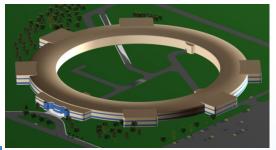
Overview of BNL's Solar Energy Research Plans

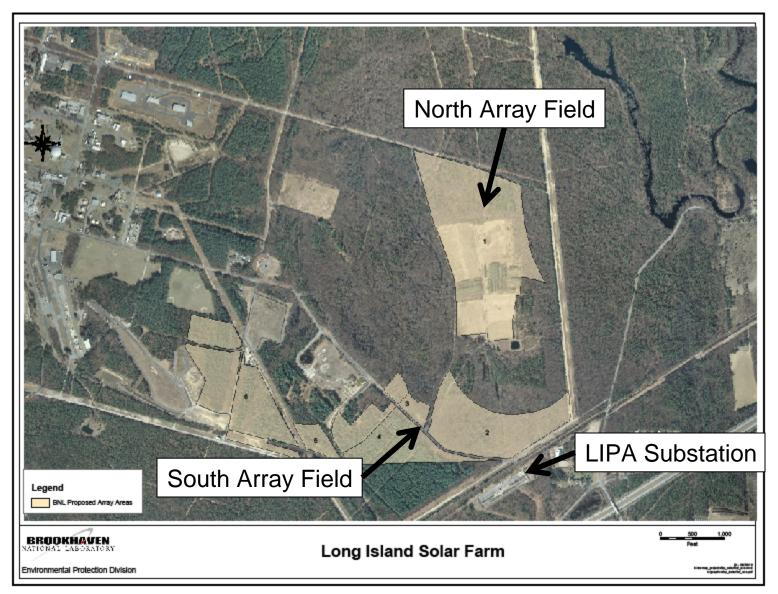
March 2011


a passion for discovery

Why Solar Energy Research at BNL?

BNL's capabilities can advance solar energy In the Northeast

World class facilities



History of successful research

Renewable energy research is part of BNL's mission

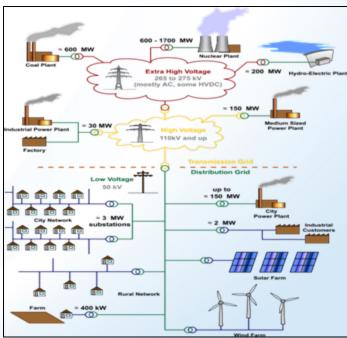
Long Island Solar Farm

 BNL research will focus on several of the key issues facing deployment and grid integration of utility-scale, distributed PV systems.

Key Issues

Variability and Non-Dispatchability

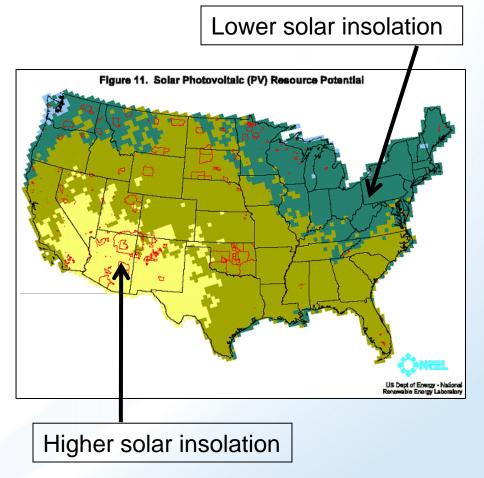
- Solar energy varies
- Solar generation cannot be dispatched when needed


Grid Integration

- Grid is not designed for two-way power flow
- Distributed generation can adversely impact grid control

Environmental Impacts

 Utility-scale solar PV plants can have impacts on local environment and ecology



Source: http://www.soldata.dk/pyr-80spc.htm

The LISF will also help characterize solar PV system performance in the Northeast...

- Solar generation tends to concentrate in the south and southwest
 - Highest solar insolation
- Performance data sets for utility-scale solar PV plants in the Northeast are not readily available
 - LISF data will help system designers

Research using LISF data Key Issue 1: Solar Variability and Non-dispatchability

- Develop database with time-resolved solar resource and meteorological data for BNL (Northeast U.S.) and solar plant electrical performance
- Examine statistical relationship between solar radiation input and solar plant output
- Study the impacts of weather variations and cloud transients on large-scale PV system performance
- Characterize the variability of PV generation as a function of cloud and meteorological conditions
- Develop models for real-time forecasting ("nowcasting") of available solar irradiation and impact on power production

Research using LISF data Key Issue 2: Grid Integration

- Establish the performance characteristics of large-scale solar PV plants located in the Northeast and factors affecting capacity credit
- Evaluate the impacts of large-scale solar PV plants on electrical distribution system power quality
- Study the impacts of large-scale high penetration solar PV arrays on the reliability and stability of the grid and local distribution systems
- Characterize the response of various system elements (e.g., inverter recovery) following rapid changes in solar insolation due to cloud transients and how it impacts array output
- Develop models to predict the response of the solar plant and individual components (e.g., inverters) to fault conditions
- Evaluate the impact of surface soiling on solar plant performance
- Study the impact of aging degradation on solar plant performance
- Develop an integrated performance model to forecast generation and study grid impacts due to high-penetration variable solar power and how control schemes can be used to mitigate these impacts

Research using LISF data Key Issue 3: Environmental Impacts

- Continue current programs on recycling of solar panels
- Perform life-cycle assessments of large-scale solar PV plants and energy policy options
- Verify our understanding of the impacts of large-scale solar array to the local environment, including microclimate, meteorology, and hydrology, and the associated impacts to the habitats for local plants and animals
- Collect data useful for evaluating the impacts of largescale solar plants to regional and global climate, including greenhouse gas emissions

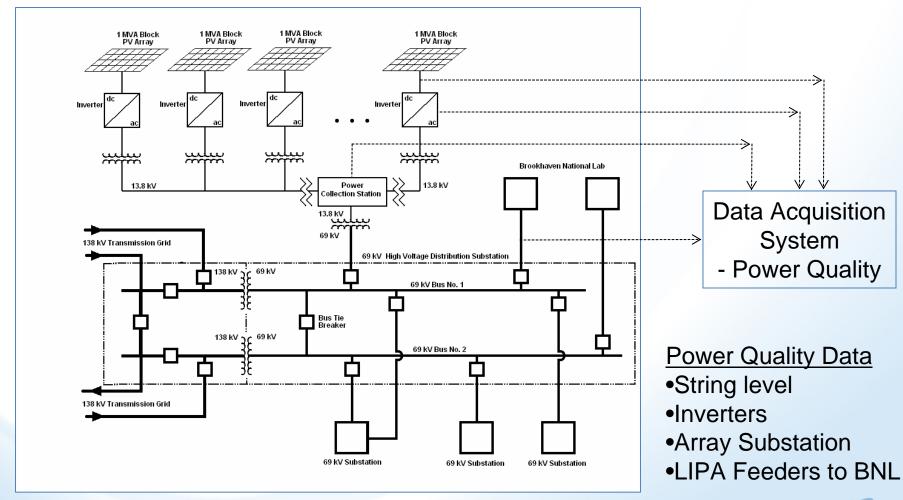
A suite of advanced research instruments will be installed in the LISF plant...

- BNL is working with LISF/BP Solar to incorporate instrumentation into the array
- Data will be obtained at high sample rates for research purposes
 - Solar Resource Data: sample rates up to 1 per second
 - Meteorological Data: sample rates up to 1 per second
 - Power Quality Data: sample rates up to 512 per cycle
- All data will be time synchronized
- Plans to participate in the NREL PV Variability Database

Solar irradiance and meteorological data will be collected...

- Instruments to measure solar insolation (pyranometers) covering the entire array
- Base station with precision instruments to measure solar insolation at high accuracy

- Temperature (air and panel)
- Relative Humidity
- Barometric Pressure
- Wind speed and direction
- Rain gauge
- Total Sky Imagers
 - Capture images of clouds as they move over the array



Power quality data will be collected for research purposes...

Environmental monitoring instruments for research purposes...

North array only

- Relative Humidity (at 10 locations in north array)
- Soil Temperature (2 at 10 locations in north array)
- Air Temperature below panel (at 10 locations in north array)

* Data from the BNL Met instruments, along with mobile instruments and animal trappings will also be performed

Planned Partnerships

- Other National Laboratories
 - National Renewable Energy Laboratory
 - Sandia National Laboratory
- Universities
 - Stony Brook University
 - Columbia
- Solar Equipment Manufacturers
 - BP Solar
 - American Superconductor
- Local Government and Utility Organizations
 - Long Island Power Authority
 - New York Power Authority
 - New York State Energy Research and Development Authority

BNL is planning to develop a Northeast Solar Energy Research Center (NSERC)

- Supplement research using the LISF array
 - Dedicated research array for field testing
 - Laboratory space for standardized testing
- NSERC would enable research in various other areas of interest to the solar industry
 - Testing under actual northeast conditions
 - Technology development test bed
- Energy would be delivered directly into the BNL electrical system
 - Help with sustainability goals
- BNL held a technical workshop to obtain input from industry experts for the development of NSERC

Preliminary Research Agenda for NSERC

Smart Grid Integration Studies

- Research on strategies that improve communication and control
- Techniques for integrating large numbers of systems into utility grids

Energy Storage Research

- Value propositions for integrated grid-level storage
- Evaluation of storage and control alternatives
- Reduce intermittency, resource extension
- Frequency regulation capability

Field Testing of New Technologies

- Evaluation and testing of new design concepts, such as inverters with capability for voltage regulation and VAR control
- Comparison of performance for components and systems using different technologies

Reliability and Degradation Studies

- Long-term reliability and degradation studies under Northeast conditions
- Standardized test conditions to evaluate component degradation
- Post mortem testing and failure analyses

For further information...

Robert Lofaro

Group Leader, Renewable Energy Group

Sustainable Energy Technologies Department

Brookhaven National Laboratory

Building 179B

(631) 344-7191

Email: lofaro@bnl.gov