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Any sufficiently advanced technology is indistinguishable from magic.
-Arthur C. Clarke



Defocus contrast and the CTF
Correlation and patrticle picking
Single-particle reconstruction

Maximume-likelihood methods



A snapshot of an electron wave

_ ikz
Y,=¢
where

k =2rx/A.

Z, angstroms

For 300keV electrons,
A= .02A
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Insert a phase-shifting object that perturbs the electron wave function

0
X, angstroms

The object is a grating,
e¢p(x) = e cos(Lrx/d).

In our example,
d=5Aande < 1.




Insert a phase-shifting object that perturbs the electron wave function

Atz =0,
P = g iep),

But the weak phase
approximation® allows us to

decompose W into
undiffracted and diffracted waves:
atz =0,

Y= 1-—-iepx).

Z, angstroms
=)
S

o
o

*This comes from the expansion

2
eiy=1+iy—y7+...

where terms y2 and higher will be tiny, of

order €2 or smaller,

0
X, angstroms




Modeling the components of W: first, the undiffracted wave

|
—

A

— Likz
Yy=e




Classical diffraction yields a diffracted wave...

A
sin@ = — : A
7} d I
—
TO = eikz
¥ — —le ¢ k(zcos 0+xsin )
T2

With A = .02A and d = 5A,

0 is actually only 4 milliradians, or 0.23°!



..and the other diffracted wave
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O Note there’s a tiny shift of wavefronts, because the

diffracted waves follow slightly longer paths.




Displacement z, nm

The three waves interfere to make contrast

The complete wave function is
Y=Y, +¥, +¥_

- The relative phases change with z because ¥, and

50

W_ have a different path length than ¥, to arrive at a

given point.
100

Suppose the ¥, path length is

150

Zo = 200 nm.

The W_ and P, path lengths are then

200 z =200

Z+ = 200nm/cos @

= 200.0016 nm

This is a significant difference, since
A =.002 nm!

250

-100  -50 0 50 100
X, angstroms



Displacement z, nm

50

100

150

200

250

-100

The diffracted waves have a slightly larger path length

(it = The path length difference is
ll $ =24y — 2o
I | 1
= — Z
cos 6
Forz > 0,

lP=‘{Io'|'lp_|_'|'\P_

— eikz _ i€¢(x)eik(z+é')_

-50 0 50 100
X, angstroms



Displacement z, nm

50

100

150

200

250

-100

Removing the fast oscillations to visualize relative phases

‘P=\P0+‘P++‘P_

— elkz _ i€¢(x)eik(z+/;)

To remove the fast oscillations, Let’s cancel
them! Define

Y = Yeikz
=1 —iegp(x)e’*®

The intensity of the electron waves is
unchanged,

=¥ =¥

-50 0 50 100

X, angstroms

Imaginary




Displacement z, nm

50

200

250

-100

-50 (o} 50

X, angstroms

100

The diffracted waves alone

P =1 —iep(x)es

Then, subtracting away 1 which
represents the unscattered wave, you
can observe

« the variation in x, because our
original grating signal was
ed(x) = e cos(Lax/d)

« the phase variation along z from
the complex exponential 2,

Next we’'ll see that we get contrast at
values where the diffracted waves have
real values (red and green), not
imaginary (blue and yellow).

Imaginary




The contrast comes from interference in the real part of ¥’

Y=1- iegb(x)eik‘:
=1 —ie¢(x)[cos(kl) + i sin(k{)]
The measured intensity is
|¥’|? = (real part)? + (imag part)?
= [1+ edp@ysinkd)|* - [ep(x)coskd)]’
1+ 25in(k) egp(0)|+ Oe?] + [ 02 ].

—

So, ignoring a factor of 2, we say the contrast transfer
from phase shift to intensity change is

intensity change :
Contrast = . = sin(k{)
phase shift




The contrast transfer function for defocus

Contrast — intensity ch'ange — sink?)
phase shift

k =2r/A
¢={- COSQ)Z’

but a very useful approximation is

A%z

aaky?

SO
ki =nlz /d?

and

CTF = sin(zlz/d?) the defocus contrast transfer function



Contrast varies with the amount of defocus

abs(¥)? Contrast

Interference between
the unscattered wave
and the diffracted waves
produces contrast.

£ 100
Intensity at z =
e
g 2
5 CTF =sin(nAz/d”)
3 150
©
Q.
2
)
200
250
The original grating with d = 5A <100 -50 0 50 100

X, angstroms



Periodicity of contrast depends on the grating spacing d

7 A repeat
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i
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Distance below specimen, z

10 A repeat
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10 nm

<

Specimen

CTF = sin(zAz/d?)

The period of contrast variations
depends on the grating period d.

250 nm



What happens when the objective lens is focused above the specimen?

Intensity at 7

The grating ¢(x)

B
>

Extrapolation

Displacement z, nm

-50

abs(¥)?
HTHIE

-100 -50 0 50
X, angstroms

50

100

150

100

Contrast

Underfocus is focusing the
objective lens above the
specimen.

dark (neg) | bright (pos)

Standard terminology

» Defocus values 0 are
positive for underfocus,

0 =-—2

» Spatial frequency is
s =1/d

» So we can write the
defocus phase contrast as:

CTF = sin(—zA8s?)




Most cryo-EM data are acquired using defocus contrast

object image

* People always use
“‘underfocus”. This means
decreasing the strength of the
e objective lens, effectively
e focusing above the specimen.

* At high defocus, high-
resolution information in the
image is strongly delocalized.

* If the delocalized information
is not lost by cropping, image
processing can recover it.

defocus: 0.000;:m

0.8: v 1 ~ ™ Y :0.5’
06} ot Wl 1
041 \ 0
02t :
0t - — {
L i i i L i L5t i n " L i J
-100 -50 0 50 100 -100 -50 0 50 100

X coordinate, A X coordinate, A



With large defocus, how bad is the image delocalization?

The dispersion radius is given by

= e ¢ 2
r =otané & % o onject
1 Focus = §As (small angle approx.) - gl

plane

* How big a box do | need around my
120 A-diameter particle to include all
the information up to 3A, if | use 3um of
defocus and A = .02A

« In this case r = 200A, so to capture all

"""""""" Specimen the information the box should be 520A

on a side.




0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Spatial frequency s




An objective lens reproduces interference patterns at the focus

In focus Underfocus
- e o
.......... $ Camera’ The camera “looks
.............................................. above the specimen

Specimen Specimen

-+ Camera -- Camera

.......................... Specimen’



With spherical aberration a lens bends high-angle rays more strongly

Spherical aberration changes
the defocus by

5 = — C,A%s/2.

The contrast transfer function has a
new term,

CTF = sin(—zA (5 + &) s%)

or, expanded,

CTF = sin(-z8s2 + —C,23s%)
2

The coefficient C; is typically ~2mm.
This makes spherical aberration

important only for s > 0.25A7!, or

about 4A resolution.

Underfocus

Specimen

_ Specimen’
(at high s)

--------------- Camera

------------------------ Specimen’

(Gaussian focus)



Very high-angle scattering yields some contrast

Electrons that pass very close to an atomic
nucleus are scattered at high angles, and are
caught by the objective aperture.

The loss of these electrons results in a small
amount of negative amplitude contrast.

Its small magnitude, sin(—a), is typically
around -0.05.

The amplitude contrast term allows the CTF to
have a small negative value even at zero
spatial frequency.

Combining all these terms, the contrast
transfer function is given by

CTF = sin(— 7485 + gcsﬁﬁ —a)

defocus sphere abb. amplitude

..........................

Specimen

Objective aperture




Parameters of the CTF

CTF = sin(— 7485 + gcsﬁﬁ —a)

..........................

defocus sphere abb. amplitude Specimen

- C, is a property of the microscope
objective lens; you can ask the
manufacturer for the value.

Objective aperture

» o is a property of the atoms in the
specimen. For proteins, its value can be
assumed to lie between .05 and .1

« 0 is the only parameter that must be
estimated to high precision for each
micrograph. If there is astigmatism, O is a

function of an in-plane angle @, so one

O.... and 0.

needs to estimate o -

min’



0.1 0.15

Defocus only

0.1 0.15

0.2 0.25 0.3 0.35 0.4
Spatial frequency s

CTF = sin(y)

0.2 0.25 0.3 0.35 0.4
Spatial frequency s

0.45




Defocus 0.25 pm

4
o

<

Contrast transfer
o

o
o

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Spatial frequency s

CTF =sin(x)

x =—nlds*+ ng/l3s4 -—a

*C , effect

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Spatial frequency s




A phase plate modifies the interference of electron waves at the camera

In focus

........................ Specimen

<«+—— Diffraction plane

- SESSSREEEEEER-- Camera

Phase plate

The phase plate shifts the phase of
the undiffracted beam ¥, by some
angle ¢.

If ¢ = 90° then the sine function
becomes a cosine, and the CTF at
s = 0 becomes 1.

CTF = sin(¢ — 74812 + gcsﬁf" _a)

Phase-shifted

4 unscattered beam



The phase plate allows in-focus imaging, but precise focusing is necessary.

|ICTF| = 0.5 —

e R defocus 0 nm - ; t
| | —— defocus -7 nm i ; g
—— defocus -60 nm
10

0.0 0.5 1.0 1.5 2.0 25

Spatial frequency, [1/nm]

Cryo-EM single particle analysis with the
Volta phase plate
Radostin Danev*, Wolfgang Baumeister

Department of Molecular Structural Biology, Max Planck Institute of Biochemistry,
Martinsried, Germany

elLife 2016



The CTF representation in 2D Fourier space 7

CTF

CTF, 1um

If astigmatism were present, the rings would be ellipses.

v






Each point in the Fourier plane represents a grating “frequency”

7

Fourier space G (u,v)

u \
IFT

Amplitude: weight of the grating
Phase (hue): shift from the center

Real space  g(x,y)



Each point in the Fourier plane represents a grating “frequency”

v E)-

Fourier space G(u,v) V{
u A

Amplitude: weight of the grating
Phase (hue): shift from the center

Real space  g(x,y)
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Scaling of an image and its discrete FT

S
s

D >

r’f‘ ‘H\'I:

one pixel

DFT

1/d >

>« 1/D

1/2d is the Nyquist frequency



The Fourier representation of an image has the same information content

Real part
" G(k,) #T 1
'-i‘l f 5
10t L
il ] /
0t | -'Ir.q i 1 \ Imaginary part
-5t : 1
-10}
Ll &
_15 | : ‘ ‘ J bl S
-10 0 10




2D Fourier transform properties

abg(ax,by) — G(ul/a,v/b) Scale

g(x —a,y —b) = G(u,v)e 2rautby) Shift

g*h - GH Convolution
g, y) - Gu',v) Rotation

P, g(x,y) = G(u,0) Projection




Convolution with a Gaussian

g(x,y) h(xy)

I per

[¢{(TAY)] o [(TRY)] G(u,v) H(u,v)



Visualizing the contrast transfer function

autocorrelation
Point-spread
R 2RA 550N

r 4
o =

—

®

FT of object
S S PR DV LA P Ry R
R




Modeling the CTF effect on an image

150
100

50

y, A

Model of an image 50
X=CA+N

-100

_150 Projection

0.2
0.15
0.1
0.05
< 0

o

-0.05
-0.1

-0.15
_0o . FT of Projection

Can we do the deconvolution
A=X/C??

PSF

5

CTF, 1um CTF FT of image

®3

*
st
W

WienerTRPV2.m



1. Phase flipping

A =sgn(C)X

v, A
(=]

-0.05
-0.1
-0.15
-0.2

FT of Projection

PSF

CTF

WienerTRPV2.m



How to undo the CTF effects?

150
100
50

<.
=

1. Phase flipping g
~ L 3
A =sgn(C)X -50 ’ "

-100
-150 Projection A

0.2
0.15

CcX 0.1
C2+k ' 0.05

43

PSF PSF Image A

2. Wiener filter

A=

v, A
o

bR - B
P

D
o

-0.05 !
-0.1

-0.15

-0.2| FT of Projection CTF FT of image, k,, = 0.1

WienerTRPV2.m



1. Phase flipping
A = sgn(C)X

2. Wiener filter
CX

C2+k

A

How to undo the CTF effects in noisy images?

=

-100 (0] 100

angstroms

WienerTRPV2.m



Modeling the CTF effect on an image

Model of an image
X=CA+N

A

“true” image

C contrast-transfer function

N noise image

We can interpret C as either the CTF

operator (x,y space), or just the

multiplicative CTF factor (u,v space)




How to undo the CTF effects in noisy images?

Wiener from 100 images

-100 (0] 100
angstroms

0 005 01 015 02

3. Wiener from multiple images

ZNCX k(s) = 1/SNR
A=k izf;clz _ NP
+ ), . C: - .1

i A



Image restoration when spectral SNR is known

N= 1 images

100

(4]
(=]

Y coordinate, A
o

) ¥
R

Restoration
from multiple images

&
=)

. -100 P
. Y CX; 100 50 0 50 100
A = ! X coordinate, A
N ~
ky(s)+ 2. C;
1
——Sum of CTF?
g — _KMenor
The defocus varies to fill in 0.8
CTF zeros 102 §
o
o 806
o 5
£ 2
g o €04
& 10 ] §™
=
[
[a]
0.2
E
1072 E
0
0 0.1 0.2 0.3 0.4 0 0.1 0.2 03 0.4

Spatial frequency Spatial frequency



Image restoration when spectral SNR is known

N= 6 images

100

50

Y coordinate, A
o

Restoration

from multiple images =0

-100

~ ZN CX; 00 -5 0 50 100
A = ! X coordinate, A
N
k,(s)+ 2. C?
1
——Sum of CTF?
The defocus varies to fill in z 0.8
CTF zeros N g Even the small defocus range
(.‘t) 306 1-1.5 ym is sufficient.
3 :
£ € o4
@ E™
3
(a]
0.2 u .
0 - "
0 006 01 015 02 0 0.1 02 03 04

Spatial frequency Spatial frequency



Defocus contrast and the CTF
Correlation and particle picking
Single-particle reconstruction

Maximume-likelihood methods



2D Fourier transform properties

abg(ax,by) — G(ul/a,v/b) Scale

g(x —a,y —b) = G(u,v)e 2rautby) Shift

g*h - GH Convolution
g, y) - Gu',v) Rotation

P, g(x,y) = G(u,0) Projection




Translational cross-correlation function

Cor(x,y) =XQ®R
= ) hi(s,)g(x +5,y +1)

S,t

Correlation is like convolution.
The FT pairis: g ® h > GH*

Reference h(se,) Signal g(x,y) Cross-correlation | Cor(x, y)

©
©

©




Correlation locates motifs in images

Translational cross-correlation function

Cor(x,y) =XQ®R
= ) hi(s,)g(x +5,y +1)

S,t

Reference h(s¢?)

©




A correlation-based particle picker

CTF-filtered projections and decoys
3D Reference

| DS S 3 n N - “t " - 2| | s = » N
L ’ ot
| : - A
- . » v, S
L ’ - ,
3 28 o St
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A correlation-based particle picker

A micrograph




A correlation-based particle picker

———y—— = g Pt gy — ———p————

b

Max of correlations
with decoy references



A correlation-based particle picker

Max of correlations
with particle references




A correlation-based particle picker

TemplatePicker5/slotll_1000_0001.mat
? ! A PR D el W

Green: found particles
Red dots: decoys




A correlation-based particle picker

TemplatePicker5/slotll_1000_0001.mat
I T I T

Best-matching
references




Defocus contrast and the CTF
Correlation and patrticle picking
Single-particle reconstruction

Maximume-likelihood methods



2D Fourier transform properties

abg(ax,by) — G(ul/a,v/b) Scale

g(x —a,y —b) = G(u,v)e 2rautby) Shift

g*h - GH Convolution
g, y) - Gu',v) Rotation

Py g(xa y) — G(M,O) Projection




The rotation property

2D Fourier Transform FT using 2D vectors

G(u, V) — JJg(x, y)e—i27z(ux+vy)dxdy G(ll) — [[g(x)e—i2n(u-x)d2x

The dot-product is invariant under rotations!

Let Ry signify a rotation, anc
(xl’ y/) — RG (x’ y)
w',v') = Ry(u,v)
FT = then
g’y = Gu',v)
or alternatively,
g(RQX) —> G(RQ“)




Projection along y

The Projection Theorem

2D Fourier Transform

G(u,v) = Hg(x, y)e 2R g x dy

Values along the u axis

Pg(x,y) = Jg(x, y)dy

G(u,0) = [ ( [g(x, y)dy> e ~2rx) 5
= F{P,g}




Reconstruction using the Fourier Slice Theorem

IR N P I EN ETE——




Reconstruction using the Fourier Slice Theorem

B0 B L HDE ET




Reconstruction using the Fourier Slice Theorem

W

"b;r\-g\




Single-particle reconstruction

We assume that image X; comes from a projection in direction

¢; of volume V according to

The goal is to discover the volume V

W B -
4 7l
| P ‘ A
4 i .
o4 = X
3
b
P s
v
/
P Y
1l &

roject along ¢,




Define the “reference”
as the true image A

modified by the CTF C:

R=CA

We wish to compare a
data image X with it.

There are various ways to compare images
Squared difference
2 _ 2
IX=RI>= ) (X;—R)
j

= |IXII* - 2X - R+ [IRII?

Correlation Notation used here:
Cor=X-R
- 2 AR; A single pixel in the image X:
J :
X; —the 7™M pixel (out of J
Correlation coefficient pixels total)
X R

The i™ image in the dataset X:
X.

l

~|X||R]



Restoration
from multiple images
5 ZN GX;
A= !
k() + XY 2
w i

The defocus varies to fill in
CTF zeros

Y coordinate, A

101

0

50

(=]

-50

Sum of CTF2

-100

The Wiener filter applied to images

-100 -50 0 50 100

X coordinate, A

Az=1.24

i
(N
"' | L'o N I

0

0.05 0.1 0.15 0.2
Spatial frequency

Denominator terms /N

0 0.1 0.2 0.3 04
Spatial frequency

Fourier ring correlation

N= 6 images

0.1 0.2 0.3 0.4
Spatial frequency



FREALIGN combines correlation with Wiener filtering

A Frealign iteration, refining V® to V(”+1), consists of
two steps:

1. Vary the projection direction ¢; to find the projection
image R; = CiPd),-V(n) that maximizes the correlation

coefficient for each image X,

| X:| 1R |

2. Knowing the best projection direction ¢, for each
image X, update the volume according to

>V PICX,
k+ Y PIC?

V(n+1) —

Notes

. C,is the CTF corresponding to the

image X;.

. The projection operator P, also

includes translations. So ¢ consists of
five variables: ¢ = {a, f,7, 1, ty}.

. P£ is the corresponding back projection

operator. In Fourier space it yields a
volume that is all zeros except for
values along a slice.

. The sum

N
> Ecx

is therefore the insertion of N slices.



3D reconstruction in FREALIGN—iterations

1.Start with a preliminary structure V(”), n=1

2.For each particle image X, find the projection angles
¢, that gives the best match, so X; ~ CiP(in(”)

[terate

3.Use the Frealign iteration to produce a new 3D
volume Vi +D



3D Classification in FREALIGN

Suppose our model is that an image X can come
from any of K different particle types

Vi, V5, .. Vx and our images are selected

randomly from these volumes, projected with
noise added.

1. The references are

2. Update the volume according to
le - Cquﬁle .

Y. PLCX,
Yt — i€k
We assign k; such that V, yields the k ky+ 2. PEC?

projection (with direction ¢;) that gives the

highest correlation coefficient with X..



Defocus contrast and the CTF
Correlation and patrticle picking
Single-particle reconstruction

Maximume-likelihood methods



Probabilities, another way to compare images

X=R+N
Probability of a pixel value: 0014} P(leRj) T
P(X:|R) = ﬁ o~ (X~R)*126° ) | |
JU 0.01 N
2762 Il
0.008 4
Probability of observing an image that oo Vel < H { I
0.002 | ‘ 4
comes from R: | R ‘H s . ﬁ ..
J -3 -2 -1 0 1 2 3 X
POCIR) = =2 pmtberifne K; ’
(2ro?)’? w is the finesse of the pixel

intensity measurements.
We’'ll ignore it (set it to 1).



Probabilities, another way to compare images

X=R+N

I 1 1 T 1
0.016 |- P(X] | R]) L
0.014 '
0.012 F 2

0.01 T

0.008

T
I

0.006 -

T

0.004

Probability of observing an image that
comes from R: e ‘H

-3

1 I L
0 1 2

I e

P(X|R) = c e”IX-RII"20?

(The normalization factor ¢ we’ll treat as a constant and
ignore it.)



The Likelihood

Let X = {X| .. Xy} be our “stack” of particle images. We’d like to find the
best 3D volume consistent with these data, say maximizing

P(V|X).
According to Bayes’ theorem,
P(V) prior — Experiment — posterior
P(V|X)=PX|V)——.
PX)

1.P(X) doesn’t depend on V so we can ignore it.

2.P(V) is called the prior probability. It reflects any knowledge about Vthat
we have before considering the data set.

3.P(X | V) is something we can calculate. It’s called the likelihood of V.

Lik(V) = P(X|V)



Integrate over the projection directions to get the likelihood

We already know that
PX|V,¢) = ce~IX=CPyV|i126°

To get the likelihood for one image we just integrate over all the ¢’s:

PX|V) = JP(XI V.p)P(P)de

To get the likelihood for the whole dataset we compute the product over all the
images,

N

Px|v) =[] [Pxiv.o P ao,

l

or for numerical sanity, we compute the log likelihood,

N
L= In <JP(Xi| V,d) P() d¢>.



Maximume-likelihood estimation is asymptotically unbiased

If the size of the dataset grows without bounds
(and the number of parameters to be estimated do not)
ML converges to the right answer.

N
L= Zln <[P(Xi|V,¢)dgb>.

i



To maximize the likelihood, we’'ll need a probability function I'(¢)

A projection
A=P,V

Probability of observing an image X;

P(X; |V, $) = c e~ X CPVIF/20?

Probability of a projection direction

@) = PO V) =




The E-M algorithm finds a local maximum of the likelihood

The Expectation-Maximization (E-M) algorithm has this iteration,
guaranteed to increase the likelihood:

X, [ TIAPPECX; dep

V(n+1) =—
7 T 2, TV @PFCE do

...Relion’s compute-intensive “Expectation” step is basically the

evaluation of I',(¢) for each image X;

1.

2.

For comparison, here is Frealign’s
iteration:

Find the best orientation ¢, for
each particle image X;

Update the volume according to
> PICX,
y ot — i i
k+ % PYC?




3D reconstruction in FREALIGN—iterations

1.Start with a preliminary structure V", n = 1

2.For each particle image X; find I',(¢)), the probability

torate of projection angles ¢.

3.Use the E-M iteration to produce a new 3D volume
V(n+1)



3D Classification

We can use Expectation-Maximization to optimize K different volumes
Vi, V,, .. Vg simultaneously. The formula is essential the same except

that the function I" depends also on &:

For comparison, here is Frealign’s
iteration:

() i . . 0 .
I i’khIS iteration, guaranteed to increase the likelihood: 1. Find the best orientation d for

each particle image X;

V(n+1) _ Zi Irl(,rlk)(qs)P;l;CiXi dd) 2. Update the volume according to
k T 62 Ty
=+, [T pPEC? dgp oy __ i oG
k+ 2, PYC?

...Relion’s compute-intensive “Expectation” step is basically the

evaluation of I'; (¢) for each image X; and volume V;,



Determining the orientation angles: example from the TRPV1 dataset

Structure of the TRPV1 ion channel
determined by electron cryo-microscopy
Maofu Liao'*, Erhu Cao™, David Julius” & Yifan Cheng'

1/4 of a micrograph - empiar.org/10005 One particle image

QQNR



http://empiar.org/10005

The probability of orientations P(¢h | X, V) is remarkably sharp
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The probability of orientations P(¢ | X, V) is remarkably sharp
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Reconstruction: on the first EM iteration, angle assignments are not sharp
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Membrane subtracted

Iteration 3
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Iteration 5

Membrane subtracted Be st match ref
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lteration 14, near convergence: distributions are becoming sharp
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The orientation determination is the most expensive step

No. operations ~ t n5N+7tn +NnJ

8
f d“. 3D recon-
ndmng struction

orientations



The orientation determination is the most expensive step

3
No. operations = %tanN + gtn4 + Nn%
) e 3D rgcon-
ﬁndm_g struction
orientations

e.g. N=105, n=128, t=7
No. operations = 6 x 1017 = 19 CPU-years

With efficient programs, ~ 1 CPU-month



Evaluating ', is expensive: one of 5 parameters
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Evaluating ', is expensive: one of 5 parameters
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Evaluating ', is expensive: one of 5 parameters
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How to decrease the effort?



1. To save time, we
compute probabilities of
orientations at low
resolution.

log P(a)

—~067
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2. We place bounds on
how much higher the
probabilities could be at
full resolution.

Given a cutoff value, we
evaluate over a fraction of
the domain.

Domain reduction: branch and bound, illustrated for 1D
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In Relion, 2D and 3D classification and refinement use the same algorithm

Quantity | Meaning in 3D classification Meaning in 2D classification
Vv, Class volume Class average image
o 3 Euler angles of orientation + 2 translations 1 angle of rotation + 2 translations
P¢ Projection operator 3D— 2D Image rotation and shift
pT Back-projection operator 2D 3D Reverse shift and rotation




data_particles Interesting information in Relion’s particle file

loop_
_rinMicrographName #0
_rinCoordinateX #1
_rinCoordinateY #2
_rinGroupName #3
_rinDefocusU #4
_rinDefocusV #5
_rinDefocusAngle #6
_rinOpticsGroup #7
_rinClassNumber #8
_rinAnglePsi #9
_rinAutopickFigureOfMerit #10
_rinlmageName #11

_riInAngleRot #12

_rinAngleTilt #13

_rInOriginXAngst #14

_rInOriginYAngst #15

_rinNormCorrection #16

_rinLogL ikeliContribution #17

_rinMaxValueProbDistribution #18

_rInNrOfSignificantSamples #19

_rinGroupNumber #20
_rlnRandomSubset #21

Merged/2020-12-30_19_50_41_025035_1_240-1_0000_X-1Y-1-1_v.mrc 2927 910000 3601.070000 group_14 20129.600000 19778.200000
5035_1_240-1_0000_X-1Y-1-1_v.mrcs

-24.83200 7.681132 4.095966 -3.44403 0.590449 54185.894732 0.264938 17 1 2

Merged/2020-12-30_19_50_41_025035_1_240-1_0000_X-1Y-1-1_v.mrc 1028.820000 3304.810000 group_14 20129.600000 19778.200000
22.059200 1 1 _-76.56167 -999.00000 000006@Extract/job049/Merged/2020-12-30_19_50_41_025035_1_240-1_0000_X-1Y-1-1_v.mrcs

38.965843 12.031761 -2.68403 -3.44403 0.618694 54275.743065 0.086554 45 1 1|

Merged/2020-12-30_19_50_54_025035_1_240-1_0001_X-1Y-1-2_v.mrc 2431.500000 3073.850000 group_14 19509.000000 18928.900000
10.654800 1 1 143.393906 -999.00000 000008@Extract/job049/Merged2020-12-30_19_50_54_025035_1_240-1_0001_X-1Y-1-2_v.mrcs

| -4.83292 121.793929 -3.44403 1.835966 0.605107 54180.246800 0.093273 63 1 2|




