

Advances in Accelerator Science Deliver Precision Beams for Cancer Therapy

Steve Peggs Brookhaven National Laboratory Community Advisory Council May 8, 2014

After the war

1946 Robert Wilson, at Harvard from the Manhattan project, is asked to write about the dangers of "fast" (10 to 100 MeV) protons.

- Instead, he proposes proton therapy in the seminal paper *"Radiological Uses of Fast Protons"*
- "The proton proceeds through the tissue in very nearly a straight line .. until [it stops]. The dosage .. is many times less where [it] enters the tissue .. than .. in the last centimeter of the path."

1947 National labs like Brookhaven are born, to perform fundamental science (e.g. nuclear & high energy physics) that is too big for university-based programs. Accelerator Physics is born !

How X-rays & protons stop

X-rays (photons) have only one collision, stopping at a SPREAD OF RANGES.

Protons (or ions) have many collisions. All stop at about the SAME RANGE.

Protons (or ions) are steered left/right (or up/down) with magnets. Their range is adjusted by changing the input energy.

Slide courtesy of H. Paganetti & K. Held

Good dose distributions

Comparison of proton and photon radiation dose distributions in a patient receiving craniospinal radiation therapy for medulloblastoma.

Slide copyright of Radiological Society of North America

Protons

Steve Peggs

The patient's perception

1984 Zurich (PSI)

- Left: The patient enters the gantry room to lie on a robotic couch.
- Middle: The gantry rotates to the optimum irradiation angle.
- Right: Detectors (eg, proton tomography) are used for imaging.

What is behind the wall?

Accelerator diversification

2014 Brookhaven Lab accelerates

- species from electrons to Uranium via polarized protons & gold,
- to energies from 0.75 MeV to 250 GeV,
- serving biology, isotope production, radiobiology, chemistry, energy sciences, nuclear & high energy physics,

Whirlwind history

1954-1992 Ion synchrotron

Primary goal of the Berkeley Bevatron was fundamental physics

Its unparalleled ground-breaking use in helium & ion therapy:

- enabled early radiobiological research & treatment techniques
- established a foundation for all subsequent ion therapy
- demonstrated tech transfer from DOE to medicine

1979-2010 Massive cyclotrons

High power fundamental physics cyclotrons

- in Vancouver (TRIUMF)
- outside Zurich (PSI)

were used parasitically for proton & pion (!) therapy

1990 First hospital-based synchrotron

The Loma Linda (California) proton synchrotron is still a standard against which hospital-based synchrotrons are measured.

Designed and commissioned at Fermilab, with DOE support.

How to make it better — lighter, more affordable, more flexible? Thinking about this even before it left Illinois

2001 Hospital-based cyclotrons

First installed in Boston (MGH) the IBA C230 is todays world-market leader

- Normal conducting
- 230 MeV protons
- 200 tons
- 4 m diameter

More recently, the Research Instruments COMET

- Superconducting
- 250 MeV protons
- 80 tons
- 3 m diameter

Community Advisory Council, BNL, 140508

BROOKH/

2013 Cyclotron-on-a-gantry

The MEVION S250 *superconducting* proton *cyclotron-on-a-gantry* in the Barnes-Jewish Hospital at Washington University.

Superconducting wire comes straight from a DOE conductor development program, via the LHC Accelerator Research Program

3,000 Amps per square millimeter !

History & future

1946 R.R. Wilson proposes proton & ion therapy.

1950's Proton & helium therapy, Berkeley cyclotron.

- 1975 Carbon therapy in Berkeley synchrotron with scanning.
- **1984** Proton therapy begins at Zurich (PSI).
- 1990 1st hospital-based proton synchrotron, Loma Linda, CA.
- **1993** Precision carbon raster scanning, Darmstadt (GSI).
- 1994 Carbon therapy begins in Asia, at Chiba (HIMAC), Japan.
- 1997 1st hospital-based proton cyclotron, Boston (MGH).
- **2013** Proton cyclotron-on-a-gantry, St. Louis.

Department of Energy labs crucially enabled:

- the first carbon/ion therapy (LBL)
- the first hospital-based proton synchrotron (Fermilab).

What is the future tech transfer?

Carbon & other ions: treatment & radiobiology Lighter, smaller, cheaper

Proton & Carbon facilities

Community Advisory Council, BNL, 140508

Courtesy of Dr. Marco Durante

BROOKHAVEN NATIONAL LABORATORY

Carbon & other ions

Number of patients treated

Protons	Carbon/ion	Total
93,895	13,253	108,238

Number of therapy facilities

	Africa	Americas	Asia	Europe
Protons				-
Decommissioned	-	3	3	4
In operation	1	12	8	15
Carbon/ion				
Decommissioned	-	2	-	1
In operation	-	-	4	2

North America has fallen behind in the trend towards carbon/ion therapy.

December 2013 data from http://ptcog.web.psi.ch

2010 Hospital-based carbon synchrotron

"Synchrotrons are better suited to high rigidity beams"

630 ton, 19 meter gantry

It's almost 3 times harder to bend carbon ions than protons.

Practical carbon gantries need new designs & technologies.

Can't just say "you don't want them"

Smaller lighter gantry magnets

BNL "direct-wind" superconducting magnets can play a role (top).

Or even permanent (low-field) magnets.

But the intrinsic beam size (emittance) & intensity must be small.

Rapid cycling - small beams

Goal: deliver N particles in a given pattern in 2 minutes.

Cyclotrons: simple & easy to use, big & heavy, inflexible, least upgradable.

Slow cycling synchrotrons: more complex, lighter, more flexible, 1 pulse every 2 or 3 seconds, medium intensity beam.

Rapid cycling synchrotrons: most modern, lightest, most flexible, upgrade potential, 15 or 30 pulses per second, low intensity beam, small emittance.

iRCMS

BNL is working with Best Medical International on a smaller, lighter "ion Rapid Cycling Medical Synchrotron"

• delivering either protons, carbon, or other ions.

Currently: prototyping key accelerator components. Soon: announce prototype site & commissioning plans Clearly, more carbon/ion radiobiology is required.

Recommendations

http://science.energy.gov/~/media/hep/pdf/accelerator-rd-stewardship/Workshop_on_Ion_Beam_Therapy_Report_Final_R1.pdf

"Fundamental radiobiological research must be conducted in parallel with the development of imaging & accelerator technologies,"

"Future ... ion beam therapy systems must be *reduced in size*"

"Future facilities will need *multiple ions,* at least protons & carbon & 1 or 2 others, to permit ... *comparisons ... & ... optimal treatment.*"

"Short dose ... times will require rapid scanning both transversely & longitudinally (thus rapid energy modulation will also be needed)."

"Cost-effective improvements ... demands on accelerator"

"Developments in *gantries* & *beam lines* ... will likely require superconducting devices."

BROOKHA

Recognition

Accelerator Physics, born of nuclear & high energy physics, has left home and diversified.

National laboratories are still the centers of accelerator innovation & technology transfer.

The Department of Energy has enabled crucial advances that accelerated hospitalbased particle therapy, worldwide — we thank them, and the taxpayer.

More information

For more information on hadron therapy, see the following news stories that feature Brookhaven's work:

"Particle Beam Cancer Therapy: The Promise and Challenges"

http://www.bnl.gov/newsroom/news.php?a=24672&btw=1

"Cancer treatment: Sharp shooters"

Nature 508, 133–138 (03 April 2014) (requires subscription)

http://www.nature.com/nature/journal/v508/n7494/full/508133a.html

"Accelerator Applications for Cancer Therapy Highlighted in Nature Article"

http://www.bnl.gov/newsroom/news.php?a=24782

Backup slides

Carbon Bragg peak

European facilities

Japanese facilities

Community Advisory Council, BNL, 140508

29