

Office of Educational Programs

NSLS

RHIC

NSLS-II

CFN

Cyber-enabled Remote Access

Bringing Big Science into the Classroom: BNL's NSLS and CFN Monday, May 24, 2010

Over 100 Registered Attendees, over 50% were High School Teachers and Administrators

What is InSynC?

- A program to enable high school teachers and students to gain remote access to synchrotron beamtime through a competitive, peer-reviewed proposal process.
- The program will train both teachers and students to formulate a hypothesis-driven scientific problem and learn the skills of writing a competitive beamtime proposal.
- Supported and Funded the NSLS and DOE's Office of Workforce Development for Teachers and Scientists (WDTS) to enhance science education at the high school level.

Who Can Participate?

- This program has started with local Long Island high schools.
- Any high school science program can participate.
- We anticipate that in the future the program will be expanded to a nationwide competition and involve all US synchrotrons.

Implementation

3-Day Teacher Training Course

Teachers & Students formulate a hypothesis and experiment

Teachers & Students submit proposal

July 2010

Score too low for this cycle: Classroom Visit

Peer Review

Highest rated scheduled for beamtime

Proposals receive 1-4 rating

Where Are We Now?

- First set of proposals were submitted on October 22nd.
- Reviews were completed and proposals scored by a panel of synchrotron scientists worldwide with expertise in education and outreach.
- Proposal Examples: collection and analysis of micrometeorites, effectiveness of household water filters, chemistry of biofilms, structural biology
- Two proposals were allocated beamtime in December 2010.

Beamtime Allocation Ceremony

Monday, November 29, 2010

- Proposals allocated beamtime:
 - Microbial Biofilm as a Remediation Tool for Copper Contaminated Freshwater (Diana Soehl, Elwood-John H. Glenn High School)
 - Effectiveness of Common Household Water Filters Using X-Ray Fluorescence
 Microprobe (Ashley Bloch, Islip Middle School; Michael Vaccariello, Sachem East High School)

What's Next?

Available Beamlines & Beamtime:

- Initially, approximately 1-2 days of beamtime per cycle will be allocated on 3 beamlines at the NSLS.
- These will include:
 - X-ray fluorescence microprobe beamline
 - Infrared microscopy beamline
 - Protein crystallography beamline
- As additional beamlines are outfitted, more beamlines will be made available.

Infrared Microscopy Beamline

These beamlines focus bright beams of infrared light to a very small size (1/10 size of human hair) to image the organic makeup of materials

Examples: biological materials, plastics, fibers, soils

Science Example: Fingerprint Composition

- Problem: Forensic
 evidence shows that
 children's fingerprints
 "disappear" faster than
 adults' prints
- Experiment: The infrared microscope images the oil and protein components of fingerprints.
- Results: Differences in oil composition are responsible for the volatility of children's prints

Synchrotron X-ray Microprobes

- These beamlines focus these bright X-ray beams to very small size (<10 μ m ...f.y.i human hair is ~100 μ m diameter) to:
 - Examine the distribution of elements at micron scale with femtogram sensitivity (0.000 000 000 000 001 g)
 - Evaluate the molecular form of these elements in natural samples
 - Provide chemical information as an imaging experiment

Science Examples: X-ray microprobe

- Pollutants in urban NJ brownfields
- Increasingly converted into green spaces by allowing natural succession to proceed unassisted
- insects such as leafminers alter and cycle metals

- Cretaceous fossil of a stonefly (Liaoning, China, ~125 million years old)
- X-ray fluorescence microprobe allows for chemical imaging of remnants of soft tissue that is not optically visible

Ideal for analysis of samples as-is with no sample preparation

Remote Access from the Classroom

Summary

InSynC...

- Engages high school teachers and students to formulate hypothesis-driven experiments
- Provides research experience to entire classrooms rather than individual students
- Addresses many of the key recommendations made by the National Academies in the National Curriculum Standards (i.e. inquiry based learning)
- Provides student access to the Nation's premier science facilities, the same facilities Nobel-prize winning researchers have used

Rod MacKinnon

Venkatraman Ramakrishnan

Thomas Steitz

Participating School Districts so far

Longwood

Riverhead

William Floyd

Bellport

Patchogue-Medford

Sayville

Babylon

Shelter Island

Islip

Hauppauge

Deer Park

Northport

Eastport South Manor

Mt Sinai

Elwood

North Babylon

Sachem

For additional information...

NSLS InSynC Website: http://insync.nsls.bnl.gov/

Scott Bronson (sbronson@bnl.gov, 631.344.4385)

Tony Lanzirotti (lanzirotti@bnl.gov, 631.344.7174)

Lisa Miller (lmiller@bnl.gov, 631.344.2091)