Brookhaven National Laboratory

Groundwater Recharge Study

Community Advisory Council Presentation

May 13, 2010 Douglas Paquette Environmental Protection Division Groundwater Protection Group

a passion for discovery

Groundwater Recharge Study

- Evaluated the impacts of redirecting treated effluent from the Peconic River
 - Historical river flow (pre-Camp Upton)
 - Modifications to on-site river flow (Camp Upton and BNL)
 - Current on-site river flow conditions
 - Model predictions for recharging the effluent at three upland recharge areas
 - Preliminary assessment of possible impacts to aquatic organisms

Groundwater Recharge Options report presented as an appendix in the Q&R Study

Waste Water Treatment Facility

- Operations started with construction of Camp Upton in 1917
- Currently processes about 300,000 gpd (non-summer months) to 500,000 gpd (summer)
- Approximately 20% of the treated water recharges directly to groundwater below the filter beds and some is lost to evaporation
- 80% is collected by filter bed drainage system and is discharged to the Peconic River. Discharge is regulated by a SPDES permit

Modifications to Peconic River Drainage System

- Peconic River tributaries were trenched by the Army for improved:
 - Drainage of waste water
 - Drainage of wetland areas for mosquito control
- Some segments of the river downstream of the treatment facility were excavated/deepened during Peconic River restoration project (OU V)

Trench Digger at Camp Upton During WWI

Current Conditions

- Peconic River in the BNL area is an intermittent (seasonal) stream
- Most of the water in the river is from groundwater
- Start of continuous stream flow occurs where the water table intersects the river bed
 - During periods of above average seasonal precipitation, the start of stream flow occurs upstream of the STP (Present Conditions)
 - During periods of below average seasonal precipitation, the start of continuous stream flow occurs near the BNL eastern site boundary
 - Flow along a 2,600 foot on-site, channeled section of the river is due to STP discharges. Discharged water infiltrates along stream bed before reaching site boundary

Current Conditions

Current Conditions: Wet Scenario – Video from April 2010

Peconic River at STP Outfall – Wet and Dry Periods

Photo

Peconic River ~1,000 ft Downstream of STP Outfall – Wet and Dry Periods

Photo

Peconic River ~5,000 ft Downstream of STP Outfall – Wet Period

Peconic River ~5,000 ft Downstream of STP Outfall – Dry Period

Photo

hoto Point Area 27

Peconic River ~6,000 ft Downstream of STP Outfall – Wet Period

Peconic River ~6,000 ft Downstream of STP Outfall – Dry Period

Photo

Photo Point Area 28

Groundwater Recharge Option

- Evaluated impacts to on-site river flow if all treated waste water is re-directed to a nearby groundwater recharge area
- Groundwater model simulations:
 - Current conditions
 - Three upland recharge areas
 - Current filter beds
 - Old (inactive Army era) filter beds
 - An area ~2,700 feet west of the treatment plant
 - Under all three upland recharge scenarios there will be no on-site flow during periods of low precipitation.

Groundwater Recharge Old Filter Bed Area Scenario

- Old filter bed area was determined to be best location
 - Recharged water will not enter river as baseflow
 - No impact on domestic water wells or remediation systems
 - Flow from STP outfall to east firebreak will be intermittent, with continuous flow only during periods of high seasonal rainfall

Predicted Conditions

Potential Impacts to Flora and Fauna On-site

- Impact likely to be minimal to many wetland species
 Positive
 - Some emergent and submergent plant species may develop more along the banks of the river
 - May result in improved habitat for banded sunfish
- Mixed habitats would be beneficial to migratory shorebirds
 Negative
 - Loss of continuous flows from STP may impact large predatory fish (e.g., large mouth bass and chain pickerel)

Conclusions

Groundwater Recharge Option

- Even under current conditions (with BNL discharges), on-site portions of the river are an intermittent stream, dependent on groundwater base flow.
- Removal of the discharge would:
 - Have no impact on continuous stream flow during wet periods
 - Flow will no longer be continuous along ~2,600 foot channeled on-site segment of river during dry periods
 - No impact to off-site segments of the river
- Stop additional discharge of low levels of metals to river
- Impact on many wetland species expected to be minimal any impact would be restricted to 2,600 foot section of the river during dry periods
 - May improve habitat for banded sunfish
 - Impact will be fully evaluated with the regulatory agencies
 - A National Environmental Policy Act review will be required if groundwater recharge is the selected option.

Next Steps

Finalize SPDES studies

- Incorporate BNL and other comments and finalize draft by 5/21
- Review final draft, comments to D&B by 5/31
- Final report due 6/15
- Report to regulators by 7/1
- NYSDEC review of recommendations
 - SPDES permit will be revised if:
 - Effluent limits are changed
 - Discharge is diverted to groundwater
 - Revised permit will be subject to Public Notice
- Implement the chosen alternative

