

PFAS Update

Community Advisory Council Meeting April 13, 2023

Doug Paquette Groundwater Protection Group Environmental Protection Division

Agenda

Background

- What are Per- and Polyfluoroalkyl Substances (PFAS)?
- Sources of PFAS Contamination
- Response to PFAS and 1,4-Dioxane under the CERCLA* Program
- PFAS Groundwater Treatment Systems
 - Start of treatment system operations
- BNL Water Supply Wells
 - Status
 - Proposed additional NYS drinking water standards for PFAS
 - Proposed EPA national drinking water standards
- Next Steps

*Comprehensive Environmental Response, Compensation, and Liability Act, also known as Superfund

What are PFAS?

- PFAS are a diverse group of chemicals that are resistant to heat, water, oil and grease
 - Estimated ~9,000 PFAS have been created since the1940s
 - Do not breakdown in the environment (commonly referred to as "Forever Chemicals")
 - Persistent impact the environment for many years
 - Bioaccumulate (widespread detections in many species)
 - Numerous potential health effects
 - Focus has been on PFAS chemicals PFOS and PFOA,
 but now other PFAS are being evaluated and regulated
 - August 2020, NYS established drinking water standards of 10 ng/L (part per trillion) for PFOS and PFOA
- Used in many industrial applications and consumer products
 - Firefighting foam (Aqueous Film Forming Foam or AFFF)
 - Used for extinguishing Class B fires; including flammable liquids such as gasoline, oil, and aviation fuel
 - Teflon-coated cookware
 - Stain-resistant carpets
 - Water-resistant textiles
 - Fast-food wrappers and other paper products

Perfluorooctane sulfonic acid (PFOS) Perfluorooctanoic acid (PFOA)

PFAS Detected in LI Groundwater Some Examples – The List is Growing

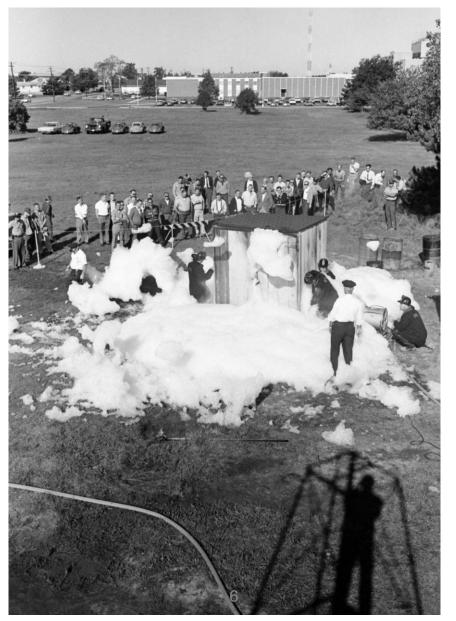
- Firefighting foam release areas
 - Local Firehouses
 - Yaphank Fire Training Facility
 - Former Grumman Site Calverton
 - Air National Guard Base at Gabreski Airport
 - East Hampton Airport
 - Islip MacArthur Airport
 - Brookhaven Calabro Airport
 - Brookhaven National Laboratory

Landfills

- East Quogue
- Riverhead
- Brookhaven

Efforts to Understand the Source and Extent of PFAS in groundwater at BNL

- 2017: PFAS were detected in samples from three BNL potable water supply wells
 - Combined PFOS and PFOA concentrations were below the former 70 ng/L (parts per trillion) Health Advisory Level that EPA established in 2016

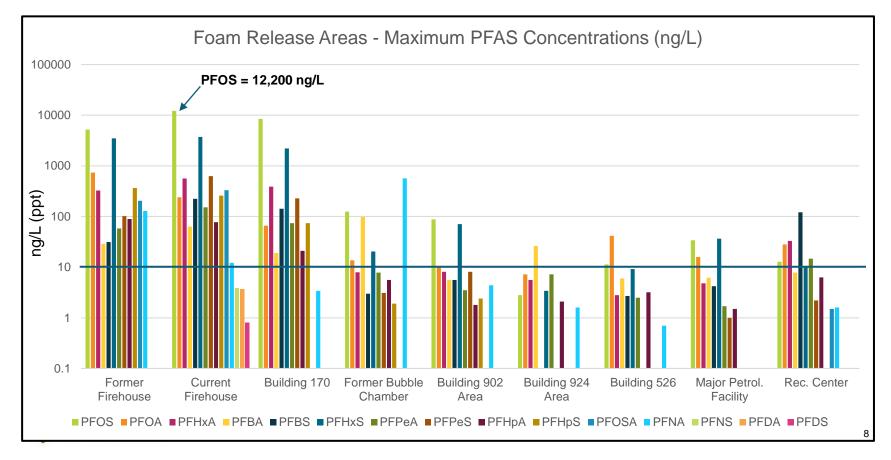

2018-2021: Identified 12 areas impacted by PFAS

- 9 areas where firefighting foam had been released (1966-2008)
- 3 areas impacted by releases to sanitary system, landfill disposal, and water supply treatment operations

2018-2022: Testing for PFAS

- Tested for PFAS at ~750 on-site and off-site locations
 - ~465 on-site and off-site monitoring wells
 - Including 95 new wells installed for the PFAS treatment systems
 - ~180 temporary (one-time use) groundwater monitoring wells
 - Collected ~10 samples at each well to determine the vertical distribution of PFAS
 - On-site and off-site groundwater treatment systems
 - BNL's sewage treatment facility influent and effluent
 - Routine testing of BNL's water supply wells
 - BNL/SCDHS cooperative testing of 82 private wells

Firefighter Training Example: Former Firehouse Training Area (September 1966)

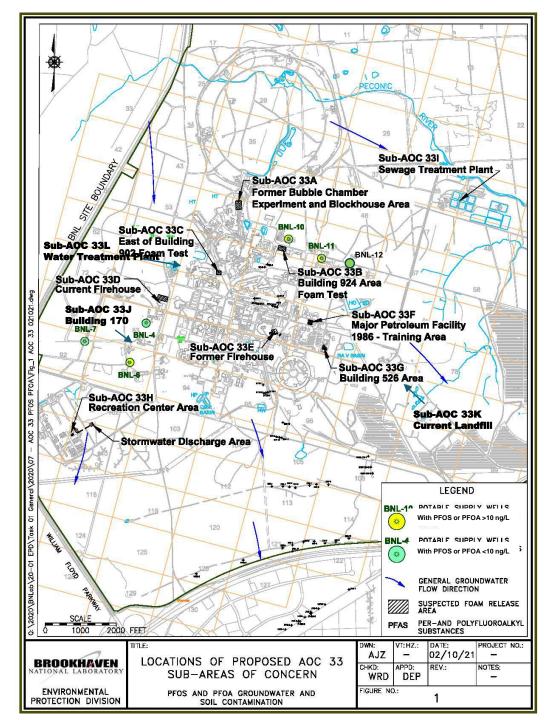

Building Fire Suppression System Testing Example: Former Bubble Chamber Area East of Building 902 (September 1970)

Analyzing water samples for PFAS

- Drinking water samples in 2017 were tested for 6 PFAS
- Monitoring wells samples during 2018-2022 were tested for 23 PFAS
- Current analytical methods test for 40 to 47 PFAS
 - To date, ~20 different PFAS have been detected in groundwater samples
 - Highest concentrations are usually PFOS, PFOA, PFHxS, PFHxA
 - Detection limits for most PFAS are ~2 ng/L

CERCLA Response: PFAS and 1,4-Dioxane*

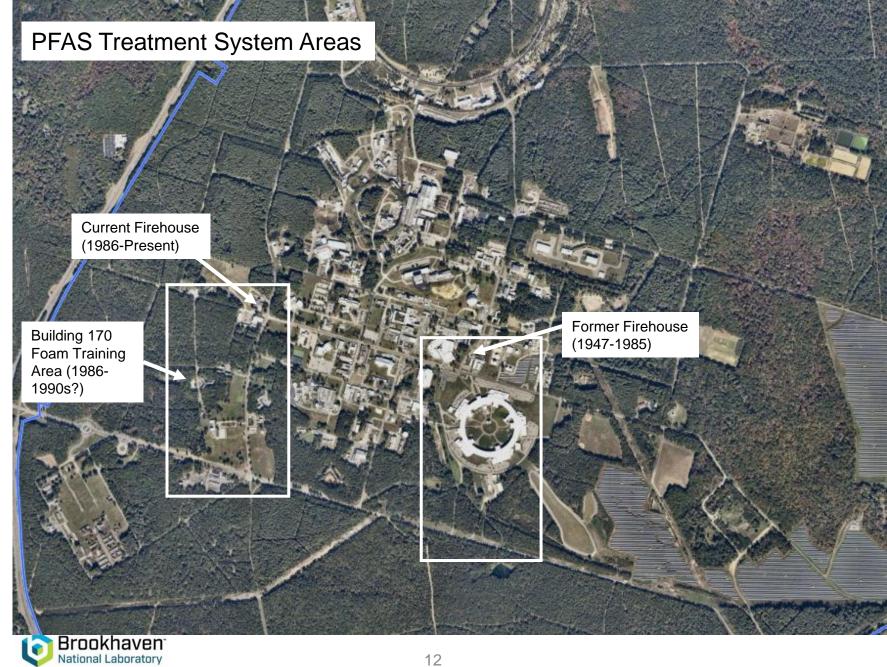
- Investigations and remedial responses are conducted under the Interagency Agreement (IAG) between DOE, EPA and New York State
- Operable Unit X was established in 2021
 - Current scope is to address PFOS, PFOA and 1,4-Dioxane
 - Likely to cover additional PFAS as they become regulated
 - Remediation of three high concentration PFAS plumes is being conducted as a Time Critical Removal Action (TCRA)
 - Full Remedial Investigation/Feasibility Study (RI/FS) will be required


*BNL is also investigating the extent of 1,4-dioxane, which was used as a chemical stabilizer for the solvent 1,1,1-Trichloroethane (TCA). TCA has impacted groundwater quality in several on-site and off-site areas. The treatment systems used for VOCs such as TCA are not effective for 1,4-dioxane.

Operable Unit X

Areas of Concern (AOCs)

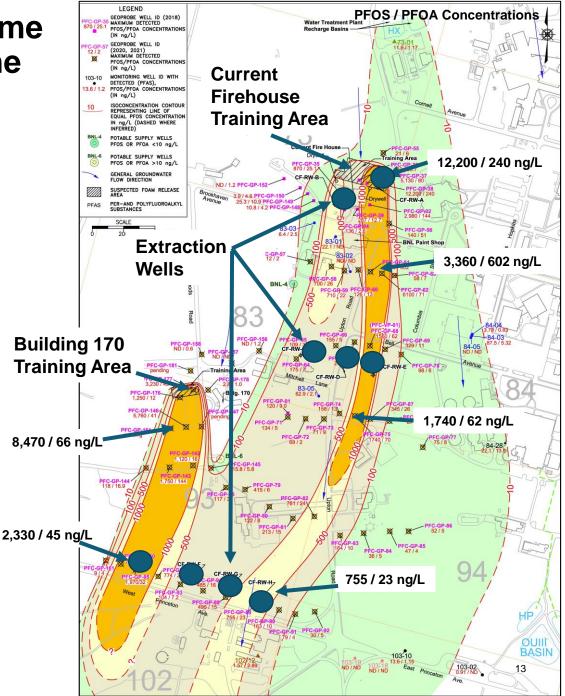
- Area of Concern 33
 - PFOS and PFOA
 - Includes 12 Sub-Areas of Concern (33A through 33L)
- Area of Concern 34
 - 1,4-Dioxane



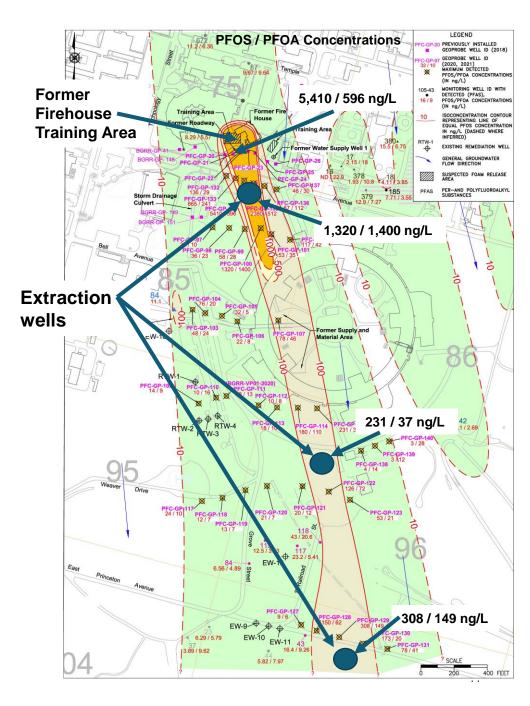
PFAS Treatment Systems

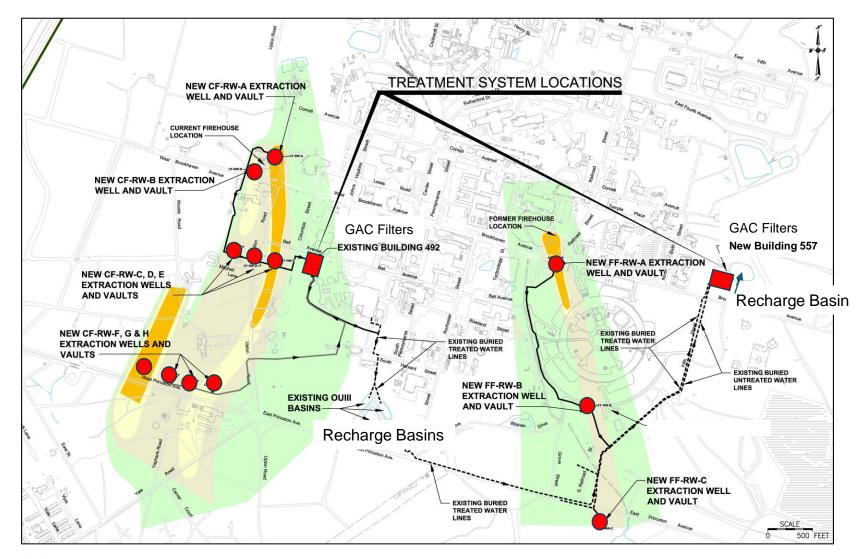
- BNL completed construction of two treatment systems to remediate groundwater with highest PFAS concentrations
 - Conducted as a CERCLA Time Critical Removal Action (TCRA)
 - <u>Current Firehouse/Building 170</u> treatment system operations started in October 2022
 - <u>Former Firehouse</u> treatment system operations started in January 2023
- Combined, the two systems are treating ~750 gpm of PFAS contaminated groundwater
 - Monitoring results indicate that the Granular Activated Carbon (GAC) filters are highly effective
 - PFAS are not detected in the treated water
 - Treated water is returned to the aquifer using recharge basins
 - NYS Effluent Limits* applied to the treatment systems for PFOS and PFOA are lower than the 10 ng/L drinking water standards:
 - PFOS: 2.7 ng/L
 - PFOA: 6.7 ng/L

(1,4-Dioxane in system effluent must be below 0.35 $\mu g/L,$ which is lower than the 1.0 $\mu g/L$ drinking water standard)



Current Firehouse Plume and Building 170 Plume Remediation


- Treatment System
 - Nine extraction wells
 - Pump ~500 gpm
 - Goal is to remediate groundwater with PFOS or PFOA concentrations >100 ng/L
 - New carbon filters installed in an inactive groundwater treatment system building
- Monitoring
 - Installed 66 additional monitoring wells for longterm surveillance


Former Firehouse Plume Remediation

- Treatment System
 - Three extraction wells
 - Pump ~250 gpm
 - Goal is to remediate groundwater with PFOS or PFOA concentrations >100 ng/L
 - Reuse carbon filters previously installed for another project
- Monitoring
 - Installed 29 additional groundwater monitoring wells for long-term surveillance

PFAS Treatment Systems

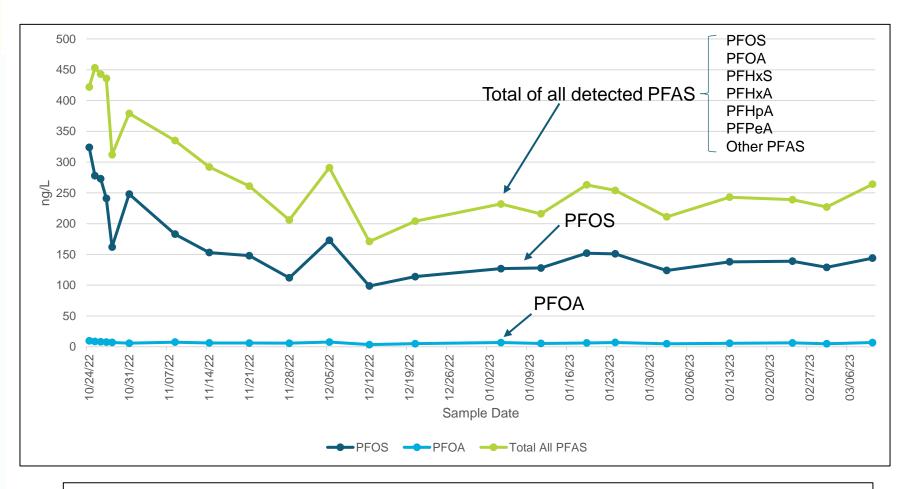
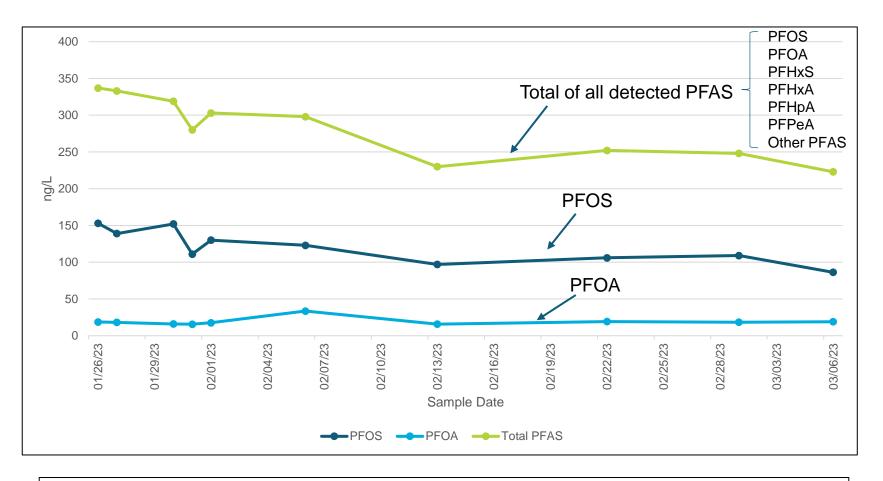

Treatment System for Former Firehouse PFAS Plume Granular Activated Carbon Filters

Photo Credit: DHGCarbon

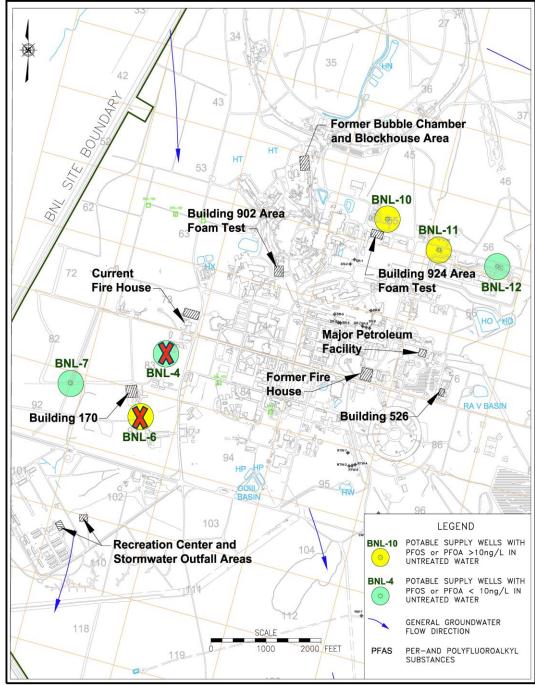

Current Firehouse/Building 170 Treatment System Influent Concentrations (combined water from 9 extraction wells)

PFAS are not detected in the system effluent (treated water) samples

Former Firehouse Treatment System Influent Concentrations (combined water from 3 extraction wells)

PFAS are not detected in the system effluent (treated water) samples

Operable Unit X RI/FS Work Plan


- Draft RI/FS Work Plan was submitted to the regulatory agencies on March 30th
 - Anticipate two-month review period
- The Work Plan builds upon the extensive groundwater characterization work conducted during 2018-2022
 - Groundwater
 - Better define downgradient extent of previously identified PFAS and 1,4-Dioxane plumes
 - Sample extensive network of existing on-site and off-site wells
 - Install temporary (one-time use) wells to fill in data gaps
 - Based upon temporary well data, install new wells for long-term monitoring
 - Sample on-site and off-site groundwater treatment systems
 - Soil and sediments
 - Test soils and asphalt in areas impacted by PFAS releases
 - Test surface water and sediment in on-site portion of the Peconic River

BNL Water Supply Wells Impacted by PFAS

- In August 2020, New York established drinking water standards of 10 ng/L for PFOS and PFOA
 - PFOS concentrations in untreated water from three supply wells were >10 ng/L
- BNL returned to service GAC filters at BNL-10, BNL-11 and BNL-12
 - Filters were installed in the 1990s to address VOC contamination
 - Filters were taken out of service by ~2010
 - Filters are effectively removing PFOS and PFOA to non-detectable levels
 - However, starting to see breakthrough of several short-chained PFAS (e.g., PFBA)
 - BNL-4 and BNL-6 have been taken out of service permanently
 - These wells are not equipped with GAC filters

Proposed New York Drinking Water Standards

Maximum Contaminant Levels (MCLs) and Notification Levels (NLs)

Contaminants	MCLs	
PFOS	10 ng/L (adopted in 2020)	
PFOA	10 ng/L (adopted in 2020)	
PFNA	10 ng/L	
PFHxS	10 ng/L	
PFDA	10 ng/L	
PFHpA	10 ng/L	
Combined concentrations of: PFOS, PFOA, PFNA, PFHxS,	30 ng/L	
PFDA and PFHpA (Referred to as the "PFAS6")		
Contaminants	NLs	
Combined concentrations of: PFHpS, PFUnA, PFDoA,	30 ng/L	
HFPO-DA (GenX)*, 9CI-PF3ONS, 11CI-PF3OUdS	* GenX would have a separate notification level of 10 ng/L	
Combined concentrations of: PFBA, PFBS, PFPeA,	100 ng/L	
PFPeS, PFHxA, ADONA, 4:2 FTS, 6:2 FTS, 8:2 FTS,		
NFDHA, PFEESA, PFMBA, PFMPA		
Contaminant	MCL	
1,4-Dioxane	1 µg/L (adopted in 2020)	

- Proposed standards were published in the NYS Register on October 5, 2022
- NYSDOH is working on "Responses to Comments"
- Recently proposed National Standards may impact final rule making

EPA's Proposed National Drinking Water Standards

Maximum Contaminant Levels Goals (MCLGs) and Maximum Contaminant Levels (MCLs)

Contaminants	MCLG	MCL
PFOS	Non-Detect	4 ng/L
PFOA	Non-Detect	4 ng/L
HFPO-DA (GenX), PFBS, PFNA and PFHxS	Hazard Index of 1.0*	Hazard Index of 1.0*

*Hazard Index : (GenX / <u>10 ng/L</u>) + (PFBS / <u>2,000 ng/L</u>) + (PFNA / <u>10 ng/L</u>) + (PFHxS / <u>9 ng/L</u>) Calculation

Divide Measured Concentrations by the EPA Health Based Water Concentrations (HBWCs)

- Proposed standards were published in the Federal Register on March 29th
 - 60-day public comment period (ends May 30th)
 - EPA expects to finalize the new standards by the end of 2023
 - Initial monitoring of water systems must be completed within the 3 years between rule promulgation date and rule effective date (anticipated to be by end of 2026)
 - When finalized, the national drinking water standards will supersede the current NYS standards
 - Will the NYS standards be adjusted before proposed federal standards are enforceable?
- With the effectiveness of the GAC filters, BNL's drinking water is already in compliance with the proposed standards

Next Steps

Continue operation of the PFAS treatment systems

- Conduct groundwater and treatment system monitoring to verify effectiveness of the systems
- Finalize the RI/FS Work Plan following regulatory agency review
 - Respond to agency comments
 - Establish a public comment period
 - Provide an overview of Work Plan
 - Possibly during a CAC Meeting
 - Respond to public comments
 - Establish a schedule for conducting the RI/FS

L. Singh, V. Racaniello, R. Lagattolla, B. Howe, J. Milligan, J. Remien, AJ Scheff, B. Gordon (DOE), B. Dorsch, D. Paquette, E. Kramer, M. Yost, J. Ferraiuolo, N. Shemet

Not pictured: A. Engel and K. Green (DOE)