

Light Source 101

With *many* thanks to Lisa Miller Statistics by Kathy Nasta

> Jean Jordan-Sweet December 9, 2010

Outline

- The Facility
- The Users
- The Science

Brookhaven National Laboratory

Commissioned in 1982(VUV)-1984(X-ray), built for ~\$23M

What is a Synchrotron?

A synchrotron is a machine that produces tiny beams of very bright

LGHT

by accelerating charged particles (electrons or positrons) around a "circular" track using magnetic fields

X-RAYS ULTRAVIOLET VISIBLE INFRARED LIGHT LIGHT LIGHT MICROWAVES

The Electromagnetic Spectrum

Early Synchrotrons

- First particle accelerators (cyclotrons) were used to "split the atom".
- First synchrotron was built in 1947 by General Electric.
- Synchrotron radiation was given off by these accelerators and was seen to be a nuisance.
- In the 1960's it was realized that this would be a useful source of radiation – a new light source.

North American Synchrotrons

 $1^{st} \rightarrow 2^{nd} \rightarrow 3^{rd}$ generations

The World of Synchrotron Radiation

Click an area or button for further listings of synchrotrons around the world.

http://srs.dl.ac.uk/srworld/world_sr.html

Properties of Synchrotron Light

- Broad band a wide energy range of photons is available (tunable)
- Polarized this minimizes background scattering, improves sensitivity and enables measurement of circular dichroism
- Pulsed the electron bunches produce nanosecond light pulses, enabling process kinetics to be followed and 'movies' of reactions to be made.

Properties of Synchrotron Light

Brightness – many orders of magnitude brighter than conventional sources, enabling quick experiments on small samples.

The **BRIGHTNESS** of Synchrotron Light

100 Watts / 1000000 mm² (1 m²) = 0.0001 Watts / mm²

0.005 Watts / 1 mm² = 0.005 Watts / mm²

30 Watts / 0.01 mm² = 3000 Watts / mm²

This is Synchrotron Light

(actually it's air (nitrogen) that has been excited by x-ray light)

How Do We Make Synchrotron Light?

Building a Synchrotron 101

1) Take evacuated beam pipe

ADD:

- 2) Bends (dipoles) to form e-beam trajectory (& as SR sources)
- 3) Quadrupole magnets to focus e-beam transversely
- 4) Sextupoles for achromatic focusing
- 5) RF to make up for energy loss; also provides longitudinal focusing (bunching)
- 6) Injection system
- 7) IDs into avail. straight sections
- 8) Beamlines to deliver photons to the Users

Types of Light-Generating Sources

Bending magnet

Sweeping searchlight
At each deflection of the electron path a beam of radiation is produced

Insertion devices: inserted into "straight sections" of the ring and produce higher intensity of light

Wiggler

•Beams emitted at each pole reinforce each other and appear as a broad beam of incoherent light

Undulator

•Produces a very narrow beam of coherent light, amplified by up to 10,000x

Source output

Typical Beamline

modified from Als-Nielsen and McMorrow, Elements of Modern X-Ray Physics

Outline

- The Facility
- The Users
- The Science

- Facility operates 24 hours/day, 7 days/week, ~10 months/year
- >2200 users per year (~1/3 are new users)
- Typical stay is 2-4 days (onsite housing)

How to Get Beamtime

- Scheduled in three 4–month cycles
- User access via 2 primary mechanisms:
 - General User Proposals: peer-reviewed
 proposal system
 - Participating Research Teams (75%)
- Some proprietary research is done (full costrecovery rate, ~\$100/hr)

NSLS User Distribution FY 2010

NSLS Users by Research Institution FY 2010

NSLS Users by Employment Level FY 2010

A large number of students and postdocs work at NSLS

Bishnu Panigrahi college student "heavy metal transport in plants" Sayville, NY

Student Research

Ashley Jones *college student* "Arsenic toxicity in the kidney" *Saginaw, MI*

Megan Bourassa *PhD student* "metal homeostasis in ALS" *Phoenix, AZ*

Jeff Ambrose college student "nitrogen fixation in soils" New Orleans, LA

Matt Engel PhD student "protein structure in hepatitis C virus" Stony Brook, NY

Andreana Leskovjan "ir *PhD student* "metal uptake in Alzheimer's disease" *Tampa, FL*

Alvin Acerbo PhD student "improving imaging resolution" The Netherlands

ion" Shirin Mortazavi college student "unique methods to crystallize proteins" Bellport, NY

NSLS User Community

- 2228 scientists in FY 2010
- >400 academic, industrial, government institutions
- ~750 new users register each year

- Strongest growth in life sciences
- Largest groups are materials and life sciences

Beamtime Used by Field of Research

Number of Users

Beamtime Used*

- More life science users, shorter beamtime, high-throughput
- Materials science experiments are more complicated, time-consuming

NSLS Publications

- almost 1000 publications per year
- > 200 publications in premier journals

Outline

- The Facility
- The Users
- The Science

What do we do with Synchrotron Light?

Major Synchrotron Techniques

SPECTROSCOPY

Infrared spectroscopy

Photoelectron spectroscopy

X-ray absorption spectroscopy

X-ray emission spectroscopy

DIFFRACTION/SCATTERING

Protein crystallography Small molecule crystallography Powder diffraction Small-angle x-ray scattering X-ray microdiffraction High momentum resolution x-ray scattering

IMAGING

Infrared microspectroscopy Soft X-ray scanning microscopy Hard X-ray microprobe X-ray microtomography Diffraction-enhance imaging

OTHER

Micro-machining X-ray footprinting

Chemistry

Corrosion

Rechargeable batteries

Catalytic converters

2003 and 2009 Nobel Prizes in Chemistry

Rod MacKinnon

Venkatraman Ramakrishnan

nature

Structure of the 309 ribosoma subunit

Thomas Steitz

AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE

Geology and Environmental Science

Environmental cleanup

Mars meteorites

Space dust

Earth's core

Biology and Medicine

Arthritis

Physics and Materials Science

Data storage

Liquid crystal displays

Nonstick coatings

Improved polymers

Nanomaterials

IBM and collaborators at NSLS

Computer hardware

Faster, Smaller, Cheaper

With every generation beyond 45nm, performance scaling is becoming increasingly difficult and will require new performance-enhancing elements

"We are not just shrinking lithography and buying the next-best stepper. Everything in the last five years has included changes in basic materials and process engineering, whether it's strain engineering, embedded silicon germanium in our Sol, our Airgap technology, our high-k metal gate—these are fundamental R&D, not just shrinking." *Tom Reeves* VP of semiconductor and technology services at IBM, interview in Electronic News, 6/19/2007

hydrogen 1		Before 90's															helium 2 He	
lithium 3	4 Be	⁴ Since the 90's											boron 5	carbon 6	nitrogen 7	oxygen	fluorine 9	10 Ne
6.941 sodium 11 Na	9.0122 magnesium 12 Mg	Beyond 2006											B aluminum 13	silicon 14 Si	phosphorus	sulfur 16 S	chlorine 17 Cl	20.180 argon 18 Ar
22.990 potassium 19 K 39.098	calcium 20 Ca		scandium 21 Sc	titanium 22 Ti	vanadium 23 V	chromium 24 Cr	manganese 25 Mn 54,938	26 Fe	cobalt 27 Co	nickel 28 Ni	copper 29 Cu	zinc 30 Zn	gallium 31 Ga 69 723	germanium 32 Ge	arsenic 33 As	32.065 selenium 34 Se 78.96	Bromine 35 Br	39.948 krypton 36 Kr 83.80
rubidium 37 Rb 85.468	strontium 38 Sr		yttrium 39 Y	zirconium 40 Zr	niobium 41 Nb	molybdenum 42 Mo	43 TC [98]	ruthenium 43 Ru	rhodium 45 Rh	palladium 45 Pd	47 47 Ag 107.87	cadmium 48 Cd 112.41	indium 49 114.82	tin 50 Sn 118.71	antimony 51 Sb	tellurium 52 Te	lodine 53 126.90	xenon 54 Xe
55 CS 132.91	barium 56 Ba	57-70 *	174.97	hafnium 72 Hf	tantalum 73 Ta	tungsten 29 W	Rhenium 75 Re	osmium 76 0S 190.23	iridium 77 Ir	platinum 78 Pt	90ld 79 Au 196.97	80 80 Hg 200.59	thallium 81 1 204.38	82 Pb 207.2	bismuth 83 Bi	84 PO [209]	85 At	86 Rn
francium 87 Fr [223]	radium 88 Ra [226]	89-102 **	lawrencium 103 Lr [262]	rutherfordium 104 Rf [261]	dubnium 105 Db [262]	106 Sg [266]	107 Bh [264]	108 108 HS [269]	109 Mt [268]	110 Uun [271]	111 Uuu [272]	112 Uub [277]		114 Uuq [289]				
	*lanthanoids		lanthanium 57 La	cerium 58 Ce	Praeseo dymium 59 Pr	neodymium 60 Nd	promethium 61 Pm [145]	samarium 62 Sm	europlum 63 Eu	gadollinium 64 Gd	terbium 65 Tb	dysprosiur 66 Dy	holmium 67 Ho	erbium 68 Er	thullium 69 Tm	ytterbium 70 Yb		
	**actinoids			90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np	94 Pu [244]	95 Am [243]	96 Cm [247]	97 Bk [247]	98 Cf [251]	99 Es [252]	100 Fm [257]	101 Md [258]	102 NO [259]		

Why IBM comes to the NSLS:

IBM scientists travel to the NSLS to use x-rays to look at the arrangement of atoms in crystalline materials. The x-rays can tell us the type of crystal, if it is under stress, or if it is unstable during heating or reacts with other materials. We can also use x-rays to measure the thickness of films, how rough they are, and their "texture".

beamline instruments

FEOL materials and challenges

SO

Si, SiGe, Ge

capacitance

crystal quality

interface smoothness

carrier channel

Si, SiGe, Ge dopant profile strain stability interface quality

BEOL / MOL materials and challenges

metallization

Cu, alloys low resistance TDDB interface quality plating conditions seeding self-annealing electromigration

liners

Ti, Ta, TaN, TiN uniformity barrier stability conformality

dielectric air gap formation stability

http://www-03.ibm.com/press/us/en/ photos.wss?rN=36&topic=6

W

vias

low resistance interface smoothness conformal filling dielectric

SiCOH, nanoglass, porogens low dielectric constant interface quality, pore size distribution, mechanical strength

Caps CoWP, SiC_xN_yH_z *uniformity barrier stability stress*

solder lead-free Snuniformity purity (radiation) thermal stability

New devices, exotic materials

Janotube

source

Phase-change memory

GeSb, GeSbTe, GeTe,others crystallization Temp amorphization Temp resistance change transition speed scalability, cyclability

Nano Lett 9(1)422 (2009)

C-based transistors

graphene, CNT switching speed carrier mobility manufacturability

10 um

Adv. Mater. 22, E156, 2010

solar cells CIGS, CZSSS, Si ohmic contact efficiency low cost stability manufacturability

The End