin correlation function, or the Van Hove 
scattering function [4]. As emphasized at the beginning of this section, Eqs. 
(3.47) and (3.48) refer to the ideal rigid lattice, and do not account for the 
lattice’s thermal vibrations or the structural disorder. These effects can be 
roughly accounted for by multiplying the magnetic cross-section of Eqs. 
(3.47) and (3.48) with the Debye-Waller factor, e-2W(q). 

( )ES ,qαβ  is a fundamental characteristic of the dynamical properties of 

the spin system. It satisfies the detailed balance constraint (3.18) and is 
related to the dynamical spin susceptibility by the fluctuation-dissipation 

theorem, given by Eq. (3.19). In many cases, a single ( )ES ,qαβ  can also 

describe the spin dynamics of a system with non-equivalent magnetic atoms, 
where the magnetic form-factor Fj(q) and the g-factor gj are site-dependent. 
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Indeed, for the Bravais lattice populated by atoms with different Fj(q) and gj, 
we can usually write 
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(3.50) 
where the wave vector(s) Qf define the superlattice(s) of equivalent magnetic 
sites. Hence, the magnetic scattering cross-section is determined by the 
linear combination of the dynamic structure factors for wave vector q and 
wave vectors q ± Qf. It is defined by the same Eq. (3.48), in which the 

scattering function ( )ES ,qαβ  is replaced by   
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(3.51) 
This situation, in particular, is pertinent to materials with orbital ordering, 
such as the pseudocubic perovskites, LaMnO3 and KCuF3 [37]. A similar 
approach can be applied to complex spin systems consisting of several non-
equivalent simpler subsystems, such as spin chains [38].  

3.6 Sum rules for the dynamic spin structure factor 

The definition (3.49) of the dynamic spin structure factor generates the 

exact relations for its frequency moments, ( ) ( ) ( )ωωω∫
∞

∞−

αβ
=== dSn ,q . For 

zero and first moments, n = 0, 1, these relations are known as sum rules [39]. 

The n = 0 moment simply defines the static structure factor ( )qαβS , which 

is given by the space Fourier transform of the equal-time pair correlation 
function, 
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(3.52) 

Here ∑ α⋅−α =
j j

i
SeS jRq

q  is the lattice Fourier transform of the lattice spin 

operators. Integrating the above expression over the Brillouin zone and 
taking the trace over the spin indices , , yields an important sum rule  
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For a system of identical spins S the right-hand side of (3.53) is simply the 

square of the spin operator, ( ) ( )122 +==∑α
α SSS jj S . Consequently, 

the sum rule for the integral spectral weight of ( )ωαβ
=,qS  reads 
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(3.54) 
A general expression for the n-th moment of the dynamic structure factor 

(3.49) is obtained from the standard expression for the Fourier transform of 
the n-th time derivative of the two-point correlation function,  
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(3.55) 
Interchanging the sides and integrating both sides in d( ) we obtain 
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(3.56) 
because the integral in  on the right-hand side gives the delta-function in 
time, and therefore, both  and t can be integrated out.  

Using equation of motion for Heisenberg operators and introducing the 
system’s Hamiltonian, H, the time derivatives in Eq. (3.56) can be replaced 
by the appropriate commutators. Consequently, in the simplest case, n = 1, 
the following expression for the first moment sum rule is obtained [39],  
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(3.57) 
Eqs. (3.56), (3.57) are quite general, but, practically, are not very useful. 
Indeed, for a nonlinear (e.g., quadratic) Hamiltonian even the first moment is 
expressed through an expectation value of a three-operator product.  

A useful simplification of the diagonal, �  �  part of Eq. (3.57) was 
suggested in Ref. [39]. Firstly, the Hamiltonian in the statistical average on 
the right-hand side can be moved from the right to the left of the three-
operator product. Then, it can be recast in the following, equivalent form  
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(3.58) 
Secondly, for a centro-symmetric lattice, invariant with respect to the 
inversion, Rj �-Rj, the Fourier transform of the spin operators is even in q, 
Sq  = S-q . Hence, we can symmetrize the right-hand side of Eq. (3.58) and 
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obtain a usual, simple expression for the first-moment sum rule with the 
double commutator on the right [39], 
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(3.59) 
We note that there is no implied summation over the repeating index, , 

that, if needed, would be written out explicitly. The commutators are often 
easily evaluated, giving extremely useful expressions for the first moment of 
the dynamical structure factor. In the single-mode approximation, these 
expressions define the q-dependent static spin structure factor of the system. 

3.6.1 Static structure factor and spectrum averaged energy 

It is often useful to split the dynamic structure factor (3.49) into a product 
of static structure factor (3.52), and a normalized spectral function fq ( ), 
which, in general, is polarization- and wave-vector-dependent,  
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(3.60) 
The normalization condition on fq ( ) follows from the total spectral weight 
sum rule (3.54). Perhaps the commonest choice of the spectral function is a 
Lorentzian of Eq. (3.36),  ( )qq

ω−ωΓ ==L , with a q-dependent width q, and 

centered at some energy q, which describes the dispersion of an 
excitation. To describe the asymmetric line shapes characteristic of the 
excitation continua it is often convenient to use a “half-Lorentzian” spectral 
function, i.e., a Lorentzian, truncated on one side of the peak [40,53]. 

The energy, averaged over the fluctuation spectrum, is defined by 
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(3.61) 
where the last equality follows from the normalization condition (3.60). 

Then, according to the average value theorem, 
αβω
q

=  is some energy from 

within the support of the spectral function (in fact, from the range where it is 
defined and, in addition, takes the non-zero values).  

In view of the definition (3.61), the sum rule (3.59) leads to a simple and 
very useful expression for the static structure factor,  
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Consequently, the dynamical structure factor can be expressed as 

( ) [ ][ ] ( )
αα

αα
α
−

ααα

ω

ω
−=ω

q

q
qqq

=
=

f
SS

N
S H,,,

2

1
. 

(3.63) 
This is valid for an arbitrary, not necessarily normalized, spectral function 
fq  ( ), because the ratio of the spectral function and the spectrum averaged 

energy, 
ααω
q

= , is independent of the normalization. 

The single mode approximation (SMA) simply consists in identifying the 
spectrum-averaged frequency with an eigenfrequency of a single excitation 

at the corresponding wave vector q, ( )q
q

ω≅ω αα
== . It is justified when a 

spectral function takes the form of a sharp peak whose width is small 

compared to its position, which is approximately given by 
ααω
q

= . Then, 

Eq. (3.63) directly relates the q-dependent intensity of the peak with its 
dispersion, and with the expectation value of the product of the Fourier-
transformed spin operators whose q-dependence is known. For a spectral 
function with a single, infinitely narrow delta-function peak, SMA is exact. 

3.6.2 First moment sum rule for Heisenberg spin Hamiltonian with 
anisotropy and magnetic field 

It is useful to apply the sum rules (3.58)-(3.63) to a typical spin system 
with a Hamiltonian H consisting of a Heisenberg exchange coupling, HE, a 
quadratic single-ion anisotropy energy, HA, and a Zeeman energy in the 
magnetic field, HZ, 
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Here Jjj  is the exchange coupling between the sites j and j , D  and g  ( � �[��
y, z) are the axial anisotropy constants and the g-factors for the three 
directions. To calculate the commutators in (3.58)-(3.63) we rewrite the 
above Hamiltonian in terms of the Fourier transformed spin operators Sq , 
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Jq being the lattice Fourier transform of exchange interaction. 

We also rewrite the spin commutation relations in Fourier components, 
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(3.66) 

The different contributions to the double commutator in Eq. (3.59) are easily 
evaluated, resulting in the following expression for the first-moment sum 
rule for the Hamiltonian (3.64) in q-representation, 
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(3.67) 
where D = �  D  = Dx + Dy + Dx. We see, that the first moment of the 
dynamical structure factor is determined by the expectation value of the 
equal-time two-point spin correlation and, for the non-zero magnetic field H, 
by the uniform static spin polarization. 

It is useful to rewrite Eq. (3.67) in terms of the original, lattice spin 
operators Sj . Performing the inverse Fourier transformation we obtain,  
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(3.68) 
This expression relates the first moment of the dynamical structure factor 
with the equilibrium expectation values of the contributions to the exchange 

bond energies, β
′

β
′ jjjj SSJ , the single-site anisotropy energy, ( )2β

β jSD , 

and the Zeeman energy, β
ββµ jB SHg .  

For the Heisenberg Hamiltonian with only nearest-neighbor exchange the 
coupling Jjj  is the following sum, 

( )∑ −δ= ′′
n

njjnjj JJ aR . 

(3.69) 
Here an are the vectors connecting the site j to its nearest neighbors, which 
are numbered by n, and Jn are the corresponding coupling constants. Then, 
the first-moment sum rule adopts a very simple form [39],  
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(3.70) 

where β
+

β
njj

SS aRR  denotes the site-independent lattice average. The 

situation is further simplified when there are only one or two different 
coupling constants, as often found in one- or two-dimensional systems [40].  

4. MEASURING ELASTIC AND QUASI-ELASTIC 
MAGNETIC SCATTERING IN EXPERIMENT 

In a growing number of important cases, static magnetic order in 
materials of fundamental interest to modern condensed matter physics and 
its technological applications is not long-range, but has short-range, 
nanoscale correlations, as were described in the previous section. Such is the 
well-known case of the magnetic “stripe” order in the doped cuprates [41], 
nickelates [42,43], and in many other doped oxides [44,45]. It also occurs in 
the frustrated spin systems, where high ground-state degeneracy is 
responsible for the short-range correlated, often anisotropic, spin-ordered 
state [46]. A half-doped perovskite oxide La1.5Sr0.5CoO4 represents a 
beautiful generic example of such an anisotropic (2D) glassy magnetic state, 
which was extensively characterized by magnetic neutron scattering [45]. 

4.1.1 Short-range magnetic order in La1.5Sr0.5CoO4  

Magnetic properties of the doped, strongly correlated transition metal 
oxides, such as superconducting cuprates, magneto-resistive manganites, and 
others, are at the focus of the modern condensed matter research. The 
interplay of charge, spin and/or orbital degrees of freedom in these systems 
generates non-trivial ground states and many fascinating physical properties, 
such as a magnetic-field-driven metal-insulator transition. Frequently, the 
magnetic ordering observed in the charge-ordered phases of these materials 
has short-range, nanoscale correlations of the type discussed in section 3.4. 
Here we describe the neutron scattering study of the magnetic ordering in the 
half-doped cobaltate, La1.5Sr0.5CoO4. It is one of a series of the half-doped 
layered perovskite oxides, also including La0.5Sr1.5MnO4 and La1.5Sr0.5NiO4, 
which recently were  studied to gain insight into the physics of the colossal-
magneto-resistive manganites [44] (the strongest response to the magnetic 
field there occurs at half-doping).  

The crystal structure of La1.5Sr0.5CoO4 is very simple. Like the other half-
doped layered perovskites discussed, it remains at all temperatures in the 
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tetragonal phase with space group I4/mmm and has the low-T lattice 
parameters a = 3.83Å, and c = 12.5Å. This is the famous “HTT” (high-
temperature tetragonal) structure of the high-Tc parent cuprate, La2CuO4. At 
half-doping, there is a natural tendency towards a checkerboard 
charge/valence order in each CoO2 square-plaquet layer in this structure. 
While in the manganite and the nickelate such charge order (CO) is 
intimately coupled with the magnetic degrees of freedom, in the cobaltate it 
is a robust structural feature independent of them [45]. Even though the CO 
in La1.5Sr0.5CoO4 is very short-range (the in-plane correlation length is ab § 
23Å, the inter-plane correlation is only between the nearest planes, c § 8Å), 
it occurs at a strikingly high temperature, Tco § 825 K, and shows no 
anomaly at a temperature of the magnetic spin order, Tso § 30 K.  

 

Figure 4-1. (a) Checkerboard Co2+/Co3+ valence order in La1.5Sr0.5CoO4 and schematics of the 
resulting magnetic subsystem; only Co2+ effectively carries spin at low temperatures. (b) 
Schematic depiction of the short-range-correlated, “damped spiral” magnetic structure for 
La1.5Sr0.5CoO4. Black arrows illustrate the average spins at the consecutive, n=1,2,3,…, sites 
of the Co2+ sub-lattice in the diagonal direction, parallel to the spin structure propagation 
vector Q�  � � � ���. Gray arrows show the average spins that would be expected on the 
respective Co3+ sites in such a single-Q structure. 

The magnetic properties of La1.5Sr0.5CoO4 are essentially determined by 
the checkerboard order of the Co2+/Co3+ valence. The electronic 
configuration of the Co2+ ion is 3d7 and, although there is a significant 
crystal-field splitting of the eg and t2g levels, the total spin of its electrons 
adds up to S=3/2, in accordance with the Hund’s rule. The situation differs 
for the 3d6 Co3+ ion, where there is a close competition between the Hund’s 
energy and the crystal field. As a result, Co3+ ions in La1.5Sr0.5CoO4 are in the 
S=1, “intermediate spin” (IS) state. At low temperatures, they are quenched 
to a Sz = 0 singlet state by a strong single-ion spin anisotropy arising from 
the crystal field, and do not participate in magnetic ordering [45]. 
Nevertheless, Co3+ sites are essential in defining the magnetic properties of 
La1.5Sr0.5CoO4. They bridge the magnetic Co2+ ions, creating a peculiar 
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pattern of exchange couplings on the Co2+ square sub-lattice, illustrated in 
Figure 4-1 (a). A simple counting of the exchange pathways suggests that, in 
addition to the nearest-neighbor coupling along the side, J1, there is a 
frustrating diagonal coupling J2, such that J1/J2 §��. 

Figure 4-2. Elastic magnetic neutron scattering in La1.5Sr0.5CoO4 for wave vector transfers in 
the (hhl) plane. Points are the intensities measured on BT2 spectrometer at NIST with m §�0.5 
g sample at T §�10 K; the error bars are smaller than the symbol size and are not visible. Solid 
lines with gray shading are the fits to the “lattice Lorentzian” cross-section discussed in text. 
The grey-scale map on the top represents the corresponding calculated magnetic intensity. 

This peculiar, frustrated coupling geometry is the most probable cause 
for the short-range and incommensurate nature of the magnetic ordering 
occurring below Tso § 30 K. Figure 4-2 shows the patterns of the intensity of 
neutron elastic magnetic scattering measured well below the magnetic 
ordering temperature, at T § 10 K, for the wave vector transfers in the ab 
plane and perpendicular to that plane. The data were collected on BT2 
thermal neutron triple axis spectrometer at NIST Center for Neutron 
Research [45]. A fixed energy for the incident and the scattered neutrons, Ei 
= Ef = 14.7 meV, was selected by using (002) Bragg reflection from the 
pyrolytic graphite (PG). Unwanted neutrons from the higher-order, (004) and 
(006) reflections, were filtered out of the beam using several inches of a PG 
with rather broad mosaics. The sample was mounted in a closed-cycle 
refrigerator with the (h,h,l) reciprocal lattice plane horizontal. The horizontal 
angular divergences of the incident and the scattered neutron beams were 60 �
- 20 � - 20 � - 100 � IRU� WKH� �� FU\VWDOV� LQ� WKH� VHWXS� �3*-sample-PG). Beam 
collimations around the sample were defined by Soller collimators (multi-
channel transmission devices with neutron-absorbing cadmium coating on 
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the channel’s horizontal walls); the corresponding apertures controlled the 
other two.  

The magnetic peaks are observed at Q = ( , ,1) + , where  §������, l is 
an odd-integer, and  is a crystal reciprocal lattice vector. The peaks have 
finite width indicating a finite correlation length, and are much broader in 
the direction perpendicular to the ab plane than in the plane. This fact 
reflects a quasi-two-dimensional nature of the magnetic order, where the 
correlations in the ab planes are significantly better developed than between 
them. The magnetic intensity arises on cooling below Tso § 30 K; this is 
discussed in more detail in the next section. Clearly, there is non-zero 
magnetic intensity for all values of l in the Q = (0.258,0.258,l) scan. It is 
much larger than the background arising from neutrons scattered off the air, 
the cryostat, and other elements of the spectrometer setup, seen in the h-scan. 
This magnetic intensity is inherent to the short-range order, and is accurately 
described by the “lattice Lorentzian” cross-section of Eq. (3.45).  

Solid curves with gray shading in Figure 4-2 show the best fit of all data 
to the cross-section (3.45), where the localized spin model with the magnetic 
form factor appropriate for the cobalt ions was used [45]. The strong, sharp 
peaks (not shaded) arising from the scattering from the polycrystalline 
aluminum of the sample holder and the cryostat were also included in the fit. 
The in-plane and the inter-plane correlation lengths were refined to be ab §�
79Å and c §���Å, respectively. The “lattice-Lorentzian” cross-section (3.45) 
provides a perfect description of the short-range magnetic order in 
La1.5Sr0.5CoO4, which is illustrated in Figure 4-1 (b). 

4.1.2 Temperature dependence of quasi-elastic magnetic 
fluctuations 

The practical limit on the smallest intrinsic width E of the quasi-elastic 
peak (and, correspondingly, on the longest relaxation time of magnetic 
correlations) that neutron scattering can measure is imposed by the neutron 
spectrometer’s energy resolution. Several specialized techniques were 
developed for such studies, based on the time-of-flight- and neutron 
backscattering- methods. The elastic energy resolution of the corresponding 
instruments can be as small as, or less than, E § 1� H9, that measures 
relaxation times up to about � a 1 ns. Neutron spin-echo spectroscopy 
extends this limit up to 0.1 ms [47]. However, formidable energy resolution 
is usually achieved by restricting the numbers of incident and scattered 
neutrons that the spectrometer uses, and, consequently, proportionally lowers 
sensitivity. Therefore, these high-resolution techniques are mainly used for 
measuring spatially incoherent quasi-elastic scattering, so that the intensity 
obtained at different scattering angles can be combined. 

Significant improvements can be made in the accuracy with which E and 
 can be determined without a loss of sensitivity if the phase space structure 
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of the instrument’s resolution function is known in great detail. Then, a 
highly precise determination of the parameters of the scattering cross-
section, e.g., of Eq. (3.14), can be achieved by fitting the experimental data 
with an intensity obtained from this cross-section upon appropriately 
accounting for the resolution effects. Consequently, the smallest quasi-
elastic energy width that can be measured experimentally is determined not 
by the instrument’s elastic energy resolution E, but by the accuracy with 
which spectrometer resolution function is known. We caution, though, that 
high precision in determining the parameters of a model cross-section does 
not imply the same precision in distinguishing between the model cross-
sections. Indeed, upon convolution with a typically Gaussian resolution 
function, the information on the intrinsic fine structure of the cross-section 
on the scale < E is lost. With the finite error bars on the data, it may not be 
possible to distinguish whether the broadening of the quasi-elastic peak 
results from the intrinsic Lorentzian width E, or from its splitting into the 
inelastic features. The only way to obtain this information would be to 
tighten the energy resolution. 

Γ
E  (m

eV
)

ξ
ab  (lu)

(b)

(c)

 

Figure 4-3. Quasi-elastic neutron magnetic scattering in La1.5Sr0.5CoO4 for temperatures at 
and above the spin-freezing transition to the spin-ordered phase, Tso §�30 K [45]. The wave 
vector is Q = (0.258,0.258,3), measured in reciprocal units of the I4/mmm crystal lattice. (a) 
E-scans through the peak at three temperatures; the non-magnetic, incoherent elastic 
background (not subtracted) accounts for a small peak which is shown in gray. (b) the 
temperature dependence of the intrinsic Lorentzian energy width (FWHM), and (c) the in-
plane spin correlation length. Curves in (b), (c) are guides for the eye. 

An outstanding case where the instrument’s resolution function can be 
precisely accounted for is that of a triple axis neutron spectrometer [47]. This 
instrument, whose invention was honored by the Nobel Prize, is a workhorse 
of neutron spectroscopy, and is often used to study elastic and quasi-elastic 
magnetic scattering. A very accurate description of its resolution function 
was developed over the years [47-51]. It adopts a Gaussian approximation 
for describing the transmission of the instrument’s individual components. 
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Since the resulting errors are uncorrelated, the accuracy of the 
spectrometer’s Gaussian resolution function follows from the central limit 
theorem, and relies on a large number, ~10, of these components. Here we 
give an example where an accurate account of the spectrometer’s resolution 
allows measuring the quasi-elastic energy width as small as E ������ E.  

Figure 4-3 illustrates the evolution of quasi-elastic magnetic neutron 
scattering on approaching the transition to the phase with static magnetic 
order in the strongly correlated, doped layered perovskite oxide 
La1.5Sr0.5CoO4 [43]. The energy scans through the peak of the 
incommensurate magnetic scattering at wave vector Q = (0.258,0.258,3), in 
reciprocal lattice units of the I4/mmm crystal lattice, are shown in panel (a). 
The measurements were made with a SPINS triple axis neutron spectrometer 
at NIST Center for Neutron Research. With the energy of the scattered 
neutrons fixed at Ef = 3.7 meV, the incoherent elastic energy resolution of 
the experiment was E = 0.16(1) meV. This determines the full width at half 
maximum (FWHM) of the non-magnetic Gaussian peak arising from the 
incoherent elastic scattering that contaminates the intensities in Figure 4-3 
(a). This peak (shown in gray) was measured at 100 K and added to the 
calculated resolution-corrected magnetic scattering intensity to obtain the 
solid lines shown in this figure. 

At temperatures above Tso § 30 K, the magnetic scattering is very well 
described by a Lorentzian centered at E = 0, whose width increases with 
rising temperature. The correction for resolution is extremely important for 
accurately analyzing the experimental data, as the Lorentzian intrinsic 
energy width E, Figure 4-3 (b), is comparable with, or smaller than, the 
energy resolution, E. For temperatures 30 K, 36 K, and 40 K, shown in 
Figure 4-3 (a), E is 0.007 meV, 0.019 meV, and 0.035 meV, respectively. 
In fact, to accurately refine such small intrinsic energy widths it is important 
to follow the change in the peak q-width, which reflects the concomitant 
decrease of the magnetic correlation length with increasing T, and to account 
for it in the procedure for resolution correction. It is also important that the 
resolution function is very accurately known, as it is for a triple axis 
spectrometer [51]. The solid curves in Figure 4-3, (a) were obtained from 
the global fit of the energy scans given in the figure, and the q-scans 
measured in the same experiment, to the resolution-corrected scattering 
function in the form of a product of (3.14) and a lattice-Lorentzians 
describing the short-range spatial correlations. We discussed the latter in the 
previous section. Consequently, the in-plane spin correlation length, ab, was 
also refined, and is shown in Figure 4-3 (c). At temperatures of 30 K, 36 K, 
and 40 K [cf. Figure 4-3 (a)], ab is 12.4, 10.5, and 9.8 (diagonal) lattice units 
(lu), respectively. Unlike relaxation time, this length changes only a little, 
and saturates below §����.�DW�������OX�� 

At Tso § 30 K, the intrinsic energy width refined from the fit is smaller 
than the uncertainty of the energy resolution. In fact, by following the T-
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dependence of E in Figure 4-3 (b), this temperature was identified as the 
critical temperature of the transition to the state with the static spin order 
[45]. In this reference, E was determined following the same procedure as 
here, but from measurements on the thermal neutron spectrometer that has 
about an order-of-magnitude broader energy resolution, E. In the region 
where they overlap, both the present measurement and that of Ref. [45] yield 
similar values for the refined quasi-elastic FWHM, E, even though it is 
significantly smaller than the energy resolution of the thermal neutron 
measurement in this region. This finding strongly supports our confidence in 
the resolution correction procedure, which can be used to refine the intrinsic 
quasi-elastic energy widths as small as one tenth of the FWHM of the 
instrument’s incoherent elastic energy resolution.  

5. MODERN TECHNIQUES IN THE TRIPLE AXIS 
NEUTRON SPECTROSCOPY 

In a conventional triple axis spectrometer, consisting of a single crystal-
analyzer and a single detector, the scattering cross-section can be measured 
only at a single combination of energy and momentum transfer at a time. 
This limits the instrument’s rate of data collection. The combination of a 
Position-Sensitive Detector (PSD) and/or a multiple-crystal analyzer affords 
several possibilities for increasing this rate by allowing us to simultaneously 
probe scattering events at different energy and momentum transfers, or to 
integrate the energy/momentum transfer over the range of interest.  

5.1 Inelastic neutron scattering setups with horizontally 
focusing analyzer 

In what is now a standard technique for increasing the throughput of a 
triple axis neutron spectrometer, the analyzer crystal is segmented, and the 
individual segments (analyzer blades) are aligned to geometrically focus the 
neutron beam emanating from the sample on the detector, Figure 5-1. The 
idea is to use a larger reflecting area of the crystal-analyzer for the 
measurement.  

By appropriately choosing the rotation angle of the analyzer as a whole 
(the angles for the individual segments are then determined from the Bragg 
condition), a good energy resolution can be maintained, while the wave 
vector, Q-resolution can be significantly relaxed along a particular direction 
in Q-space [monochromatic focusing, Figure 5-1 (b)]. Then, the volume of 
the sample reciprocal space probed by the analyzer-detector system is 
stretched along that direction, and the rate of data collection is increased 
correspondingly. This approach is very efficient for samples where the 
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dependence on the wave vector transfer along some direction(s) is weak, or 
absent. Such situation is typical of low-dimensional systems and systems 
with short-range correlations, such as spin glasses, and frustrated magnets.  
In practice, about a four-fold increase in the measured intensity is routinely 
achieved in such cases. 

 

Figure 5-1. Schematics of the two horizontally focusing multi-crystal analyzer setups. (a) The 
polychromatic (in general), real-space geometric focusing by the cylindrically curved multi-
crystal device. (b) The monochromatic “Rowland” focusing by the analyzer with 
independently aligned individual crystals. The dashed lines show the Rowland circle and a 
tangent to it at the analyzer position. 

A typical design of the multi-crystal analyzer has several individually 
rotating, thin, 10- to 20 mm-wide aluminum alloy blades mounted along a 
single line on a rotating platform, and with co-aligned analyzer crystals 
attached to them. The blades are then aligned with respect to the common 
rotation axis of the platform as required by the experimental setup, e.g., 
parallel to the circumference of a cylinder of a given radius, Figure 5-1 (a), 
thus approximating a cylindrically curved mirror.  

Analyzers with a simple cylindrical focusing are currently the most 
common.  In such a “GMI”-type device, a single motor that controls the 
curvature drives the rotations of all analyzer blades. The curvature radius, 
RA, is defined by the distances from the analyzer’s axis to the sample, LSA, 
and to the detector, LAD, and the analyzer’s Bragg angle A (i.e., the selected 
neutron energy), according to  

ADSAAA LLR

112 +=
θsin

. 

(5.1) 
This simply is a condition for a geometrical focusing of the paraxial incident 
beam emanating from the point sample by a cylindrical mirror with the 
symmetry axis at an angle A to that beam (i.e., with the device’s symmetry 
point aligned for the selected Bragg reflection). It is important to realize, 
that, except for a symmetric setup where LSA = LAD, the reflection angle 
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changes along the surface of a cylindrically curved analyzer. Hence, in 
general, such a device provides a polychromatic geometrical focusing, where 
the intensity gain is linked with the relaxed energy resolution.  

In the general case where the distances differ (usually, LSA > LAD), the 
reflection angle along the analyzer does not change provided that the 
reflecting surface of the device follows the circumference of the “Rowland” 
circle, connecting the sample, the analyzer, and the detector axes. This 
geometry, known as the monochromatic, or “Rowland” focusing, is 
illustrated in the Figure 5-1 (b). Only in a symmetric setup, where the 
distances from the analyzer to the detector and to the sample are equal, LSA = 
LAD, is monochromatic focusing  achieved with a cylindrically curved device 
shown in  Figure 5-1 (a). In practice, Rowland focusing is approximated by 
aligning the platform of the multi-crystal segmented analyzer at a tangent to 
the Rowland circle. Then, the individual blades are aligned for the Bragg 
reflection at a given A [47]. This setup, Figure 5-1 (b), is successfully 
implemented on SPINS cold neutron triple axis spectrometer at the NIST 
Center for Neutron Research.  

5.2 Inelastic neutron scattering using the high count rate 
setups with the PSD  

Employing a Position-Sensitive Detector provides additional flexibility in 
inelastic triple axis neutron measurements. It permits a different, wave-
vector-resolved mode of using the large reflecting area of the analyzer 
crystal. The main idea is that each individual pixel on the PSD acts as a 
separate, small single detector that views a particular, small segment of a 
large multi-crystal analyzer. According to the Bragg’s law, only scattered 
neutrons with a particular energy and wave vector are reflected by this small 
analyzer segment, and then detected in the corresponding PSD pixel. In 
optimized conditions, the size of the PSD matches that of the analyzer. This 
is clear, in particular, from Figure 5-2 that illustrates two such high-
efficiency PSD setups successfully implemented on SPINS at NCNR.  

To measure typically weak inelastic scattering intensity, it is crucial that 
the real-space view of each PSD pixel is restricted to the monochromatic 
neutron image of the sample alone (obtained by reflection from the analyzer 
of neutrons with a particular energy). The simplest way to do this is by 
placing the radial collimator (RC) in front of the PSD. It restricts the real-
space scattering volume seen by the PSD pixels to the near neighborhood of 
the collimator’s focal point (it is the same for all pixels), reducing it 
dramatically. The RC shields the PSD from the polychromatic images of the 
sample’s environment and other incoherently scattering instrument 
components illuminated by the neutron beam, and from the incoherent 
scattering by the analyzer’s support structures,  which otherwise generate a 
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prohibitively high background. Hence, the RC is the essential element of the 
inelastic setups shown in Figure 5-2. 

Figure 5-2. Two high-throughput setups with a PSD and a large, segmented PG crystal 
analyzer implemented on SPINS. The imaginary neutron source illuminating the detector in 
the real space is a polychromatic image of the sample. The reciprocal lattice directions refer to 
the CsNiCl3 measurements described below. (a) The wave-vector-dispersive setup with flat 
analyzer. (b) The energy-dispersive setup with consecutive analyzers. 

With a RC placed in front of the PSD, the images obtained by the 
appropriate Bragg reflections from all analyzer segments must coincide, thus 
forming a single, polychromatic image of the sample. Moreover, for it to be 
seen by the detector pixels un-obscured, this image must be at the focal point 
of the radial collimator. Figure 5-2 shows two possible ways to achieve this. 
With the flat analyzer, Figure 5-2 (a), the neutron Bragg reflection at any 
point across the analyzer’s surface produces a mirror image of the sample in 
the real space (for neutrons of appropriate energy). In the alternative setup of 
Figure 5-2 (b), the image is created at the crossing point of the roughly 
plane-parallel paraxial beams, produced by the reflections from the different 
analyzer blades.  

The energy measured at each PSD pixel and the relative sensitivity of the 
pixels across the PSD are determined in a calibration experiment, using the 
incoherent elastic scattering from an axially symmetric standard sample, 
such as a hollow cylinder made of Vanadium or a hydrogen-rich plastic. The 
incident energy is scanned within the range that includes the PSD acceptance 
window, and the energy/sensitivity curve is obtained by fitting the intensity 
profiles observed in the different PSD pixels (cf. Figure 5-3 and below). The 
advantage of the PSD mode is that the instrument’s energy and wave-vector 
resolution, as well as the signal-to-noise ratio remain as good as for a 
conventional triple-axis spectrometer with the same collimations. The rate of 
data collection, however, is increased by about an order-of-magnitude.  
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5.2.1 Setup with a flat crystal analyzer 

The instrument operation in the typical multiplexing-detection mode with 
a PSD and a large flat crystal analyzer (the wave-vector-dispersive setup) is 
illustrated in the Figure 5-3. On SPINS, the multiple-crystal pyrolytic 
graphite (PG) analyzer consists of 11 blades, each 2.1 cm wide and 15 cm 
high. The PSD that we used is a two-dimensional, position-sensitive 3He 
proportional counter manufactured by ORDELA. The active counting area is 
26.4 cm × 22.6 cm (width (W) × height (H)) with 256 × 256 pixels, whereas 
the actual spatial resolution is 0.5 cm × 0.5 cm (W × H). The detection 
efficiency for 5 meV neutrons is about 80%. An 80’ radial collimator was 
placed between the analyzer and the PSD. When the analyzer is set to be flat, 
each blade reflects different neutron energy to a different location on the 
PSD. Figure 5-4 (a) is a photograph of this setup on SPINS.  

 

Figure 5-3. Schematics of the multiplexing detection mode with a PSD and a flat analyzer. (a) 
the reflection geometry, (b) the region of the wave vector and energy probed by different 
pixels across the PSD. (c) Results of the standard vanadium calibration measurement. The 
energy at the center of the analyzer was 3.15 meV. Peaks show the measured intensity 
profiles for five different PSD pixels detecting, respectively, five different neutron energies. 
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The geometry of the analyzer’s reflection is illustrated in Figure 5-3 (a). 
The neutron trajectories are colored in accordance with the neutron energy 
selected by the Bragg reflection at the corresponding point on the analyzer. 
Blue marks the slower neutrons, reflected at larger angles, and yellow 
represents the fastest, corresponding to the smallest A; a somewhat similar 
color scheme was used in Figure 5-2. For a given energy of the incident 
neutrons, Ei, and a sample scattering angle (with respect to the analyzer’s 
platform axis), 2 S, the volume in the ( ,Q)-space of energy and wave 
vector transfers probed by the PSD pixels follows a trajectory illustrated in 
Figure 5-3 (b). This produces a coupled scan in the sample’s phase space, 
where both the  and the wave vector transfer, q, change as a function of 
pixel position on the detector.  

 

Figure 5-4.  (a) Photograph of the actual wave-vector-dispersive setup with the PSD and a 
large flat PG analyzer on SPINS. Panels (b) and (c) show the results of the calibration 
measurement for the setup with the PSD central energy fixed at Ef

(0) = 4.2 meV: the relative 
scattering intensity (b) and the scattered energy (c) measured by the different PSD pixels.  

It is important, however, that only the component of the wave vector  
parallel to the analyzer’s surface, q||A �Q, varies in a scan across the PSD for 
a given ki and 2 S . The component perpendicular to the analyzer surface, 
q A, does not change because the projection of the scattered wave vector, kf, 

on the analyzer reciprocal lattice vector, A, is fixed by the Bragg condition, 
(kf � A) = A

2/2; hence, q A §��kf � A)� A -� A/2. This allows a “quasi” constant-

Q scans, where the projection of the wave vector transfer is constant along a 
particular direction in the sample’s reciprocal space. Such scans are very 
useful, as they are identical with the usual constant-Q scans for samples 
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where the dispersion and/or the other wave vector dependence(s) in one 
direction are unimportant, or absent, if that direction is aligned parallel to the 
analyzer’ surface (cf. Section 5.3.1).  

The results of the calibration measurements for the wave-vector-
dispersive setup with the flat analyzer and using the standard vanadium 
sample are presented in Figure 5-3 (c) and Figure 5-4 (b,c). The former 
shows the intensity observed in five different PSD pixels as a function of the 
incident neutron energy when the analyzer’s center is set to Ef

(0) = 3.15 meV. 
The circles of different colors indicate different scattered neutron energies, 
following the same convention as in (a). The energy range covered by the 
whole flat analyzer in this configuration is 2.6 meV < Ef < 3.7 meV, and the 
energy resolution FWHM varies from 0.1 meV to 0.15 meV. The 
correspondence between the pixel position on the PSD and the scattered 
neutron energy assigned to it, as well as the relative sensitivity of the pixels, 
are obtained by fitting these intensity profiles to the Gaussians. Typical 
calibration curves obtained in this way for Ef

(0) = 4.2 meV (used in the 
measurements described in Section 5.3.1) are shown in Figure 5-4 (b,c).   

By changing the incident neutron energy and/or the sample scattering 
angle, we can survey the scattering cross-sections in a large portion of the 
( ,Q)-space. In fact, even when exploring the ( ,Q) window that can be 
covered at a single instrument setting, it is still useful to split the 
measurement into a scan with varying ki. Then, the intensity at each energy 
and wave vector transfer is measured at different kf, and by different PSD 
pixels. Combining these measurements appropriately evens out any 
systematic fluctuations arising from the variation of the pixel sensitivity 
across the PSD.  

5.2.2 Setup with consecutive analyzers 

In an alternative, final-energy-dispersive setup illustrated in Figure 5-1 
(b), the analyzer platform is aligned parallel to the line connecting the axes 
of the sample and the analyzer, in a transmission-, or Laue-like geometry. 
The neutron beam then sequentially passes through the analyzer blades, with 
each consecutive blade reflecting a portion of the scattered neutron spectrum 
onto the PSD. This setup requires relatively fine tuning. Indeed, for best 
performance, all analyzer blades must be illuminated by neutrons and must 
reflect the appropriate monochromatic beams on the detector. Therefore, the 
angular offsets between the consecutive blades have to be optimized so that 
the overlaps of their energy-dependent reflectivity do not significantly shield 
one blade by another. This essentially requires that the offsets exceed the 
FWHM of the mosaic spread of the analyzer’s crystals. On the other hand, 
the offsets should not be too large so that the variation of the sensitivity 
across the PSD is not excessively strong and, in particular, to avoid “blind 
spots” on the detector, which are not illuminated by the analyzer. Finally, the 
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condition of the sample’s geometrical imaging in the focus of the radial 
collimator also has to be satisfied, at least approximately.  

Figure 5-5 (a) is a photograph of a setup with the consecutive analyzers 
on SPINS, which was employed in one of the measurements described in 
Section 5.3.1. The PSD central energy was Ef

(0) §����� meV. The angles A 
§��� �- 40  between the consecutive PG crystals with mosaic of §���  (and the 
corresponding difference in the reflected neutron energy) were chosen to 
satisfy the fine-tuning conditions described above.   Nine of the 11 analyzer 
blades provided full coverage of the PSD, reflecting the neutron energies in 
the 4.03 meV < Ef < 5.13 meV range. The corresponding PSD calibration 
curves obtained using the Vanadium standard are shown in Figure 5-5 (b,c). 
The variation of the pixel sensitivity across the PSD is much stronger than 
for the flat analyzer, with nine peaks corresponding to the reflections from 
the consecutive blades clearly visible.  

 

Figure 5-5. (a) Photograph of the Ef-dispersive setup with consecutive analyzers on SPINS. 
(b) and (c) show the pixel sensitivity and the detected neutron energy as a function of the 
position on the PSD. 

A very important feature of this setup is the possibility of restricting the 
analyzer’s angular acceptance by inserting a Soller collimator after the 
sample, thus defining a single direction for the scattered neutrons wave 
vector. A constant-Q scan can be effectively performed for systems with at 
least one non-dispersive direction by co-aligning this direction with kf, as 
shown in Figure 5-1 (b). Using the Soller collimator also allows very 
significant reductions in the amount of the sample’s incoherent scattering 
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seen by the PSD, as well as shaping/tightening of the instrument’s wave 
vector resolution in the direction perpendicular to kf.  

5.2.3 Energy-integrating configuration in the two-axis mode 

Figure 5-6 illustrates a high-count-rate setup without an analyzer and 
with a polycrystalline low-pass neutron filter followed by the PSD in the so-
called two-axis mode. The filter only transmits the scattered neutrons with 
energies less than a cut-off energy Ec, and within the angular range 
determined by the beam-defining aperture. On SPINS, polycrystalline Be or 
BeO filters with the energy cutoffs Ec = 5.1  meV, or Ec = 3.7 meV, 
respectively, are typically used. The horizontal angular acceptance of this 
configuration on SPINS is currently about 11o. It is determined by the 
detector’s angular size at the sample’s position, i.e. the ratio w/L, where w is 
the width of the PSD and L is the distance between the sample and the PSD.  

 

Figure 5-6. Energy-integrating setup without an analyzer, and with the position-sensitive 
detector in the “two-axis” mode.  

Without an analyzer, a position-sensitive detector placed behind the filter 
detects the scattering intensity integrated over the energy transfers in the 
range Ei - Ec <  < Ei, 
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The energy integration and the wide angular acceptance increase the rate of 
data collection in this mode by more than an order-of-magnitude. Albeit this 
setup is very simple, it is very efficient for studying low dimensional 
systems and systems with short-range correlations. 

Sample 
Low-pass filter PSD 
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5.3 Experimental examples  

5.3.1 Spin excitation continuum in the Haldane spin chain 

Quantum liquids are among the most interesting and important 
fundamental condensed matter systems. Despite having been studied for 
about a century since Dewar and Kamerling-Onnes first liquified hydrogen 
and helium, the quantum-liquid state continues to amaze physicists with new 
discoveries. Recently, several remarkable new examples of the quantum 
liquid state were found in the systems of quantum spins in magnetic crystals. 
Perhaps, the most important was the prediction and the experimental 
discovery of the spin-liquid, Haldane-gap state in an integer-spin, one-
dimensional Heisenberg antiferromagnet (HAFM spin chain), see Ref. [55] 
for an early overview.  

In a striking neglect of the naive “common sense” expectation, the 
ground state (GS) of a Haldane spin chain does not connect the Neel-ordered 
“spin solid” GS of the semiclassical, S>>1 HAFM, with the almost-ordered 
“marginal liquid” state of the S=1/2 chain [33,34]. Instead, it is a quantum 
liquid with a finite correlation length, and a gap in the spin excitation 
spectrum. The spectral weight of spin fluctuations is concentrated in a long-
lived massive triplet mode near the Brillouin zone’s (BZ) boundary, T� � , 
reminiscent of a roton in 4He. Any remainder of the spectacular continuum 
observed at q §�  in the S=1/2 1D HAFM (cf. Figure 1-1) is extremely faint. 
On the other hand, continuum two-magnon states are predicted to be the 
lowest-energy excitations at q § 0, and to dominate the spin fluctuation 
spectrum close to the Brilloun zone’s center. For a non-interacting magnons, 
the two-magnon continuum starts above a q-dependent energy threshold, 

2m(q) = min{2 (  + q/2), H + ( +q)}, where (q) is the dispersion of the 
single-magnon excitation, and H = ( ) is the Haldane gap in the excitation 
spectrum at T� � .  

Experimentally observing the spin excitation continuum in a Haldane 
chain is an extremely challenging task. Primarily, this is due to the rapid 
decrease at small q of the static structure factor, S(q), which determines the 
energy-integrated intensity of scattering by spin fluctuations. In the single-
mode approximation (SMA), S(q) ~ (1 - cosq)/ (q), cf. Eq.  (3.70), and 
vanishes ~ q2 as q ��.  However, using the high-count-rate setups 
described in the previous sections opens the possibility of performing such a 
measurement. Efficiently using the SPINS large-area segmented PG analyzer 
and a matching large PSD is a key to success.  

We studied a large, ~6 g sample of a quasi-1D HAFM CsNiCl3, 
composed of two single crystals that were co-aligned with an effective 
mosaic less than 1o. Our sample had its longer dimension parallel to the 
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chains (hexagonal c-axis), and was mounted on an Al plate in the standard 
“ILL orange” 70 mm cryostat, with (h,h,l) zone in the scattering plane and in 
a transmission, “Laue” geometry, as illustrated in Figure 5-7 (a,b) [this is 
rather important in view of a rather large absorption of the natural Cl]. 
Magnetic scattering was measured at T=1.5 K, while the non-magnetic 
background (BG) was collected in the identical scans at T=150 K. 

 

Figure 5-7. (a) and (b) on the top illustrate the experimental setups used for the measurements 
shown in (c) and (d) on the bottom, respectively (the data is shown below the corresponding 
setup). Contour plots of the spectral density of magnetic scattering in (c) and (d) were 
reconstructed using linear interpolation from the constant-q|| scans, measured with the chain 
perpendicular to the analyzer surface in setup (a), and perpendicular to kf in setup (b). Scale 
on the right shows variation with energy of the wave vector transfer perpendicular to the chain 
at l=0.5, scale on the top - its variation with l at E = 3 meV. Ellipses are the calculated half-
maximum contours of the instrument resolution function at E = 3 meV. The solid curve is the 
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single-magnon dispersion discussed in text, the dashed line shows the lowest energy of two 
non-interacting magnons with a total q|| = πl, and the dotted line is ε(q||) = 2.49J sin(q||). 

CsNiCl3 is probably the least anisotropic and best-studied Haldane model 
compound. It has a hexagonal crystal structure (space group P63/mmc), with 
the chains of chlorine-linked Ni2+ ions parallel to the c-axis, and with two 
equivalent ions per c-spacing, so that the wave vector transfer Q = (h,k,l), in 
reciprocal lattice units (rlu), corresponds to T� � l in the 1D BZ of a chain. 
In CsNiCl3 a supercritical interchain exchange coupling, J  §�����J, leads to 
a long-range order below TN §�����.. However, as temperature rises above 
TN, a gap opens in the spin excitation spectrum, and it quickly recovers the 
properties of an isolated S=1 HAFM chain [55]. Moreover, even at T = 0 the 
interchain coupling modifies only the low-energy part of the excitation 
spectrum and, therefore, even at T  < TN the dynamic spin response of 
CsNiCl3 in the better part of the BZ, specifically around the top of the 1D 
dispersion, is identical with that of an individual chain [40,53]. 
Quantitatively, for energies E > 2 meV the dependence of the spin scattering 
function on the wave vector transfer perpendicular to the chains (i.e. in the 
ab-plane), q , is small (less than 10%). Thus, to a good approximation it can 

be ignored [40].  
Figure 5-7 shows the spin excitation spectrum of CsNiCl3 measured on 

SPINS cold neutron triple axis spectrometer using two high-count-rate 
instrument configurations described in Sections 5.2.1 and 5.2.3. The 
scattering geometry used in the two experiments is illustrated in the upper 
panels, (a) and (b) of the figure. The bottom panels (c) and (d) show the 
contour maps of the normalized magnetic scattering intensity, 

( ) ( )∫ dEEqIEqI ,, , with the non-magnetic, (q,E)-dependent linear 

background subtracted. The intensity maps are constructed from the raw data 
(the normalization integrals are performed via point-by-point summation), 
and are slightly distorted by the instrument’s resolution. Refs. 40 and 53  
have more detailed description of the experiments, and the (arbitrary) 
intensity scales used in the contour maps. 

It is clear in both panels (c) and (d) of Figure 5-7 that the spin excitation 
spectrum has a finite width in energy at l < 0.5. In the single-mode part of 
the spectrum, at l �����, the measured line-shape is completely determined 
by the interplay of the dispersion and the instrument’s resolution. The 
resolution is quite different in two setups. Although the accepted phase 
volume is smaller in setup (b), the “focusing” effect [the longer axis of the 
FWHM ellipse is parallel to the dispersion in Figure 5-7 (c)] produces 
sharper peaks in setup (a). In principle, an opposite, “de-focusing” effect is 
of concern for l �� ��� measurements in the latter, as it could cause quite 
significant broadening, even in a single-mode spectrum. However, carefully 
accounting for the resolution shows that the non-zero intrinsic width at l ��
0.5 accounts for �� ��� of the spectral width measured in setup (a). “De-
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focusing” is absent in setup (b), where the FWHM ellipse is approximately 
round, Figure 5-7 (d). Another important distinction between the two setups 
is that q|| §�const geometry imposes different choices of q . 

 The spectacular agreement of the excitation spectrum at q|| �� ���  
measured in two setups shows explicitly that the observed crossover from a 
single mode to a continuum with a significant intrinsic width is not an 
instrumental/resolution effect. In fact, very similar behavior is found in the 
“classical” quantum liquid - superfluid 4He. There, the “maxon” excitation 
turns into a broad, continuum-like feature under pressure when the “roton” 
spectral gap is suppressed below the half the maxon energy.  

5.3.2 Spin fluctuations in a geometrically frustrated magnet 

Systems encompassing a large diversity of states are common in biology, 
chemistry and physics, such as glasses, liquids, and proteins. An essential 
concept in understanding those systems is frustration, i.e., due to competing 
interactions, the degrees of freedom cannot be optimized simultaneously. 
Magnetic systems offer extreme examples in the form of spin lattices where 
all interactions between spins cannot be simultaneously satisfied. Such 
geometrical frustration can lead to macroscopic degeneracy and produce 
qualitatively new states of matter.  

Figure 5-8. The lattice of corner-sharing tetrahedra formed by the octahedrally coordinated B 
sites in a spinel structure with chemical formula AB2O4. A periodic assignment of all spins in 
the pyrochlore lattice is made to four different types of non-overlapping hexagons, colored in 
blue, green, red, and gold. Every spin belongs to just one hexagon, and each such hexagon 
carries a six-spin director. The resulting tetragonal structure of these hexagons has a unit cell 
of 2a×2a×3c and can be described by a stacking of two different types of three-layer slabs 
along the c-axis. The hexagon coverage on consecutive slabs is uncorrelated, so that a 
macroscopic number of random slab-sequences are generated. 
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We explored some of these possibilities by examining magnetic 
fluctuations in ZnCr2O4. The B-site of this spinel lattice occupied by spin-3/2 
Cr3+ leads to a magnet with dominant nearest-neighbor coupling on the 
lattice of corner-sharing tetrahedra, as shown in Figure 5-8 [56]. Because the 
spin interaction energy is minimized when the four spins on each tetrahedron 
add up to zero, the interactions do not call for a long-range order, but simply 
define a restricted phase space for fluctuations. Just as composite fermions 
can emerge from degenerate Landau levels in a two-dimensional electron 
gas, the near-degenerate manifold of states in a frustrated magnet is fertile 
ground for emergent behavior.  

Figure 5-9. (a), (b) Color images of inelastic neutron scattering intensities from single crystals 
of ZnCr2O4 in the (hk0) and (hkk) symmetry planes obtained at T = 15K for ω  = 1 meV. 
The data are a measure of the dynamic form factor for self-organized nanoscale spin clusters 
in this material. (c), (d) Color images of the form factor squared, calculated for 
antiferromagnetic hexagon spin loops averaged over the four hexagon orientations in the 
spinel lattice. The excellent agreement between model and data identifies the spin clusters as 
hexagonal spin loops.  

Neutron scattering is the most effective tool to study possible composite 
spin degrees of freedom by directly probing the form factor of such entities. 
Figure 5-9 (a) and (b) demonstrate the wave-vector dependence of the low-
energy inelastic neutron scattering cross-section in the spin liquid phase of 
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ZnCr2O4 [56]. The data exhibit broad maxima at the Brillouin zone’s 
boundaries, signaling the emergence of confined nanoscale spin clusters. 
Rather than Fourier-inverting the data, we consider potential spin clusters 
and test the corresponding prediction for the form factor against the data. 
Individual tetrahedra would be prime candidates, as they constitute the basic 
motif of the pyrochlore lattice. However, a tetrahedron is too small to 
account for the observed features.  

Figure 5-10. Spin cluster surrounding a hexagon (shown in gold) in the pyrochlore lattice of 
Figure 5-8. 

The next smallest symmetric structural unit is the hexagonal loop formed 
by a cluster of six tetrahedral, Figure 5-10. Two spins from each tetrahedron 
occupy the vertices of a hexagon while the other two spins from each 
tetrahedron belong to different hexagons. Therefore, all spins on the spinel 
lattice can be simultaneously assigned to hexagons, thus producing N/6 
weakly interacting degrees of freedom, Figure 5-8. An outstanding fit is 
achieved for the antiferromagnetic hexagonal spin loops, as evidenced by 
Figure 5-9 (c) and (d). Thus, rather than scattering from individual spins, 
neutrons scatter from antiferromagnetic hexagonal spin clusters. In effect, 
ZnCr2O4 at low temperatures is not a system of strongly interacting spins, 
but a protectorate of weakly interacting spin-loop directors. Since the six 
hexagon spins are anti-parallel, the staggered magnetization vector for a 
single hexagon, which shall be called the spin loop director, is decoupled 
from the 12 outer spins. Hence, its reorientation embodies the long-sought 
local zero-energy mode for the pyrochlore lattice [56].  
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5.4 Neutron polarization analysis with PSD 

Polarized neutron diffraction is a well-established method for 
investigating the spin configuration of a system. It distinguishes between the 
magnetic- and the nuclear-structural contributions because of the different 
selection rules for non-spin-flip (NSF) and spin-flip (SF) scattering 
processes. Figure 5-11 (a) shows a conventional geometry for polarized 
neutron diffraction. A polarized monochromatic beam with neutrons in a 
particular spin eigenstate (-) is obtained using the forward transmission 
polarizer. Subsequently, a flipper can rotate the polarization adiabatically to 
the other spin state (+). The spin state of the beam scattered from the sample 
is then analyzed using this combination. Each of the four possible channels, 
(off,off), (on,on), (off,on), and (on,off), is measured by appropriately turning 
on and off the front and the rear flippers, before and after the sample. With 
perfect efficiencies of the forward and rear polarizers and flippers, the 
measured intensities would be in a one-to-one correspondence to the spin-
dependent cross sections, σ, I(off,off) Æ σ(−−); I(on,on) Æ σ(++); I(off,on) 
Æ σ(−+); I(on,off) Æ σ(+−). In this technique, each channel is measured 
sequentially, which significantly reduces the rate at which data can be 
collected at a given scattering angle.  

Figure 5-11. (a) Conventional experimental setup with transmission polarizers for polarized 
neutron diffraction, and, (b) setup for polarized neutron diffraction with a PSD.  

In this section, we describe a new technique for polarized neutron 
diffraction that was recently developed [57], utilizing a two-dimensional 
position-sensitive detector. It increases the rate of data-collection by a factor 
of two. The idea is simple: since a transmission polarizer passes neutrons in 
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one spin state (−) straight through and without deviations, but deflects 
neutrons in the other spin state (+) by a few degrees, then by placing a two-
dimensional position sensitive detector (PSD) in a two-axis configuration as 
shown in Figure 5-11 (b), we can simultaneously measure neutrons scattered 
by the sample into both spin states.  

The separation of the deflected beam and the transmitted straight beam 
on the PSD, ∆, is determined by the distance from the polarizer to the PSD, 
D, and the critical reflection angle of the polarizer’s supermirror, θ, that 
depends on the neutron’s wavelength, λ: ∆ ∼ θ D.  Obviously, ∆ should 
exceed the width of the beam. In our case, the polarizer was optimized for a 
λ of 4 Å and longer. To measure all four spin-dependent scattering 
processes, this technique requires only a single flipper, located in front of the 
sample (upstream).  If the flipper is placed in the incident beam as shown in 
Figure 5-11 (b)-I, then, with the flipper off, the straight beam measures the 
(off,off) channel, and the deflected beam the (off,on) channel. In this case, 
the PSD measures both (off,off) and (off,on) channels simultaneously, 
thereby eliminating the need for a rear flipper used in the conventional setup. 
When the front flipper is on, Figure 5-11 (b)-II, the straight beam 
corresponds to the (on,off) channel, and the deflected beam to the (on,on) 
channel. 

The curved stack, Fe/Si supermirror transmission polarizers that we used 
in the measurements discussed below, are described in Refs. [57,58]. The 
flippers are made of Al wire coils and are also described in Ref. [57]. The 
incident neutron energy was fixed at 5 meV and a cooled polycrystalline Be 
filter eliminated the short-wavelength neutrons from the higher-order 
reflections in the PG monochromator. Two 20′ collimators were placed 
before and after the sample. In this set-up, D = 79 cm and θ  = 2.4o, yielding 
a deflected beam well separated from the straight-transmitted, by about ∆ = 
3.3 cm (corresponding to 32 horizontal pixels on the PSD).  

5.4.1 Nuclear and magnetic Bragg scattering in La5/3Sr1/3NiO4  

La5/3Sr1/3NiO4 exhibits both charge and spin ordering in real space, which 
is related to the magnetic incommensurate peaks observed in the high-Tc 
superconducting cuprates. However, polarization analysis of the related 
incommensurate peaks in the cuprates is difficult because of their relatively 
low intensities. The incommensurate peaks are predominantly static and 
intense in the isostructral system La2-xSrxNiO4, making this nickelate a very 
good model system to study them. In our measurements, the La5/3Sr1/3NiO4 
crystal was mounted with the (hk0) reciprocal lattice plane (in which the Ni2+ 
spins lie) in the scattering plane, and a vertical magnetic guide field was 
applied perpendicular to it. In this configuration, the magnetic and nuclear 
scattering is purely SF and NSF, respectively. Detailed analysis of these 
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measurements and supplementary data for (h0l) scattering plane were 
reported in Ref. [43]. Only data for one specific nuclear reflection and one 
magnetic Bragg reflection are presented here.  

Figure 5-12. PSD images of the scattering from (200) nuclear Bragg reflection of 
La5/3Sr1/3NiO4; (a) with the front flipper off, and (b) with the front flipper on.  

Figure 5-13. PSD images of scattering from the magnetic superlattice reflection (2/3,0,0) in 
La5/3Sr1/3NiO4; (a) with the front flipper off, and (b) with the front flipper on.  

(−−) (−+) (++) (+−) 

(−+) 
(−−) 

(++) 

(+−) 
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Figure 5-12 shows the color PSD images of the scattering intensity for a 
nuclear Bragg reflection in La5/3Sr1/3NiO4. When the flipper is off, Figure 
5-12 (a), the bright spot should correspond to the (−−) NSF channel, the 
straight-transmitted beam. For this purely nuclear peak, we expect no 
scattering in the SF channel. The faint signal on the left is a contamination 
due to the polarizer’s imperfect efficiency. Using the top five points around 
the peak for each of the two beams, we find that the polarizing efficiency is 
0.790(1). When the front flipper is on, as shown in Figure 5-12 (b), the 
positions of the bright and the faint spots on the PSD are switched. The 
bright peak is now the (on,on) channel. The (on,on) peak is slightly weaker 
than the (off,off) peak,  indicating  that the reflectivity of the polarizer is less 
than one, or 0.798(1). For systems such as La5/3Sr1/3NiO4, in which scattering 
cross-sections in both NSF channels are identical to each other, as are the SF 
cross sections, the polarizer’s reflectivity cancels out, and the (off,off) and 
(on,on) signals can be combined. Ignoring the deviation of the flipper’s 
efficiency from unity, the (off,on) and (on,off) intensities can also be 
combined, which is a good approximation in the present example.  

Figure 5-13 shows how this technique works for a magnetic reflection. In 
our configuration, the magnetic scattering is expected to contribute only in 
the SF channel. The color contour maps of the resulting scattered intensities 
are shown. As expected, with the front flipper off, the PSD image shows a 
bright spot at the position of the deflected beam, the (off,on) channel, Figure 
5-13 (a). With the flipper on, the straight-transmitted beam, corresponding to 
the (on,off) channel, is brightest, Figure 5-13 (b). As expected, the ratio of 
the (on,off) and (off,on) peak intensities matches the reflectivity of the rear 
(behind the sample) polarizer.  
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