

PET Plants: Imaging Natural Processes for Renewable Energy from Plants

Benjamin A. Babst Goldhaber Postdoctoral Fellow

Medical Department
Plant Imaging

a passion for discovery

PET imaging for medicine and plants

Brookhaven's Unique Capabilities

Movement, distribution, and metabolism of molecules in plants.

Outline

Bioenergy to mitigate energy crisis

PET tools & imaging

Plant resource movement

Plant signaling

Importance of Energy

All energy comes from the sun. Almost

Energy in Ecosystems

1,000,000 J of sunlight

Copyright to 2008 Pastreon Education, Inc., publishing se Pastreon Harristin Gurintings

Fossil Fuel Dilemma

Bioenergy

What is biomass?

- Edible biomass
 - sugars (sugar cane)
 - starches (corn)

Inedible biomass: fibrous or woody parts (<u>cellulosic</u> or <u>lignocellulosic biomass</u>)

What is biomass?

- Edible biomass
 - sugars (sugar cane)
 - starches (corn)

Inedible biomass: fibrous or woody parts (<u>cellulosic</u> or <u>lignocellulosic biomass</u>)

Inedible biomass - how?

Displace Prime Farm Lands?

"...there is potential for using... marginal lands for producing biomass feedstock." – USDA-DOE Billion Ton Update

Big picture challenges: Technology

Big picture challenges: Technology

Get resources in the right place, AND make the right stuff

Maximize Grain vs. Biomass?

Bioenergy Revolution

Plant Improvement for Feedstock

- Fast growth
- Stress tolerant
 - Nutrients
 - Water
 - Salt
- Pest resistant
- Composition for conversion
 - High cellulose, carbohydrates
 - Low lignin
 - Lipids

Challenge: How to improve plant composition, growth, and robustness?

CH₂OH

Grasses as model plants

Brookhaven Cience Associates

- Fast growth
- Stress tolerance (marginal lands)
- Pest resistant
- Transgenic and mutant lines available
- Composition high sugar varieties

Resource Allocation & Chemical Partitioning

Outline

Bioenergy

PET tools & imaging

Plant resource movement

Plant signaling

Radio-isotopes

	* 11C	¹² C	¹³ C	* 14C
Electrons	6	6	6	6
Protons	6	6	6	6
Neutrons	5	6	7	8
	unstable	stable	stable	unstable

- •Same number of protons & electrons
- Chemically identical
- Different number of neutrons

Radiotracers in plant biology, historically

Melvin Calvin— 1961 Nobel Prize in Chemistry

Carbon-14

Martin Gibbs — BNL 1949-1957

Higher Sensitivity & Non-invasive

PET Scientific Tools

Isotope	Half-life		
carbon-11	20.4 min		
nitrogen-13	10 min		
oxygen-15	2 min		
fluorine-18	110 min		

PET Scientific Tools

Positron Emmission Tomography (PET)

511 keV

γ ray

Outline

Bioenergy

PET tools & imaging

Plant resource movement

Plant signaling

Get resources in the right place, AND make the right stuff

Carbohydrate Transport

- Growth of "sinks"
 - Stem
 - New leaves
 - Roots
- Cellulosic biomass
- Bioproduct yield
- C drives transport

Mass-Flow Model: Ernst Münch 1930

Sugar loading into Phloem

Sucrose transporter (SUT)

- Genetic model: Zea mays
- Zea mays: 7 sut genes

Sucrose transporter 1 mutant (sut1):

Carbohydrate export from leaves

sut1 mutant phenotypes:

- -Reduced growth
- -Reduced leaf number
- -Sterile
- -Reduced photosynthesis
- -High Leaf carbohydrates

¹¹C-Sugar Export

Drastically reduced export... moderately reduced sap flow speed

sut1 leaf carbohydrates

Sugars accumulate in response to the reduced transport out of mutant (*sut1*) leaves.

Sugary Stems

Sugar in Sweet Sorghum Stems

- Abundant sugars → directly fermented
- High biomass
- Lower nutrient/water requirements
- Drought tolerance (stay green)
- Adaptable to temperate climates
- Genetic resources

Sugar in Sweet Sorghum Stems

Study model for sugar accumulation

Leaf export similar to grain sorghum.

Abhijit Karve BNL, 2012

Supported by:
USDA-DOE
Plant Feedstock
Genomics for
Bioenergy

Grain Sorghum

Sweet Sorghum

Sugar in Sweet Sorghum Stems

How controlled?

- Weaker competition
- Stronger sink strength
- Sucrose transporters
 - Sut mutant isolation
- Nodes in control?
- Other mechanisms?
 - Genetic mapping

Outline

Bioenergy

PET tools & imaging

Plant resource movement

Plant signaling

Get resources in the right place, AND make the right stuff

Phytohormones in Stem Growth

Bioenergy Revolution

Gibberellin Brassinosteroid Auxin

Auxin in Stem Growth

br2: auxin transport mutant

WT br2

WT br2
Multani et al. (2003) Science

TRENDS in Plant Science

COOH

Auxin Transport in Stem Growth

- IAA efflux transporter
- IAA influx transporter

Auxin Transport in Stem Growth

How do grass nodes influence auxin transport?

- IAA efflux transporter
- IAA influx transporter

Synthesis of [11C]Indole-3-acetic acid (Auxin) from gramine (Reid et al., 2011)

- This rapid, high yield radiosynthesis yields [¹¹C]indole-3-acetic acid and 2 other labeled auxins from one general method.
- [11C]indole acetonitrile is formed in very high yield and is a key intermediate for other labeled auxin intermediates for auxin biosynthesis studies in grasses.

Imaging Auxin Transport New Data:

microPET

- 1. Upward transport of auxin in stem.
- Transport associated with vascular bundles (autoradiography).

Getting at the Root of the Problem...

• USDA & DOE:

Understanding root system architecture is critical to developing more robust plants for bioenergy that are capable of growing on marginal soils.

What plant signals regulate root architecture?

Treatment of roots using auxin will result in shorter roots, but higher lateral root density.

Salicylic Acid Inhibits Auxin Transport

Summary

- Transport important for plant quality and yield
- Sink import drives sugar accumulation
- Roles of plant hormones
 - Stem elongation
 - Root architecture
- How do plant hormones interact
- Key role for ¹¹CO₂ and PET imaging

People

David Braun – U. Missouri Ismail Dweikat – U. Nebraska Katherine Sanidad - Stonybrook U. Yigit Gol - Stonybrook U.

BNL PET Group

Goldhaber Fellowship BNL-DOE LDRD Seed Grant

Support

DOE Office of Biological and Environmental Research USDA-DOE Plant Feedstock Genomics for Bioenergy