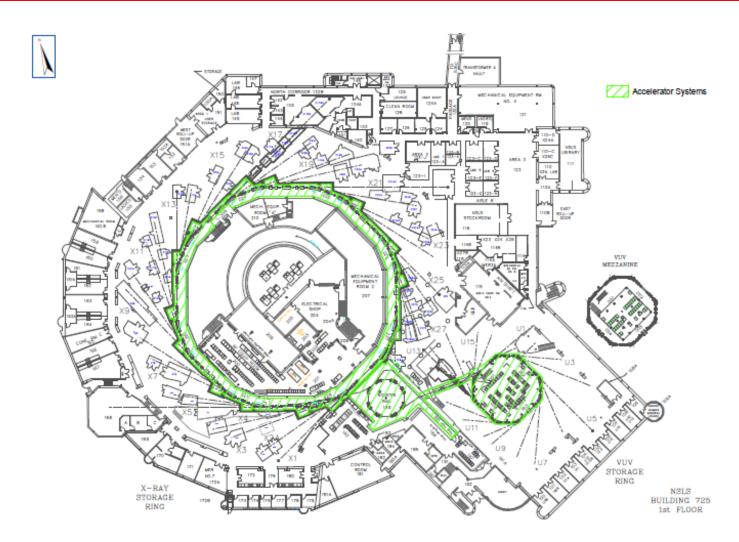

NSLS Hazard Removal Project

BNL Community Advisory Committee Briefing 5/14/15
L. Hill, Project Manager

Project Mission

To safely and efficiently remove hazards and hazardous conditions from the NSLS to prepare it for the next phase of the facility life cycle...either facility demolition or repurposing.


Background

- NSLS was a large user accelerator facility dedicated to the production and utilization of synchrotron light...supported the development and use of electron-based radiation sources and new applications in the physical and biological sciences
 - Began operation in 1982
 - Consisted of four interconnected accelerators and more than 60 "beamlines" used for conducting research
- NSLS supported extensive user program...typically 2300 users from -400 university, government laboratory, and industry institutions annually
- NSLS II started up and placed in operation in 2014
- NSLS permanently removed from service on September 30, 2014

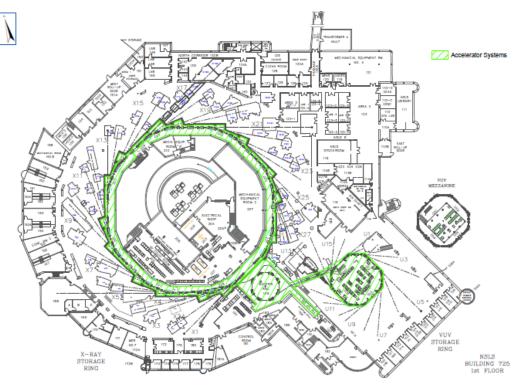
Facility Overview

Facility Stabilization

- NSLS research systems permanently shut down
 - Electrical systems de-powered
 - Cooling systems (deionized water) systems vented and drained
- Chemicals, compressed gases, research samples, etc. removed from facility
- Equipment removed for re-use at NSLS II and elsewhere at BNL or other research facilities
 - Approximately 3,000 individual components
 - Total value of almost \$50 Million
- Systematic process being used to look at further opportunities to re-use NSLS assets

Characterization Summary

- Hazards confined to Building 725 interior, and almost exclusively to experimental areas on 1st Floor
- Electrical equipment throughout the facility must be systematically and permanently isolated
- Over 600,000 pounds of lead shielding must be removed
- Lead dust must be cleaned up if the facility is to be re-used
- Depleted uranium "safety shutters" must be removed
- A small number of pieces of accelerator equipment are activated as a result of NSLS operation
 - Confined to small number of "high beam loss" areas in the accelerator enclosures
 - Radiation dose rates measured in the micro-Rem per hour or "background" range


Radioactive Materials Controlled Areas

Accelerator enclosures highlighted on map

Small amount of equipment in enclosures is radioactive

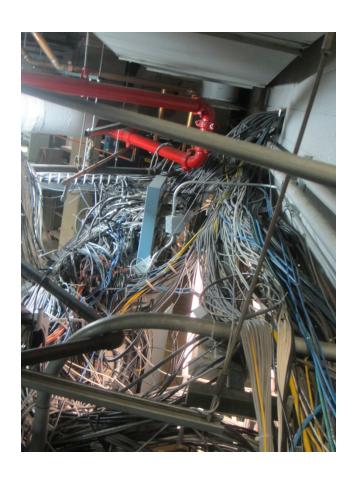
All equipment removed from the enclosures is radiologically

surveyed

Project Scope

Presently includes some of the hazards found during characterization:

- Facility characterization to identify hazardous materials and conditions that may be present in the NSLS facility (complete)
- Project mobilization including the selection and training of workers and procurement of required tools, equipment and materials (complete)
- Electrical isolation of research equipment (in progress, about 50% complete)
- Removal/disposition (i.e. recycling) of over 600,000 pounds of lead shielding including radiological survey of 400,000 pounds removed from accelerator enclosures
- Review/documentation of as-left conditions



Research Equipment Electrical Isolation- Examples

Typical Lead Shielding Arrays

Project Summary

- Project executed by BSA, supported by subcontractors
- Electrical isolation work started in late February
- Lead removal to commence this month
- Expect to be done with electrical isolations and lead removal by end of calendar year
- Evaluating timing of future actions to complete hazard removal

