

Laboratory for BioMolecular Structure

(LBMS)

Liguo Wang

LBMS

The 3rd LBMS annual cryo-EM course June 20th, 2023

🥑 🖪 🔘 🛅 @BrookhavenLab

Laboratory for BioMolecular Structure

LBMS is a center for life science imaging that offers access to state-of-the-art cryo-electron microscopes and laboratory equipment for studies on the building blocks of all living organisms and their behavior.

<u>Mission</u>: to support and enhance BER mission research through the **development**, **operation** and **continued improvement** of a state-of-the-art electron microscopy facility optimized for solving BER-related challenges.

Focus: complex interactions specifying the function of entire biological systems

- from molecules to organelles, cells and multicellular organisms

LBMS leadership

Science Advisory Committee

Name Affiliation Huilin Li (Chair) Van Andel Institute Daniela Nicastro UT Southwestern **Medical Center** Alexis Rohou Genentech Inc. John Shanklin **Brookhaven National** Laboratory **Fred Sigworth** Yale University Sharon Wolf Weizmann Institute of Science, Israel Elizabeth Wright U. of Wisconsin-Madison Chen Xu U. of Massachusetts Medical School

LBMS team

Sean McSweeney Liguo Wang Director of LBMS

Scientific Operations

Guobin Hu

Scientist

Jake Kaminsky Scientific Associate

BNL

Yong Xiong PI, Biology Dept. Professor

Yale

Director

Dongyan Tan Assistant Professor SBU

Jun Liu Professor Yale

LBMS open for general research

- Proposal lifetime is 2 years
- 2 proposal cycles per year:
 - January June (proposal deadline September 15)
 - July December (proposal deadline March 15)
- General User most common form of user access for routinely-supported experiments
- Block Allocation Groups (BAGs) groups of researchers that want to combine their short microscope time requests into a single proposal to permit greater flexibility in beam time scheduling
- Rapid Access (6 month) rapid access to instrument time for "hot topics" or for straightforward experiments with a fast turnaround time
- Proprietary full cost-recovery instrument time
- BER outreach activity (no proposal required)

- Guaranteed: 200 days/year Users GU/BAG: 52.5% 7.5%
- Users Rapid:
- Outreach: 15.0% 10.0% Development: Collaboration: 7.5%
- 7.5% Proprietary:

https://www.bnl.gov/cryo-em/userguide/

Access to Electron Microscopes (EMs) at LBMS

Screening EMs Talos 120C & Jeol 2100

Users will be trained in person and must be onsite.

High-resolution EM Krios with K3 & GIF

Users will be trained virtually. Users' presence is required (Zoom meeting).

https://www.bnl.gov/cryo-em/userguide/

LBMS statistics: Krios is 5X over subscribed

Planned usage per year

- Guaranteed: 600 shifts/year • Users GU/BAG: 315 shifts • Users Rapid: 45 shifts •
- DOE Outreach: 90 shifts • 60 shifts
- Development: ٠
- Collaboration: •
- Proprietary: •

LBMS: 3-tiers training

- 1) Annual 4-day cryo-EM course to the public.
- 2) Quarterly cryo-EM workshops for current and potential LBMS users.
- On-demand 5-day in-person training on screening EMs for LBMS users and on-demand remote training on the high-end EM.

https://www.bnl.gov/cryoemcourse/

Trend in CY 2022:

- More people interested in cryo-ET: 25% of attendees
- More industrial attendees including Pfizer and Moderna

Quarterly cryo-EM workshop

- Sample preparation:
- Automated data collection:
- Cryo-EM SPA data processing:
- Cryo-ET data analysis:
- 2023-1 sample preparation and screening (**in-person**):
- 2023-2 workshop (NSLSII, CFN and LBMS user meeting): April 26, 2023
- 2023-3 cryo-EM SPA data processing (Virtual):

February 4, 2022 May 6, 2022 August 5, 2022

November 4, 2022

February 3, 2023

August 4, 2023 https://www.bnl.gov/cryoemspcourse/

Average rating: 4.5/5.0, Likely to recommend: 100%

Training: in-person and remote

- Negative staining sample preparation: Half day for up to three people
- Talos operation with room temperature holder/sample: One day for each person including sample loading/unloading, EM alignment, EPU for lacey/continuous carbon grid
- Cryo-sample preparation with Vitrobot: One day for up to three people, and one more day to practice (preferred to have their own samples).
- Talos operation with Cryo-sample/holder (require completion of training with room temperature holder/sample): A two-day session for each person including sample loading/unloading, EM alignment, EPU for holey carbon grids

	Name	Proposal	Institution	
	Haijiao Liu	307854	SBU	
	Enju Lima	307995	SBU	
	Chi-Lin Tasi	310009	University of Texas MD Anderso	
	Martín Dodes Traian	310182	Scripps at Florida	
	Brittany Wheatley	310182	Scripps at Florida	
	Jyothi Chandras Sistla	307795	SBU	
	Martien	307854	BNL	
0	Lingshuang Wu	307795	SBU	
	Kreitler, Dale	307854	BNL	
	Shujuan Gao	307795	SBU	
	Blanford, Jantana	307854	BNL	
	Sajina Bhandari	307854	BNL	
	Khiem Nguyen	308683	UConn	

rine data collection: romoto

Structures determined from data collected at LBMS in 2022

•

- Micrographs collected: 809,032
 - Atomic structures determined: 71
- Smallest structure: 48 kDa (2.7 Å)

Cryo-EM structure of zinc uptake across membranes

• A representative cryo-EM micrograph

Averaged 2D classes show features of a dimeric transporter structure

 Cryo-EM structure of a zinc transporter dimer. Captured metals (cadmium) are shown as red spheres. **Motivation** To provide structural basis for engineering the zinc uptake process for promoting growth of bioenergy crops on zincdeficient marginal land.

Approach The Liu group at BNL QPSI used the LBMS cryo-EM to determine a zinc uptake transporter structure to understand the zinc uptake process from the environment.

Results

- The cryo-EM structure was determined at 3.1 Å resolution which reveals an inward-facing, occlude dimer structure of its own kind.
- The structure suggests a novel intracellular zinc sensing and autoregulation mechanism on zinc uptake.

Impact The structure will provide insights into the design of improved bioenergy crops growing on zinc-deficient marginal land.

Funded by BER

Pang, C., et al, Nature Communications 14, 3404, (2023).

Structural Insight for Advancing Gene-Editing Technology

Cryo-EM reconstruction at 2.78 Å of the IscB-ωRNA/target DNA complex. TS=target strand DNA; NTS=nontarget strand DNA.

Scientific Achievement

Scientists showed that the evolution of the IscB enzyme to the popular gene-editing Cas9 enzyme involved dwarfing the associated ω RNA and the introduction of protein domain replacements.

Significance and Impact

Structure-guided insight into miniaturizing the Cas9 enzyme is important to developing the next generation of CRISPR-Cas9 genome editors.

Research Details

- Cryo-electron microscopy at the LBMS was used to determine the high-resolution structure of $IscB-\omega RNA$ bound to a double-stranded DNA.
- The structure explained target-adjacent motif recognition, R-loop formation, and **DNA cleavage mechanisms, providing a detailed comparison between IscB and Cas**9.

Ke laboratory, Cornell University

G. Schuler, C. Hu, A. Ke. Structural basis for RNA-guided DNA cleavage by IscB-ωRNA and mechanistic comparison with Cas9. *Science*, **376**, 1476-1481 (2022).

Cryo-Electron Tomography (cryo-ET)

Important websites and contact information

- LBMS website: <u>https://www.bnl.gov/cryo-em/</u>
- Online calendar: <u>https://lbmscalendar.bnl.gov</u>
- Registration & training: <u>https://www.bnl.gov/cryo-em/userguide/next-steps.php</u>
- PASS for proposal management: <u>https://pass.bnl.gov</u>
- Forms: <u>http://www.bnl.gov/cryo-em/forms.php.</u>
- LBMS mailing list: lbms-em-l@lists.bnl.gov
- Quarterly cryo-EM workshop: <u>https://www.bnl.gov/cryoemspcourse/</u>
- Nancye Wright, Proposal Coordinator:
- Guobin Hu, EM Scientist:

- 631-3445132, wright@bnl.gov
- 631-3447915, <u>ghu@bnl.gov</u>
- Jake Kaminsky, Scientific Associate: 631-3448980, jkaminsky@bnl.gov
- Liguo Wang, Director of Scientific Operations: 631-3447011, lwang1@bnl.gov

Thank you!

