ENVIRONMENTAL ASSESSMENT FOR Electron Ion Collider

Brookhaven National Laboratory

Community Advisory Council Presentation

September 10, 2020

Tim Green

Environmental Protection Division

The NEPA Process

- Project conceived
 - Detail must be sufficient enough to describe what is going to be done.
- Environmental Evaluation and Notification Form
 - Checklist of all potential impacts associated with project
 - Determination
 - Categorical Exclusion (CX) project proceeds or
 - Environmental Assessment
- Environmental Assessment prepared
 - Finding of No Significant Impact project proceeds or
 - Determination of need for an Environmental Impact Statement

Environmental Assessment (EA)

Purpose

The purpose of the EIC project is to deliver a fully functional Electron-Ion Collider including the accelerator complex and one or more detectors. The EIC is necessary to understand the basic properties or building blocks of the nuclei; and how quarks and gluons, the particles that make up neutrons and protons are held together and interact. This will allow advancement of our understanding of nature; further fundamental science and technological innovations; and advance the energy, economic, and national security of the United States.

Environmental Assessment (EA)

Need

To build an Electron Ion Collider which meets the full range of the Nuclear Science Advisory Committee (NSAC) 2015 Long Range Plan

- Luminosity up to ~1x1034/cm2/s
- Center-of-Mass Energy up to 140 GeV
- One Interaction Region with the ability to add a second
- One Detector with the ability to add a second
- Complete the construction project in 10-15 years
- Deliver the facility within a cost range of \$1.6B-\$2.6B
- Consider the ability to collide polarized particles
- Maintain and operate the facility with routine improvements for the foreseeable future

Alternatives Evaluated

• Construct an Electron Ion Collider (EIC)

The conventional facilities required for the EIC will include:

- the buildings and structures that will house the scientific equipment and utility systems
- the utility services (electric, water, sanitary, com/data) required to power, cool, occupy and communicate among the science facilities
- the site infrastructure modifications needed to provide access roads, parking and proper drainage for the EIC site and its facilities
- No Action continue operations of the Relativistic Heavy Ion Collider (RHIC)
 - Continued development of sPHENIX
 - Routine maintenance and necessary upgrades to meet current mission

EIC conceptual

RHIC/EIC Area

NATIONAL LABORATORY

Conventional construction reviewed under EA

Buildings

Building Designations	Proposed GSQFT	Remarks
Alcove Buildings: ALC-01, -03, -05 and -11	8,000	4 @ 2,000SF each
Main Alcove Buildings ALC-07 and -09	10,000	2 @ 5,000 each
Cryo Facility 1006	1,200	
Kicker Power Supply 1004	9000	Two stories
Cryo Facility 1002	2,400	
Electron Source Building 1002	21,000	Two Stories ^a
Cryo Facility 1010	7,200	
RF Building 1010	70,800	Two Stories
Kicker Power Supply 1012	15,200	Two Stories
Total	144,800	Gross SQFT

Conventional construction

- ~8,000 ft. of new roads
- ~3,600 ft. of potable water lines
- ~10,000 ft. of sanitary lines
- ~3,500 ft. of storm drainage
- Clearing estimates range from 5 10 acres, mostly for roads and at 1002 and 1010
 - Much of area is previously disturbed
 - Acreage may change depending on placement of roads and buildings

Utilities

- Water
 - EIC will have significant cooling needs options under consideration
 - Conventional cooling w/cooling towers
 - Chillers
 - Geothermal
- Electricity
 - Increased need for additional power requirement depending on configuration (one or two detectors)
 - Additional infrastructure needed

Assessment

Topics Addressed in EA

- Ecology
 - Vegetation
 - Invasive Species
 - Threatened and Endangered Species
 - Migratory Birds
 - Mammals
 - Reptiles & Amphibians
 - Fish
- Water
 - Surface water wetlands, scenic river
 - Groundwater
- Land Use, Demography, Social Justice
- Socioeconomic
- Transportation

- Cultural Resources
- Air Quality
- Climate
- Visual Quality
- Noise
- Industrial Safety & Occupational Health
- Radiation Exposure
- Natural Hazards
- Destructive Acts
- Utilities
- Waste Management/Pollution Prevention
- Commitment of Resources
- Decommissioning & Restoration

Water Resources – all alternatives

- Cooling water
 - Accelerators cooled with closed-loop water systems – water becomes activated
 - Cooling towers used to cool water using heat exchangers (blow down discharged to recharge basins or released to sanitary)

14

Water Resources

- Monitoring and protection of water resources
 - Accelerator Safety Subject Area used for continual improvement and to drive process reviews – all alternatives
 - Surface waters all alternatives
 - Leak prevention program to prevent tritiated water going to discharge points (basins)
 - Cooling tower discharges monitored under SPDES permit
 - increased concern under preferred alternative, for exceedances due to corrosion control chemicals for cooling towers
 - concern greatly reduced/eliminated with chillers or geothermal cooling

Water Resources

- Monitoring and protection of water resources -(continued)
 - Groundwater all alternatives
 - Surveillance program multiple monitoring wells
 - Leak prevention program
 - Caps and impermeable barriers
 - Groundwater preferred alternative
 - Potential SPDES permit excursions (sanitary) from cooling tower corrosion control chemicals
 - Pumping (production wells) and recharge (cooling tower blowdown)
 - Geothermal [extraction well(s), heat exchange for cooling, injection wells(s)]

Water Resources

- Wetlands preferred alternative
 - Construction at two and ten o'clock in proximity to Peconic River – roads either near or over river.
 - Permits will be required (wetland/scenic river)

Visual – preferred alternative

- Construction at two and ten o'clock areas
 - Proposed buildings visible from river corridor
 - Visibility from offsite locations unlikely due to density of trees
- Construction in other areas less likely to be visible from Peconic due to trees

Radiation –

- No Action alternative no change
- Preferred alternative
 - Hadron beam intensity will be at upper limit of RHIC
 - Effects continue to be analyzed
 - Shielding is adequate but additional shielding will be added where required
 - Interlocking radiation monitoring is required, allows for automatic shutdown
 - Current RHIC environmental monitoring data are comparable to offsite data.

Utilities

- No Action no change
- Preferred alternative
 - Electric use increases, increased renewable energy credit purchases, new above ground distribution through previously disturbed areas
 - Potential need for additional electric feeder into Lab

Waste Management/Pollution Prevention

- No Action Alternative continued routine waste shipments
- Preferred Alternative
 - Increased waste shipments for any decommissioning work needed to prepare facility for construction
 - Construction would look for opportunities for sustainability, recycling, re-use of materials, energy efficiency

Next Steps

- Complete Draft EA end of September to early October
- Distribute for internal comment
 - Address comments and edits
 - Prepare Draft Final EA mid-October
- Draft Final distributed to NY State
- Address any comments from NY State
- Department of Energy prepares determination
 - Either Finding of No Significant Impact
 - Need to prepare Environmental Impact Statement
- Publish Determination and Final EA target end of November 2020

Questions?

