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Any sufficiently advanced technology is indistinguishable from magic. 
                                                                                    -Arthur C. Clarke 



Defocus contrast and the CTF


Correlation and particle picking


Single-particle reconstruction


Maximum-likelihood methods



 

where 

. 

For 300keV electrons, 

.02 Å 

Ψ0 = eikz

k = 2π /λ

λ =

A snapshot of an electron wave



The object is a grating, 

.  

In our example, 

 and .

ϵϕ(x) = ϵ cos(2πx /d )

d = 5Å ϵ ≪ 1

Insert a phase-shifting object that perturbs the electron wave function



Insert a phase-shifting object that perturbs the electron wave function

But the weak phase 
approximation* allows us to 
decompose  into  
undiffracted and diffracted waves: 

at  

     . 

_______ 
*This comes from the expansion 

 

where terms  and higher will be tiny, of 
order  or smaller.

Ψ

z = 0,
Ψ ≈ 1 − iϵϕ(x)

eiy = 1 + iy −
y2

2
+ . . .

y2

ϵ2

At  , 

    .

z = 0
Ψ = e−iϵϕ(x)



d λ

z
x

Modeling the components of : first, the undiffracted waveΨ

Ψ0 = eikz



d λ
λ

d

With  and ,  

 is actually only 4 milliradians, or 0.23°!

λ = .02Å d = 5Å
θ

Ψ+ =
−iϵ

2
eik(z cos θ+x sin θ)

sin θ =
λ
d

Ψ0 = eikz

Classical diffraction yields a diffracted wave…

θ

z
x



Note there’s a tiny shift of wavefronts, because the 
diffracted waves follow slightly longer paths.

λ

d
sin θ =

λ
d

Ψ− =
−iϵ

2
eik(z cos θ−x sin θ)

θ

d λ

z
x

Ψ+ =
−iϵ

2
eik(z cos θ+x sin θ)

Ψ0 = eikz

…and the other diffracted wave

sin θ =
λ
d



The three waves interfere to make contrast
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The complete wave function is 

   

The relative phases change with  because  and 

 have a different path length than  to arrive at a 
given point. 
 

Ψ = Ψ0 + Ψ+ + Ψ−

z Ψ+

Ψ− Ψ0

Suppose the  path length is 

     .

Ψ0

z0 = 200 nm

The  and  path lengths are then 

     

         
This is a significant difference, since 

  !

Ψ− Ψ+

z± = 200 nm/cos θ
= 200.0016 nm

λ = .002 nm

z = 0

z = 200

Ψ0
Ψ−Ψ+



The diffracted waves have a slightly larger path length

The path length difference is 

 

        

For , 

     

        .

ζ = z± − z0

= (1 −
1

cos θ ) z

z ≥ 0
Ψ = Ψ0 + Ψ+ + Ψ−

= eikz − iϵϕ(x)eik(z+ζ)
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Removing the fast oscillations to visualize relative phases

       

          

To remove the fast oscillations, Let’s cancel 
them! Define 

 

     

The intensity of the electron waves is 
unchanged, 

Ψ = Ψ0 + Ψ+ + Ψ−

= eikz − iϵϕ(x)eik(z+ζ)

Ψ′ = Ψe−ikz

= 1 − iϵϕ(x)eikζ

I = |Ψ |2 = |Ψ′ |2
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Ψ′ 

0

Imaginary

Real



The diffracted waves alone

 

Then, subtracting away 1 which 
represents the unscattered wave, you 
can observe 

• the variation in , because our 
original grating signal was 

 

• the phase variation along  from 
the complex exponential . 

Next we’ll see that we get contrast at  
values where the diffracted waves have 
real values (red and green), not 
imaginary (blue and yellow).

Ψ′ = 1 − iϵϕ(x)eikζ

x

ϵϕ(x) = ϵ cos(2πx /d )

z
eikζ

z
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The measured intensity is 

      

          

         . 

So, ignoring a factor of 2, we say the contrast transfer 
from phase shift to intensity change is  

|Ψ′ |2 = (real part)2 + (imag part)2

= [ 1 + ϵϕ(x)sin(kζ ) ]2 − [ ϵϕ(x)cos(kζ ) ]2

= [ 1 + 2 sin(kζ ) ϵϕ(x) + 𝒪ϵ2 ] + [ 𝒪ϵ2 ]

      

          

Ψ′ = 1 − iϵϕ(x)eikζ

= 1 − ieϕ(x)[cos(kζ ) + i sin(kζ )]

 Contrast =
intensity change

phase shift
= sin(kζ )

The contrast comes from interference in the real part of  Ψ′ 



 Contrast =
intensity change

phase shift
= sin(kζ )

The contrast transfer function for defocus

     

    , 

but a very useful approximation is  

     

so 

     
and 

                                            the defocus contrast transfer function

k = 2π /λ

ζ = (1 −
1

cos θ
) z

ζ =
λ2z
2d2

kζ = πλz /d2

 CTF = sin(πλz /d2)



Contrast varies with the amount of defocus

The original grating with d = 5Å

Intensity at z

Interference between 
the unscattered wave 
and the diffracted waves 
produces contrast. 
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Contrast

CTF = sin(πλz /d2)



The period of contrast variations 
depends on the grating period .d

Specimen

250 nm

10 nm

7 Å repeat 10 Å repeat

Periodicity of contrast depends on the grating spacing d

 CTF = sin(πλz /d2)
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Underfocus is focusing the 
objective lens above the 
specimen.

What happens when the objective lens is focused above the specimen?

The grating ϕ(x)

Intensity at z
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Contrast

dark (neg)   |   bright (pos)

Standard terminology 

• Defocus values  are 
positive for underfocus, 

           

• Spatial frequency is 

           

• So we can write the 
defocus phase contrast as: 

 

δ

δ = − z

s = 1/d

CTF = sin(−πλδs 2)

E
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Most cryo-EM data are acquired using defocus contrast

object imageobject image

• People always use 
“underfocus”. This means 
decreasing the strength of the 
objective lens, effectively 
focusing above the specimen.  

• At high defocus, high-
resolution information in the 
image is strongly delocalized. 

• If the delocalized information 
is not lost by cropping, image 
processing can recover it.

100 Å



The dispersion radius is given by 

        

           (small angle approx.) 

• How big a box do I need around my 
120 Å-diameter particle to include all 
the information up to 3Å, if I use 3µm of 
defocus and  

• In this case 200Å, so to capture all 
the information the box should be 520Å 
on a side.

r = δ tan θ
= δλs

λ = .02Å
r =

With large defocus, how bad is the image delocalization?

δ

r

Focus 
plane

Specimen

θ

Object

3 µm 
defocus



Contrast transfer function as a function of frequency s = 1/d

          CTF = sin(−πλδs2)



An objective lens reproduces interference patterns at the focus

In focus 

Specimen

Camera

Underfocus 

Specimen

Camera

Specimen’

The camera “looks” 
above the specimen

Camera’



With spherical aberration a lens bends high-angle rays more strongly

Specimen

Camera

Specimen’  
(Gaussian focus)

Specimen’  
(at high s )

Underfocus 

The contrast transfer function has a 
new term, 

       

or, expanded, 

The coefficient  is typically ~2mm. 
This makes spherical aberration 

important only for  , or 

about  resolution.

CTF = sin(−πλ (δ + δ′ ) s2)

Cs

s ≳ 0.25Å−1

4Å

CTF = sin(−πλδs2 +
π
2

Csλ3s4)

Spherical aberration changes 

the defocus by  

     . δ′ = − Csλ2s2 /2



Very high-angle scattering yields some contrast

Electrons that pass very close to an atomic 
nucleus are scattered at high angles, and are 
caught by the objective aperture.  

The loss of these electrons results in a small 
amount of negative amplitude contrast. 

Its small magnitude, , is typically 
around -0.05.  

The amplitude contrast term allows the CTF to 
have a small negative value even at zero 
spatial frequency. 

Combining all these terms, the contrast 
transfer function is given by 

 

sin(−α)

CTF = sin(−πλδs2 +
π
2

Csλ3s4 − α)
defocus           sphere abb.        amplitude

Objective aperture

Specimen

Camera



Parameters of the CTF

 

•  is a property of the microscope 
objective lens; you can ask the 
manufacturer for the value. 

•  is a property of the atoms in the 
specimen. For proteins, its value can be 
assumed to lie between .05 and .1  

•  is the only parameter that must be 
estimated to high precision for each 
micrograph. If there is astigmatism,  is a 
function of an in-plane angle , so one 
needs to estimate ,  and .

CTF = sin(−πλδs2 +
π
2

Csλ3s4 − α)

Cs

α

δ

δ
θ

δmin δmax θ

defocus           sphere abb.        amplitude

Objective aperture

Specimen

Camera



This is our simple defocus-contrast CTF

α

 effectCs

Defocus only

Simple defocus contrast 

 CTF = sin(−πλδf2)



Up to a resolution of ~2Å three terms of the CTF suffice

Combining all these terms, the contrast 
transfer function is given by 

 CTF = sin(−πλδf 2 +
π
2

Csλ3 f 4 − α)

α

 effectCs

With  and α Cs

Here you can see why everyone uses 
underfocus: the amplitude contrast and 
defocus contrast are additive at low s.

χ = − πλδs2 +
π
2

Csλ3s4 − α



A phase plate modifies the interference of electron waves at the camera

In focus 

Specimen

Camera

Diffraction plane

Phase plate 

CTF = sin(ϕ − πλδf 2 +
π
2

Csλ3f 4 − α)

The phase plate shifts the phase of 
the undiffracted beam  by some 

angle .  

If  then the sine function 
becomes a cosine, and the CTF at 

 becomes 1.

Ψ0
ϕ

ϕ = 90o

s = 0

Phase-shifted 
unscattered beam
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Cryo-EM single particle analysis with the
Volta phase plate
Radostin Danev*, Wolfgang Baumeister

Department of Molecular Structural Biology, Max Planck Institute of Biochemistry,
Martinsried, Germany

Abstract We present a method for in-focus data acquisition with a phase plate that enables
near-atomic resolution single particle reconstructions. Accurate focusing is the determining factor
for obtaining high quality data. A double-area focusing strategy was implemented in order to
achieve the required precision. With this approach we obtained a 3.2 Å resolution reconstruction of
the Thermoplasma acidophilum 20S proteasome. The phase plate matches or slightly exceeds the
performance of the conventional defocus approach. Spherical aberration becomes a limiting factor
for achieving resolutions below 3 Å with in-focus phase plate images. The phase plate could enable
single particle analysis of challenging samples in terms of small size, heterogeneity and flexibility
that are difficult to solve by the conventional defocus approach.
DOI: 10.7554/eLife.13046.001

Introduction
Phase plates are one of the technologies holding promise for future performance improvements in
cryo-electron microscopy (cryo-EM). Direct electron detectors already changed the prospects of the
cryo-EM field (Henderson, 2015) with atomic resolution structures becoming almost routine
(Campbell et al., 2015; Bartesaghi et al., 2015). Phase plates improve the image contrast and allow
in-focus data acquisition which, in theory, will result in increase of the signal-to-noise ratio across the
entire frequency spectrum (Glaeser, 2013). This could enable structural investigations of ’difficult’
samples, such as small, heterogeneous and/or flexible molecules or complexes (Hall et al., 2011).
Until now, however, various practical problems and performance issues have prevented the acquisi-
tion of high-resolution datasets with a phase plate (Danev et al., 2009). Here we demonstrate that
with correct use, in particular accurate focusing, one can achieve near-atomic resolutions.

The phase plate is a device that produces phase contrast by introducing a phase shift between
the scattered and unscattered waves at a diffraction plane inside the microscope. Phase contrast
denotes that phase variations of the electron wave caused by the sample will be transformed into
amplitude variations at the camera thus enabling phase observation. Ideally, the phase shift must be
p/2 to realize the so-called Zernike phase contrast (Danev and Nagayama, 2001). In practice, how-
ever, a satisfactory phase contrast performance can be obtained within a range of phase shift values
(p/4 ~ 3p/4) (Danev and Nagayama, 2011). There are other ways to produce phase contrast, the
most common is acquiring images slightly out of focus, also known as defocus phase contrast. This
method is the de facto standard in transmission electron microscopy (TEM) but it has the disadvan-
tage of low overall contrast because of poor performance at low spatial frequencies, i.e. large speci-
men features are not well reproduced in the image.

Phase plates for TEM have been in development for more than 15 years with the thin film Zernike
phase being one of the most promising candidates (Glaeser, 2013). It consists of a thin material
film, typically amorphous carbon, with thickness selected for p/2 phase shift at the operating voltage
of the microscope (~22 nm for 100 kV; ~31 nm for 300 kV) and a small (~1 mm) hole in the center for
the central beam of unscattered electrons (Danev and Nagayama, 2001). Nevertheless, the Zrnike
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The phase plate allows in-focus imaging, but precise focusing is necessary.

zeroes. The first CTF zero is beyond the 3.7 Å amorphous ice ring and is not detectable in the trans-

form. The spectrum of the CTEM image (Figure 4D) shows characteristic CTF oscillations with multi-

ple zeroes. Both power spectra exhibit a noticeable amplitude decrease in their central region which

is a consequence of the relatively high dose rate on the detector (~9 e-/pixel/s). Higher dose rates

increase the coincidence loss during electron counting and lead to amplitude reduction at low spa-

tial frequencies but have little effect on the spectral signal-to-noise ratio (Li et al., 2013b).
An isosurface representation of the reconstructed 3D map from the -20 nm defocus VPP dataset

is shown in Figure 5A. The reconstruction is based on 13,469 particles selected after a 3D classifica-

tion step from an initial dataset of 35,469 particles. Figure 5B shows a part of the map superposed

on an a-helix from the b subunit of a 20S atomic model (PDB 3J9I) and demonstrates the presence

of side chain densities. Figure 5C contains plots of the Fourier shell correlations (FSC) calculated by

the internal ’gold standard’ procedure in Relion (Scheres, 2012) (blue curve) and versus an external

2.8 Å resolution density map (EMD-6287, Campbell et al., 2015). Both criteria give an identical res-

olution estimate of 3.2 Å at 0.143 level for the ’gold standard’ FSC and at 0.5 level for the external

map FSC. This is the highest resolution phase plate single particle reconstruction reported to date.
Figure 6A contains plots of resolution versus number of particles for various datasets, collected

with and without a VPP. The solid lines represent the two main VPP and CTEM datasets collected on

two halves of the same grid square. For each point a complete 3D refinement run was performed in

Relion using a 60 Å low-pass filtered initial model to avoid model bias. The number of particles was

varied by extracting random subsets of particles. The resolutions were calculated based on the 0.5

level FSC versus the external map (EMD-6287). Both the VPP and the CTEM show a gradual

improvement of resolution as the number of particles increases with the performance being virtually

identical between the two techniques. The conventional dataset contained more micrographs (293

Figure 4. Representative images from 20S proteasome datasets acquired with and without a phase plate. (A) In-
focus image acquired with the Volta phase plate. (B) Power spectrum of the image in (A). The presence of the

amorphous ice ring at 3.7 Å indicates that there is good information transfer to at least that spatial frequency. (C)
Conventional defocus image at !1.6 mm defocus. (D) Power spectrum of the image in (C) showing CTF Thon rings.

Scale bar: 50 nm.

DOI: 10.7554/eLife.13046.006
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20S Proteasomes Micrograph power spectrum

–––––Phase plate–––––

–––––Defocus contrast–––––

The phase shift of the VPP is not constant and increases with the accumulated dose on the phase
plate (see Figure 3 below) (Danev et al., 2014, Figure 1). It has a rapid onset in the beginning fol-

lowed by a gradual increase. For single particle data acquisition this would mean that the first

images taken after the phase plate is inserted will have a phase shift below p/2 and later images

may have a phase shift above that value. Figure 1C illustrates the effect of phase shift on the usable

defocus range and resolution. For lower phase shifts (blue area) the defocus ranges are shifted

towards more defocus and there is a slight improvement in the absolute resolution cutoff point

(~2.6 Å). Higher phase shifts (red area) require less defocus but have a worse resolution cutoff

(~3.0 Å).
Figure 1D shows an ideal case of a p/2 phase plate on a Cs-corrected microscope (zero spherical

aberration). There is no resolution cutoff but the allowed defocus range gets progressively narrower

for higher resolutions. A variable phase shift will move the shaded areas to the left or right, similar

to the behavior in Figure 1C, but in order to avoid clutter the effect is not shown in the figure.
The graphs in Figure 1 demonstrate the strict requirements on the focusing accuracy for in-focus

data acquisition with a phase plate. In order to achieve the required nanometer-level focusing preci-

sion we implemented a double focusing area acquisition scheme. Figure 2A shows an illustration of

Figure 1. Volta phase plate CTF examples and allowed defocus ranges versus resolution. (A) Illustration of CTFs at defocus values that limit the

resolution to 4 Å according to a |CTF|=0.5 criterion. (B) Defocus limits versus resolution according to the |CTF|=0.5 criterion for a p/2 phase plate and

2.7 mm spherical aberration. The shaded areas are ’prohibited’ in a sense that for those defocus values the CTF amplitude drops below 0.5 at a

resolution lower than the value on the y-axis. (C) Same as (B) but for three different phase shift values. (D) Same as (B) but for a Cs-corrected

microscope (0 mm spherical aberration).

DOI: 10.7554/eLife.13046.003
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Visualizing the contrast transfer function
autocorrelation

CTF

ss

The CTF representation in 2D Fourier space

If astigmatism were present, the rings would be ellipses.



(Slides demonstrating tomographic reconstruction)

Fourier  
transform

Every image has a 2D Fourier transform

g(x, y)

G(u, v)

Inverse 
FT



Each point in the Fourier plane represents a grating “frequency”

Single term

g(x, y)

G(u, v)

x

y

u

v

IFT

Fourier space

Real space

Amplitude: weight of the grating 
Phase (hue): shift from the center



Single term

g(x, y)
x

y

u

v

G(u, v)

IFT

FT

Each point in the Fourier plane represents a grating “frequency”

Real space

u

v

Fourier space

Amplitude: weight of the grating 
Phase (hue): shift from the center



Scaling of an image and its discrete FT

DFT

D

d
one pixel

1/D

1/d

1/2d

 is the Nyquist frequency1/2d



The Fourier representation of an image has the same information content



2D Fourier transform properties

 

 

 

 

ab g(ax, by) → G(u /a, v/b)

g(x − a, y − b) → G(u, v)e−i2π(au+bv)

g * h → GH

g(x′ , y′ ) → G(u′ , v′ )

Py g(x, y) → G(u,0)

Scale 

Shift 

Convolution 

Rotation 

Projection



Convolution with a Gaussian

FT FT IFT



X

X̂ Ĉ

C Y = X ⋆ C

̂Y = X̂Ĉ | ̂Y |2

Y * Y

autocorrelation
Visualizing the contrast transfer function



Modeling the CTF effect on an image

Model of an image

X = CA + N

A C C × AC

X

W
ie

ne
rT

RP
V2

.m

Can we do the deconvolution 

 ??Ã = X /C



How to undo the CTF effects?

1.  Phase flipping 

Ã = sgn(C )X
ÃA

W
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How to undo the CTF effects?

1.  Phase flipping 

 

2. Wiener filter 

 

Ã = sgn(C )X

Ã =
CX

C2 + k

ÃA

W
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V2

.m



How to undo the CTF effects in noisy images?

1.  Phase flipping 

 

2. Wiener filter 

 

Ã = sgn(C )X

Ã =
CX

C2 + k

W
ie

ne
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RP
V2

.m



Modeling the CTF effect on an image

Model of an image


X = CA + N

We can interpret C as either the CTF 
operator (x,y space), or just the 

multiplicative CTF factor (u,v space)

     “true” image 

     contrast-transfer function 

     noise image

A
C
N



How to undo the CTF effects in noisy images?

3. Wiener from multiple images 

 Ã =
∑N

i CiXi

k + ∑N
i C2

i

N

∑
i

C2
i

 

       

k(s) = 1/SNR

=
| |N | |2

| |A | |2



Image restoration when spectral SNR is known

Restoration  
from multiple images 

 

The defocus varies to fill in 
CTF zeros


Ã =
∑N

i CiXi

kw(s) + ∑N
i C2

i

TR
PV

3.
m



Image restoration when spectral SNR is known

Restoration  
from multiple images 

 

The defocus varies to fill in 
CTF zeros


Ã =
∑N

i CiXi

kw(s) + ∑N
i C2

i

TR
PV

3.
m

Even the small defocus range 

1–1.5 µm is sufficient.



Defocus contrast and the CTF


Correlation and particle picking


Single-particle reconstruction


Maximum-likelihood methods



2D Fourier transform properties

 

 

 

 

ab g(ax, by) → G(u /a, v/b)

g(x − a, y − b) → G(u, v)e−i2π(au+bv)

g * h → GH

g(x′ , y′ ) → G(u′ , v′ )

Py g(x, y) → G(u,0)

Scale 

Shift 

Convolution 

Rotation 

Projection



Correlation locates motifs in images

Correlation

 
c(x, y) = g ⊗ h

c(x, y) = ∫ ∫ g(x + s, y + t) h(s, t) ds dt

Reference  h(set) Signal  g(x,y) Cross-correlation  g(x,y)

Translational cross-correlation function




                      

Cor(x, y) = X ⊗ R
= ∑

s,t

h(s, t) g(x + s, y + t) Correlation is like convolution.

The FT pair is:   
g ⊗ h → GH*

, Cor(x, y)



Correlation locates motifs in images

Correlation

 
c(x, y) = g ⊗ h

c(x, y) = ∫ ∫ g(x + s, y + t) h(s, t) ds dt

Reference  h(set) Signal  g(x,y) Cross-correlation  g(x,y), Cor(x, y)

Translational cross-correlation function




                      

Cor(x, y) = X ⊗ R
= ∑

s,t

h(s, t) g(x + s, y + t)



0A correlation-based particle picker

3D Reference
CTF-filtered projections and decoys



A correlation-based particle picker

A micrograph



A correlation-based particle picker

Max of correlations 
with decoy references



A correlation-based particle picker

Max of correlations 
with particle references



A correlation-based particle picker

Green: found particles

Red dots: decoys



 A correlation-based particle picker

Best-matching 
references



Defocus contrast and the CTF


Correlation and particle picking


Single-particle reconstruction


Maximum-likelihood methods



2D Fourier transform properties

 

 

 

 

ab g(ax, by) → G(u /a, v/b)

g(x − a, y − b) → G(u, v)e−i2π(au+bv)

g * h → GH

g(x′ , y′ ) → G(u′ , v′ )

Py g(x, y) → G(u,0)

Scale 

Shift 

Convolution 

Rotation 

Projection



The rotation property

G(u, v) = ∬ g(x, y)e−i2π(ux+vy)dxdy

2D Fourier Transform

G(u) = ∫ ∫ g(x)e−i2π(u⋅x)d2x

FT using 2D vectors

The dot-product is invariant under rotations!

Let  signify a rotation, and 

 

  

then 

  
or alternatively,   

  

Rθ

(x′ , y′ ) = Rθ (x, y)
(u′ , v′ ) = Rθ (u, v)

g(x′ , y′ ) → G(u′ , v′ )

g(Rθx) → G(Rθu)

FT



Projection Slice

g(x, y) G(u, v)

Pyg
x G(u, 0)

G(u, v) = ∬ g(x, y)e−i2π(ux+vy)dxdy




            

G(u, 0) = ∫ (∫ g(x, y)dy)e−i2π(ux)dx

= ℱ{Pyg}
Pyg(x, y) = ∫ g(x, y)dy

The Projection Theorem

2D Fourier Transform

Projection along y
Values along the  axisu



FT of a shifted square

Fourier  
transform

Insert as a slice 
in 2D field

Compute the 
1D projection

2D inverse 
Fourier  
transform

Reconstruction using the Fourier Slice Theorem

Pxg(x, y)

G(u,0)

G(u, v)grec(x, y)



FT of a shifted square

Fourier  
transform

Insert as a slice 
in 2D field

2D inverse 
Fourier  
transform

Reconstruction using the Fourier Slice Theorem

Compute the 
1D projection

Pxg(x, y)

G(u,0)

G(u, v)grec(x, y)



FT of a shifted square

Fourier  
transform

Insert as a slice 
in 2D field

2D inverse 
Fourier  
transform

Reconstruction using the Fourier Slice Theorem

Compute the 
1D projection

Pxg(x, y)

G(u,0)

G(u, v)grec(x, y)



Single-particle reconstruction

We assume that image  comes from a projection in direction 

 of volume  according to 

 

The goal is to discover the volume 

Xi

ϕi V
Xi = CiPϕi

V + Ni

V

Xi

Project along ϕi

V

8,310 

micrographs

Demo Particle Picker

3,007,380 particles

Laplacian-of-Gaussian

Auto-picking

2,565,954 particles

2D classifications

318,401 particles 

selected

2D classifications

600,918 particles 

selected

Combine and repeated particles are removed

905,664 particles

3D classification

13.9% 12.7% 53.5% 9.1%10.8%

3D classification 383,936 particles

8.4% 11.3%25.8%54.6%

3D Refine

C4 Symmetry 

266,495 particles

3.6 Å

CTF Refine

Bayesian polishing

Masked 3D Refine

C4 Symmetry 

266,495 particles
3.0 Å

Sup Figure.1 Cryo-EM data processing work flow of inactivated Kv1.2 (W366F). 



There are various ways to compare images

Define the “reference” 
as the true image  
modified by the CTF : 

 

We wish to compare a 
data image  with it.

A
C

R = CA

X

Squared difference 

        

              

Correlation 
     

            

Correlation coefficient 

     

∥X − R∥2 = ∑
j

(𝖷j − 𝖱j)2

= ∥X∥2 − 2X ⋅ R + ∥R∥2

Cor = X ⋅ R
= ∑

j

𝖷j𝖱j

CC =
X ⋅ R

|X | |R |

Notation used here: 

A single pixel in the image : 

            —the   pixel (out of  

pixels total) 

The  image in the dataset : 

          

X
𝖷j jth J

ith X
Xi



The Wiener filter applied to images

Restoration  
from multiple images 

 

The defocus varies to fill in 
CTF zeros


Ã =
∑N

i CiXi

kw(s) + ∑N
i C2

i



FREALIGN combines correlation with Wiener filtering

A Frealign iteration, refining  to , consists of 
two steps: 

1. Vary the projection direction  to find the projection 
image    that maximizes the correlation 

coefficient for each image , 

              .  

2. Knowing the best projection direction  for each 
image , update the volume according to  

          

V (n) V (n+1)

ϕi
Ri = CiPϕi

V (n)

Xi

CC =
Xi ⋅ Ri

|Xi | |Ri |

ϕi
Xi

V (n+1) =
∑N

i PT
ϕi

CiXi

k + ∑N
i PT

ϕi
C2

i

Notes 

1.  is the CTF corresponding to the 

image . 

2. The projection operator  also 

includes translations.  So  consists of 
five variables: . 

3.  is the corresponding back projection 

operator.  In Fourier space it yields a 
volume that is all zeros except for 
values along a slice. 

4. The sum  

                 

     is therefore the insertion of N slices.

Ci

Xi

Pϕ

ϕ
ϕ = {α, β, γ, tx, ty}

PT
ϕi

N

∑
i

PT
ϕi

CiXi



3D reconstruction in FREALIGN—iterations

1.Start with a preliminary structure  

2.For each particle image  find the projection angles 

 that gives the best match, so  

3.Use the Frealign iteration to produce a new 3D 
volume 

V (n), n = 1

Xi

ϕi Xi ≈ CiPϕi
V (n)

V (n+1)

Iterate



 3D Classification in FREALIGN

Suppose our model is that an image X can come 
from any of  different particle types 

 and our images are selected 
randomly from these volumes, projected with 
noise added. 

K
V1, V2, . . VK

2. Update the volume according to  

       V (n+1)
k =

∑i∈k PT
ϕi

CiXi

kw + ∑i∈k PT
ϕi

C2
i

1. The references are 

         . 

We assign  such that  yields the 

projection (with direction ) that gives the 

highest correlation coefficient with . 

Rik = CiPϕi
Vk

ki Vki

ϕi

Xi



Defocus contrast and the CTF


Correlation and particle picking


Single-particle reconstruction


Maximum-likelihood methods



Probabilities, another way to compare images

w

XjRj

P(Xj |Rj)

 

Probability of a pixel value: 

 

Probability of observing an image that 

comes from : 

 

X = R + N

P(𝖷j |𝖱j) =
w

2πσ2
e−(𝖷j−𝖱j)2/2σ2

R

P(X |R) =
wJ

(2πσ2)J/2
e−||X−R||2/2σ2

 is the finesse of the pixel 
intensity measurements. 
We’ll ignore it (set it to 1).

w

1

1



Probabilities, another way to compare images

XjRj

P(Xj |Rj)

Probability of observing an image that

comes from :





_______________

(The normalization factor  we’ll treat as a constant and 
ignore it.)


R

P(X |R) = c e−||X−R||2/2σ2

c


X = R + N



The Likelihood

Let  be our “stack” of particle images. We’d like to find the 
best 3D volume consistent with these data, say maximizing

                                    .


According to Bayes’ theorem,


                         .


1.  doesn’t depend on  so we can ignore it.

2.  is called the prior probability. It reflects any knowledge about that 
we have before considering the data set. 

3.  is something we can calculate. It’s called the likelihood of .

X = {X1 . . XN}

P(V |X)

P(V |X) = P(X |V )
P(V )
P(X)

P(X) V
P(V ) V

P(X |V ) V

prior      Experiment      posterior 
 

→ →

Lik(V ) = P(X |V )



Integrate over the projection directions to get the likelihood

We already know that


                  


To get the likelihood for one image we just integrate over all the ’s:


                  


To get the likelihood for the whole dataset we compute the product over all the 
images,


                  ,


or for numerical sanity, we compute the log likelihood,


                  .

P(X |V, ϕ) = ce−∥X−CPϕV∥/2σ 2

ϕ

P(X |V ) = ∫ P(X |V, ϕ) P(ϕ) dϕ

P(X |V ) =
N

∏
i

∫ P(Xi |V, ϕ) P(ϕ) dϕ

L =
N

∑
i

ln (∫ P(Xi |V, ϕ) P(ϕ) dϕ)



Maximum-likelihood estimation is asymptotically unbiased

If the size of the dataset grows without bounds

(and the number of parameters to be estimated do not) 

ML converges to the right answer.

                  .L =
N

∑
i

ln (∫ P(Xi |V, ϕ) dϕ)



To maximize the likelihood, we’ll need a probability function Γ(ϕ)

A projection 

 

Probability of observing an image  

 

Probability of a projection direction 

 

A = PϕV

Xi

P(Xi |V, ϕ) = c e−||Xi−CPϕV||2/2σ2

Γi(ϕ) = P(ϕ |Xi, V ) =
P(Xi |V, ϕ)

∫ P(Xi |V, ϕ)dϕ



The E-M algorithm finds a local maximum of the likelihood

The Expectation-Maximization (E-M) algorithm has this iteration, 
guaranteed to increase the likelihood:


            


…Relion’s compute-intensive “Expectation” step is basically the 

evaluation of  for each image 


V (n+1) =
∑i ∫ Γ(n)

i (ϕ)PT
ϕCiXi dϕ

σ2

Tτ2 + ∑i ∫ Γ(n)
i (ϕ)PT

ϕC2
i dϕ

Γi(ϕ) Xi

For comparison, here is Frealign’s 
iteration: 


1. Find the best orientation  for 
each particle image 


2. Update the volume according to


       

ϕi
Xi

V (n+1) =
∑i PT

ϕi
CiXi

k + ∑i PT
ϕi

C2
i



3D reconstruction in FREALIGN—iterations

1.Start with a preliminary structure  

2.For each particle image  find , the probability 

of projection angles . 

3.Use the E-M iteration to produce a new 3D volume 

V (n), n = 1

Xi Γi(ϕ)
ϕ

V (n+1)

Iterate



3D Classification

We can use Expectation-Maximization to optimize  different volumes 
 simultaneously. The formula is essential the same except 

that the function  depends also on :


his iteration, guaranteed to increase the likelihood:


            


…Relion’s compute-intensive “Expectation” step is basically the 

evaluation of  for each image  and volume 


K
V1, V2, . . VK

Γ k

Γ(n)
ϕi,k

V (n+1)
k =

∑i ∫ Γ(n)
i,k (ϕ)PT

ϕCiXi dϕ
σ2

Tτ2 + ∑i ∫ Γ(n)
i,k (ϕ)PT

ϕC2
i dϕ

Γi,k(ϕ) Xi Vk

For comparison, here is Frealign’s 
iteration: 


1. Find the best orientation  for 
each particle image 


2. Update the volume according to


       

ϕi
Xi

V (n+1) =
∑i PT

ϕi
CiXi

k + ∑i PT
ϕi

C2
i



Determining the orientation angles: example from the TRPV1 dataset

Projection

Simulated image

Projection

Simulated image

1/4 of a micrograph - empiar.org/10005 One particle image

http://empiar.org/10005


The probability of orientations  is remarkably sharpP(ϕ |X, V)



The probability of orientations  is remarkably sharpP(ϕ |X, V)



Reconstruction: on the first EM iteration, angle assignments are not sharp



Iteration 3



Iteration 5



Iteration 14, near convergence: distributions are becoming sharp



The orientation determination is the most expensive step

No. operations 



The orientation determination is the most expensive step

No. operations 

e.g. N=105, n=128, t=7 

No. operations ≈ 6 x 1017 ≈ 19 CPU-years 

With efficient programs, ~ 1 CPU-month



Evaluating  is expensive: one of 5 parametersΓϕ



Probabilities, another way to compare imagesEvaluating  is expensive: one of 5 parametersΓϕ



Probabilities, another way to compare imagesEvaluating  is expensive: one of 5 parametersΓϕ



Evaluating  is expensive: one of 5 parametersΓϕ



How to decrease the effort?

Evaluating  is expensive: one of 5 parametersΓϕ



1. To save time, we 
compute probabilities of 

orientations at low 
resolution.


2. We place bounds on 
how much higher the 

probabilities could be at 
full resolution.


Given a cutoff value, we 
evaluate over a fraction of 

the domain. 

Domain reduction: branch and bound, illustrated for 1D



In Relion, 2D and 3D classification and refinement use the same algorithm

Quan%ty Meaning in 3D classifica%on Meaning in 2D classifica%on

Class volume Class average image

3 Euler angles of orienta3on + 2 transla3ons 1 angle of rota3on + 2 transla3ons

Projec3on operator 3D      2D Image rota3on and shi?

Back-projec3on operator 2D      3D Reverse shi? and rota3on→
→

Vk

ϕ
Pϕ

PT
ϕ



Interesting information in Relion’s particle filedata_particles


loop_ 

_rlnMicrographName #0 

_rlnCoordinateX #1 

_rlnCoordinateY #2 

_rlnGroupName #3 

_rlnDefocusU #4 

_rlnDefocusV #5 

_rlnDefocusAngle #6 

_rlnOpticsGroup #7 

_rlnClassNumber #8 

_rlnAnglePsi #9 

_rlnAutopickFigureOfMerit #10 

_rlnImageName #11 

_rlnAngleRot #12 

_rlnAngleTilt #13 

_rlnOriginXAngst #14 

_rlnOriginYAngst #15 

_rlnNormCorrection #16 

_rlnLogLikeliContribution #17 

_rlnMaxValueProbDistribution #18 

_rlnNrOfSignificantSamples #19 

_rlnGroupNumber #20 

_rlnRandomSubset #21 

Merged/2020-12-30_19_50_41_025035_1_240-1_0000_X-1Y-1-1_v.mrc  2927.910000  3601.070000   group_14 20129.600000 19778.200000    
22.059200            1            1    10.822758   -999.00000 000003@Extract/job049/Merged/2020-12-30_19_50_41_025035_1_240-1_0000_X-1Y-1-1_v.mrcs    
-24.83200     7.681132     4.095966     -3.44403     0.590449 54185.894732     0.264938           17            1            2 


Merged/2020-12-30_19_50_41_025035_1_240-1_0000_X-1Y-1-1_v.mrc  1028.820000  3304.810000   group_14 20129.600000 19778.200000    
22.059200            1            1    -76.56167   -999.00000 000006@Extract/job049/Merged/2020-12-30_19_50_41_025035_1_240-1_0000_X-1Y-1-1_v.mrcs    
38.965843    12.031761     -2.68403     -3.44403     0.618694 54275.743065     0.086554           45            1            1 


Merged/2020-12-30_19_50_54_025035_1_240-1_0001_X-1Y-1-2_v.mrc  2431.500000  3073.850000   group_14 19509.000000 18928.900000    
10.654800            1            1   143.393906   -999.00000 000008@Extract/job049/Merged2020-12-30_19_50_54_025035_1_240-1_0001_X-1Y-1-2_v.mrcs     
-4.83292   121.793929     -3.44403     1.835966     0.605107 54180.246800     0.093273           63            1            2 



