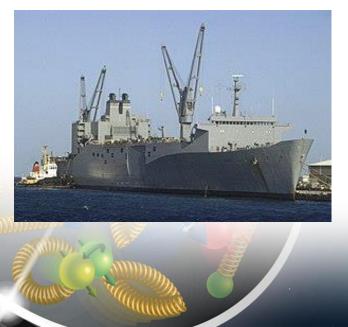
Infrastructure Overview

Charles Folz, Division Director, Infrastructure Community Advisory Council

May 13, 2021


Overview:

- About me
 - Who I am
 - Where I'm from
 - How I came to be involved with EIC
- Facilities Support for Science
- EIC Facilities Design background

- EIC Facilities Construction
- In closing

A bit about me...

- Born and raised on Long Island
- Graduate of the US Merchant Marine Academy at Kings Point
- Deep Sea commercial shipping experience USCG Licensed Chief Engineer

Continued...

- NYS Licensed Professional Engineer
- Prior to BNL, was in powerplant operations at NYPAs Poletti Project in Astoria, NY

- Came to BNL in 2009 in Collider Accelerator Experimental Support and Facilities
- Worked on evolution of EIC Conceptual Design and now serving as part of the Project Team

Safety as a Priority

- Building and Site Construction Hazards are mitigated with conventional safety protocols:
 - Excavation Digging Permits
 - Fall Protection/Prevention, Heavy Equipment, noise, dust, etc. – Job and Work Planning, toolbox meetings, Phased Hazard Analysis, OSHA Training Requirements, IH Monitoring
- Preliminary Fire Hazard Analysis has been completed by the BNL Fire Protection Engineering Team

From Manhattan Project to EIC: Construction Supporting Science

- The Manhattan Project required construction of large facilities to accomplish the mission; now eight of these are designated signature facilities and are part of the National Parks System.
- This launched the "Atoms for Peace" program ultimately resulting in BNL's role as the Birthplace of Nuclear Medicine.
- DOE and its predecessor agencies have a strong history of successfully executing large complex construction projects in support of the science mission.
- Here at BNL we carry on that tradition:
 - Brookhaven Graphite Research Reactor
 - Cosmotron/AGS
 - RHIC
 - NSLS-II

Requirements

- Requirements for Infrastructure are driven by the needs of the EIC machine, namely:
 - Space square or cubic footage
 - Power Electrical distribution as delivered voltage, amperage capacity and total power available

ASTM International - D1193-06(2018)

Standard Specification for Reagent Water

ASTM D1193-06

Conductivity, min. µS/cm (25oC)

Resistivity, min. MQ-cm (25oC)

TOC, max. µg/l

Silica, max. µg/l

pH value (25oC)

Sodium, max. µg/l

Chloride, max. µg/l

- Environmental Conditions temperature, humidity, stability
- Cooling capacity water or air total heat removal over time and water or air quality
- Regulatory Compliance with Codes of Record & DOE Standards, and
- Integration of Systems, Structures and Components (SSCs) into the existing complex

ASTM Sub-Standards	A	В	с
Bacteria, max (CFU/ml)	1	10	1,000
Endotoxin, max (EU/ml)	0.03	0.25	-

TYPE 2

1

1

50

5

3

5

TYPE 1

0.056

18

50

1

3

1

TYPE 3

0.25

4

200

10

500

10

_

TYPE 4

5

0.2

No limit

50

No limit

50

5.0-8.0

Requirements define the design and drive the costs...

"Is it too late to add four floors?"

Sustainable Design:

• Document High Performance & Sustainable Bldg. & Sustainable Env. Stewardship Considerations

This goal is incorporated into the Statement of Work contract language for the A/E firm working with us on the Infrastructure Design:

2.2 Guiding Principles for Sustainable Design

The EIC buildings shall be designed in conformance with Executive Order 13834, Efficient Federal Operations and the Guiding Principles for Sustainable Federal Buildings as updated by the Council on Environmental Quality dated February 26, 2016.

Note: this document has been updated as of December 2020: https://www.sustainability.gov/pdfs/guiding_principles_for_sustainable_federal_buildings.pdf

This has been included in the Basis of Design Document in Section 4.0, "Sustainable Design" including a checklist with status – serving to keep this on track:

Guiding Principles Summary							
	% of Guidelines	#	Status				
	47%	11	Yes, Meets Guidelines				
	9%	2	Yes - Partially Compliant (Y-P)				
	26%	6	Not Yet Evaluated (N/E)				
	18%	4	Not Applicable (N/A)				

This Checklist is based on HDR's analysis of the Guiding Principles requirements given the current proposed design and information provided by the owner. HDR will perform its services with the degree of skill and care normally exercised by similarly situated members of the profession performing similar services at the same time and in the same locale as the Project. Requirements may move from Yes to No to N/A throughout the design and construction process

Electron-Ion Col

Six Guiding Principles:

The Guiding Principles ensure Federal buildings:

- 1. Employ Integrated Design Principles Integrated design & management, commissioning
- 2. Optimize Energy Performance

Efficiency, benchmarking

- 3. Protect and Conserve Water Indoor, outdoor use
- 4. Enhance the Indoor Environment

Indoor air quality (IAQ) strategies

5. Reduce the Environmental Impact of Materials

Recycled content, solid waste management

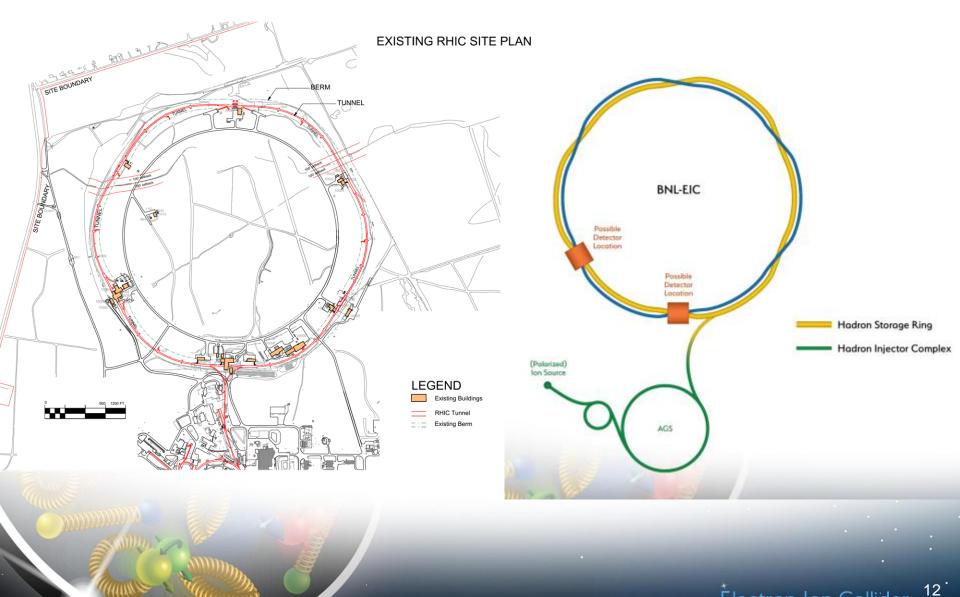
6. Assess and Consider Building Resilience

Effects of climate change

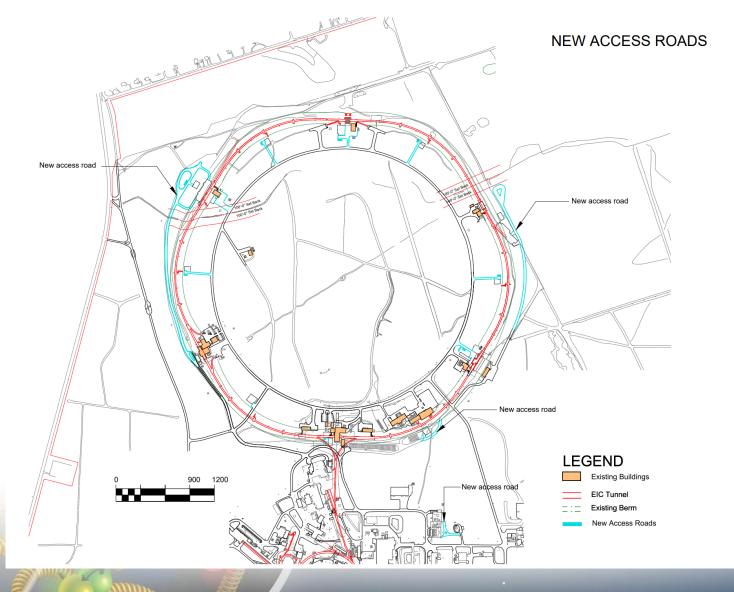
Applicability
 Assessment Pathways
 Operational Impacts

Electron-Ion Collider ¹⁰

BROOKHAVEN NATIONAL LABORATORY ELECTRON ION COLLIDER

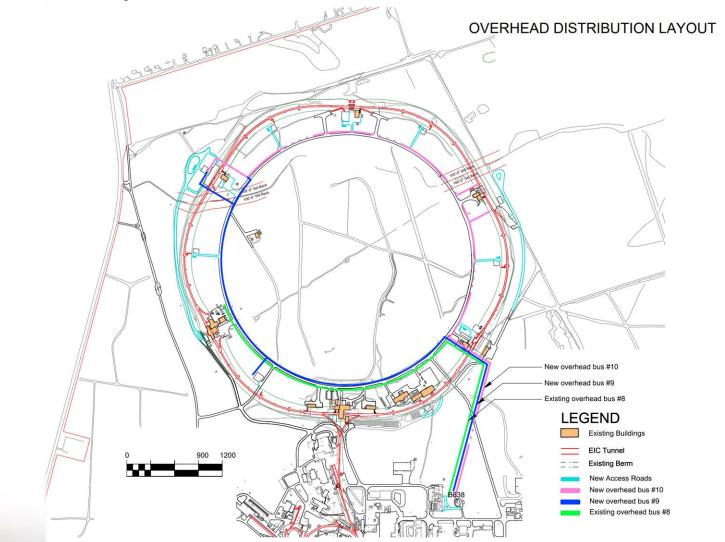

HR

Video courtesy HDR, our CDR A/E Firm Design Partners

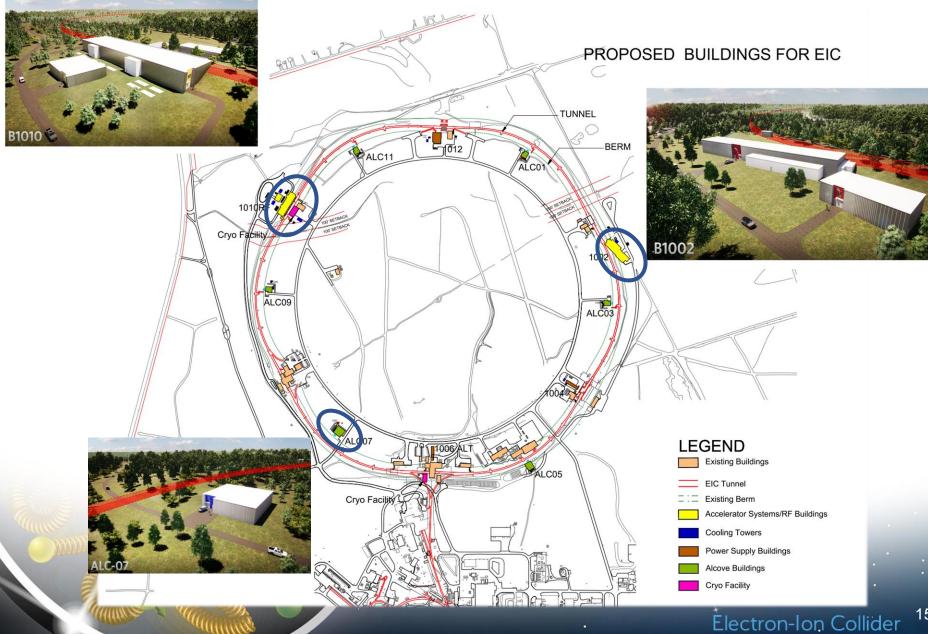

Electron-Ion Collider

11

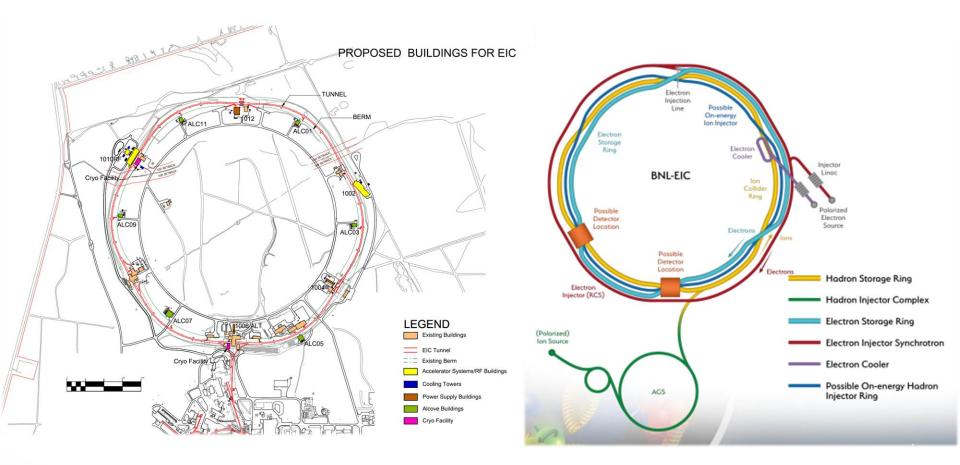
Scope: Existing Site Plan



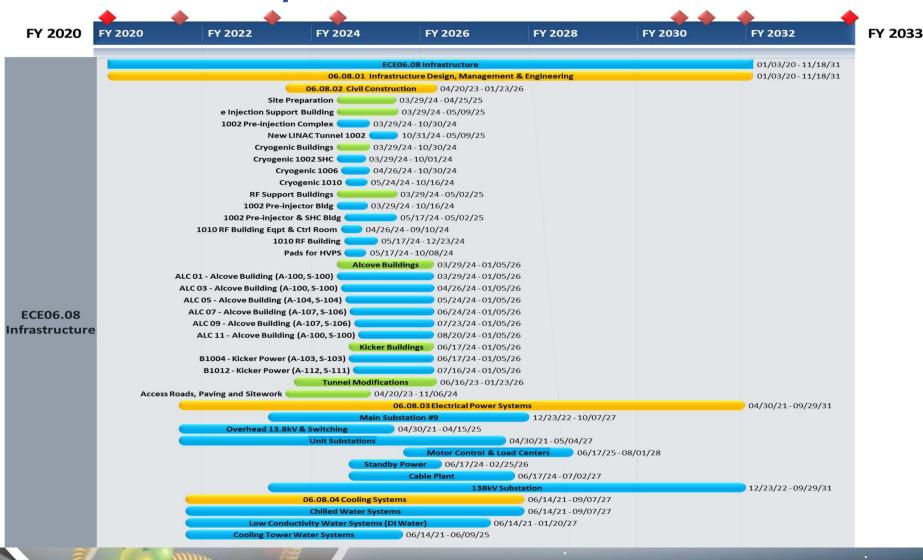
EIC Proposed Site Plan: Roads


Electron-Ion Collider ¹³

EIC Proposed Site Plan: Power Distribution


Electron-Ion Collider ¹⁴

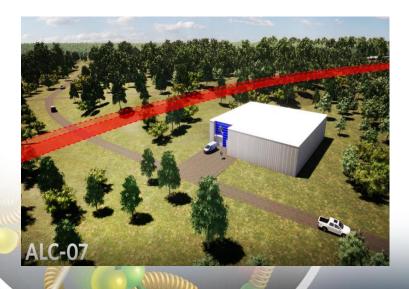
EIC Proposed Site Plan: Buildings


15

EIC Proposed Site Plan: Building for Science

Électron-Ion Collider ¹⁶

Proposed Schedule



Electron-Ion Collider ¹⁷

Brookhaven National Laboratory – EIC Buildings

Electron-Ion Collider ¹⁸

Scope – Building Summary Table

Building	Designation	Quantity	Area	Total Area
Alcove Buildings	ALC-01, 03, 05, 11	4	2,330	9,320
Main Alcove Buildings	ALC-07, 09	2	4,820	9,640
Cryogenic Plants 1002, 1006	B1002C, B1006C	2	4,320	8,640
Cryogenic Plant 1010	B1010C	1	4,910	4,910
Kicker Power Supplies	B1004	1	4,480	4,480
Kicker Power Supplies	B1012	1	10,630	10,630
Electron Source Building	B1002	1	29,560	29,560
RF Building	B1010	1	42,130	42,130
Total Gross Area				119,310

Construction Scope to be Funded by NYS

- We have received a commitment from NYS to fund \$100M of visible construction projects as part of the EIC
- We have identified \$100M of Conventional Construction Scope for this

In Closing...

- Thank you for giving me this time and opportunity to present and discuss
- We are looking forward to planning and building the next generation collider right here at Brookhaven
 - We are also excited for the opportunities that will be available in building design, engineering and construction

Électron-Ion Collider²¹