EM Image Formation and Single-Particle Reconstruction

Fred Sigworth
Yale University
(A)

Any sufficiently advanced technology is indistinguishable from magic.
-Arthur C. Clarke

Defocus contrast and the CTF

Correlation and particle picking
Single-particle reconstruction
Maximum-likelihood methods

A snapshot of an electron wave

Insert a phase-shifting object that perturbs the electron wave function

Insert a phase-shifting object that perturbs the electron wave function

Modeling the components of $\Psi:$ first, the undiffracted wave

$$
\Psi_{0}=e^{i k z}
$$

Classical diffraction yields a diffracted wave...

$$
\begin{aligned}
& \text { With } \lambda=.02 \AA \text { and } d=5 \AA, \\
& \theta \text { is actually only } 4 \text { milliradians, or } 0.23^{\circ} \text { ! }
\end{aligned}
$$

...and the other diffracted wave

Note there's a tiny shift of wavefronts, because the diffracted waves follow slightly longer paths.

The three waves interfere to make contrast

The complete wave function is

$$
\Psi=\Psi_{0}+\Psi_{+}+\Psi_{-}
$$

The relative phases change with z because Ψ_{+}and Ψ_{-}have a different path length than Ψ_{0} to arrive at a given point.

Suppose the Ψ_{0} path length is

$$
z_{0}=200 \mathrm{~nm}
$$

The Ψ_{-}and Ψ_{+}path lengths are then

$$
\begin{aligned}
z_{ \pm} & =200 \mathrm{~nm} / \cos \theta \\
& =200.0016 \mathrm{~nm}
\end{aligned}
$$

This is a significant difference, since

$$
\lambda=.002 \mathrm{~nm}!
$$

The diffracted waves have a slightly larger path length

The path length difference is

$$
\begin{aligned}
\zeta & =z_{ \pm}-z_{0} \\
& =\left(1-\frac{1}{\cos \theta}\right) z
\end{aligned}
$$

$$
\begin{aligned}
& \text { For } z \geq 0 \\
& \qquad \begin{aligned}
\Psi & =\Psi_{0}+\Psi_{+}+\Psi_{-} \\
& =e^{i k z}-i \epsilon \phi(x) e^{i k(z+\zeta)}
\end{aligned}
\end{aligned}
$$

Removing the fast oscillations to visualize relative phases

$$
\begin{aligned}
\Psi & =\Psi_{0}+\Psi_{+}+\Psi_{-} \\
& =e^{i k z}-i \epsilon \phi(x) e^{i k(z+\zeta)}
\end{aligned}
$$

To remove the fast oscillations, Let's cancel them! Define

$$
\begin{aligned}
\Psi^{\prime} & =\Psi e^{-i k z} \\
& =1-i \epsilon \phi(x) e^{i k \zeta}
\end{aligned}
$$

The intensity of the electron waves is unchanged,

$$
I=|\Psi|^{2}=\left|\Psi^{\prime}\right|^{2}
$$

The diffracted waves alone

$\Psi^{\prime}=1-i \epsilon \phi(x) e^{i k \zeta}$
Then, subtracting away 1 which represents the unscattered wave, you can observe

- the variation in x, because our original grating signal was $\epsilon \phi(x)=\epsilon \cos (2 \pi x / d)$
- the phase variation along z from the complex exponential $e^{i k \zeta}$.

Next we'll see that we get contrast at z values where the diffracted waves have real values (red and green), not imaginary (blue and yellow).

$$
\begin{aligned}
\Psi^{\prime} & =1-i \epsilon \phi(x) e^{i k \zeta} \\
& =1-i e \phi(x)[\cos (k \zeta)+i \sin (k \zeta)]
\end{aligned}
$$

The measured intensity is

$$
\begin{aligned}
& \left|\Psi^{\prime}\right|^{2}=\text { (real part) }{ }^{2}+(\text { imag part })^{2} \\
& \quad=[1+\epsilon \phi(x) \sin (k \zeta)]^{2}-[\epsilon \phi(x) \cos (k \zeta)]^{2} \\
& \quad=\left[1+2 \sin (k \zeta) \epsilon \phi(x)+O \epsilon^{2}\right]+\left[O \epsilon^{2}\right] .
\end{aligned}
$$

So, ignoring a factor of 2 , we say the contrast transfer from phase shift to intensity change is

$$
\text { Contrast }=\frac{\text { intensity change }}{\text { phase shift }}=\sin (k \zeta)
$$

The contrast transfer function for defocus

$$
\text { Contrast }=\frac{\text { intensity change }}{\text { phase shift }}=\sin (k \zeta)
$$

$$
\begin{aligned}
k & =2 \pi / \lambda \\
\zeta & =\left(1-\frac{1}{\cos \theta}\right) z
\end{aligned}
$$

but a very useful approximation is

$$
\zeta=\frac{\lambda^{2} z}{2 d^{2}}
$$

so

$$
k \zeta=\pi \lambda z / d^{2}
$$

and

$$
\mathrm{CTF}=\sin \left(\pi \lambda z / d^{2}\right) \quad \text { the defocus contrast transfer function }
$$

Contrast varies with the amount of defocus

Intensity at z

The original grating with $d=5 \AA$

Interference between the unscattered wave and the diffracted waves produces contrast.
$\mathrm{CTF}=\sin \left(\pi \lambda z / d^{2}\right)$

Periodicity of contrast depends on the grating spacing d
$7 \AA$ repeat

10 Å repeat

What happens when the objective lens is focused above the specimen?

Intensity at z

The grating $\phi(x)$

Underfocus is focusing the objective lens above the specimen.

Standard terminology

- Defocus values δ are positive for underfocus,

$$
\delta=-z
$$

- Spatial frequency is
$s=1 / d$
- So we can write the defocus phase contrast as: $\mathrm{CTF}=\sin \left(-\pi \lambda \delta s^{2}\right)$

Most cryo-EM data are acquired using defocus contrast

- People always use "underfocus". This means decreasing the strength of the objective lens, effectively focusing above the specimen.
- At high defocus, highresolution information in the image is strongly delocalized.
- If the delocalized information is not lost by cropping, image processing can recover it.

With large defocus, how bad is the image delocalization?

The dispersion radius is given by

$$
\begin{aligned}
r & =\delta \tan \theta \\
& =\delta \lambda s \text { (small angle approx.) }
\end{aligned}
$$

- How big a box do I need around my 120 Å-diameter particle to include all the information up to $3 \AA$, if I use $3 \mu \mathrm{~m}$ of defocus and $\lambda=.02 \AA$
- In this case $r=200 \AA$, so to capture all the information the box should be 520 \AA on a side.

Object

Contrast transfer function as a function of frequency $s=1 / d$
$\mathrm{CTF}=\sin \left(-\pi \lambda \delta s^{2}\right)$

An objective lens reproduces interference patterns at the focus

With spherical aberration a lens bends high-angle rays more strongly

Spherical aberration changes
the defocus by

$$
\delta^{\prime}=-C_{s} \lambda^{2} s^{2} / 2
$$

The contrast transfer function has a new term,

$$
\mathrm{CTF}=\sin \left(-\pi \lambda\left(\delta+\delta^{\prime}\right) s^{2}\right)
$$

or, expanded,

$$
\mathrm{CTF}=\sin \left(-\pi \lambda \delta s^{2}+\frac{\pi}{2} C_{s} \lambda^{3} s^{4}\right)
$$

The coefficient C_{s} is typically $\sim 2 \mathrm{~mm}$. This makes spherical aberration important only for $s \gtrsim 0.25 \AA^{-1}$, or about $4 \AA$ resolution.

Underfocus

Very high-angle scattering yields some contrast

Electrons that pass very close to an atomic nucleus are scattered at high angles, and are caught by the objective aperture.

The loss of these electrons results in a small amount of negative amplitude contrast. Its small magnitude, $\sin (-\alpha)$, is typically around -0.05.

The amplitude contrast term allows the CTF to have a small negative value even at zero spatial frequency.

Combining all these terms, the contrast transfer function is given by

$$
\mathrm{CTF}=\sin \left(-\pi \lambda \delta s^{2}+\frac{\pi}{\left.{\underset{\text { defocus }}{ }}_{2}^{\operatorname{sphere}} C_{s} \lambda^{3} s^{4}-\alpha\right)}\right.
$$

Parameters of the CTF

$$
\mathrm{CTF}=\sin \left(-\pi \lambda \delta s^{2}+\frac{\pi}{2} C_{s} \lambda^{3} s^{4}-\alpha\right)
$$

- C_{s} is a property of the microscope objective lens; you can ask the manufacturer for the value.
- α is a property of the atoms in the specimen. For proteins, its value can be assumed to lie between . 05 and .1
- δ is the only parameter that must be estimated to high precision for each micrograph. If there is astigmatism, δ is a function of an in-plane angle θ, so one needs to estimate $\delta_{\text {min }}, \delta_{\text {max }}$ and θ.

This is our simple defocus-contrast CTF

Simple defocus contrast
$\mathrm{CTF}=\sin \left(-\pi \lambda \delta f^{2}\right)$

Up to a resolution of $\sim 2 \AA$ three terms of the CTF suffice

Combining all these terms, the contrast transfer function is given by

$$
\mathrm{CTF}=\sin \left(-\pi \lambda \delta f^{2}+\frac{\pi}{2} C_{s} \lambda^{3} f^{4}-\alpha\right)
$$

Here you can see why everyone uses underfocus: the amplitude contrast and defocus contrast are additive at low s.

A phase plate modifies the interference of electron waves at the camera

In focus

Phase plate

The phase plate shifts the phase of the undiffracted beam Ψ_{0} by some angle ϕ.
If $\phi=90^{\circ}$ then the sine function becomes a cosine, and the CTF at $s=0$ becomes 1 .
$\mathrm{CTF}=\sin \left(\phi-\pi \lambda \delta f^{2}+\frac{\pi}{2} C_{s} \lambda^{3} f^{4}-\alpha\right)$

Phase-shifted
unscattered beam

The phase plate allows in-focus imaging, but precise focusing is necessary.

Cryo-EM single particle analysis with the Volta phase plate

Radostin Danev*, Wolfgang Baumeister
Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany

20S Proteasomes

The CTF representation in 2D Fourier space

If astigmatism were present, the rings would be ellipses.

Each point in the Fourier plane represents a grating "frequency"

y

Real space $g(x, y)$

Each point in the Fourier plane represents a grating "frequency"

Fourier space $G(u, v)$

Amplitude: weight of the grating
Phase (hue): shift from the center

Scaling of an image and its discrete FT

$1 / 2 d$ is the Nyquist frequency

The Fourier representation of an image has the same information content

2D Fourier transform properties

$$
\begin{array}{ll}
a b g(a x, b y) \rightarrow G(u / a, v / b) & \text { Scale } \\
g(x-a, y-b) \rightarrow G(u, v) e^{-i 2 \pi(a u+b v)} & \text { Shift } \\
g * h \rightarrow G H & \text { Convolutio } \\
g\left(x^{\prime}, y^{\prime}\right) \rightarrow G\left(u^{\prime}, v^{\prime}\right) & \text { Rotation } \\
P_{y} g(x, y) \rightarrow G(u, 0) & \text { Projection }
\end{array}
$$

Convolution with a Gaussian

Visualizing the contrast transfer function

Random object

FT of object

CTF

FT of image

Power spectrum

Can we do the deconvolution
$\tilde{A}=X / C$??

1. Phase flipping
$\tilde{A}=\operatorname{sgn}(C) X$

CTF

$$
\tilde{A}=\frac{C X}{C^{2}+k}
$$

Wiener filtered

Modeling the CTF effect on an image

Model of an image
$X=C A+N$

A "true" image
C contrast-transfer function
N noise image
We can interpret C as either the CTF
operator (x, y space), or just the multiplicative CTF factor (u, v space)

How to undo the CTF effects in noisy images?

3. Wiener from multiple images

$$
\begin{array}{rlrl}
\tilde{A}=\frac{\sum_{i}^{N} C_{i} X_{i}}{k+\sum_{i}^{N} C_{i}^{2}} & k(s) & =1 / \mathrm{SNR} \\
& =\frac{\|N\|^{2}}{\|A\|^{2}}
\end{array}
$$

Image restoration when spectral SNR is known

Restoration from multiple images

$$
\tilde{A}=\frac{\sum_{i}^{N} C_{i} X_{i}}{k_{w}(s)+\sum_{i}^{N} C_{i}^{2}}
$$

The defocus varies to fill in CTF zeros

Image restoration when spectral SNR is known

Restoration from multiple images

$$
\tilde{A}=\frac{\sum_{i}^{N} C_{i} X_{i}}{k_{w}(s)+\sum_{i}^{N} C_{i}^{2}}
$$

The defocus varies to fill in CTF zeros

Even the small defocus range $1-1.5 \mu \mathrm{~m}$ is sufficient.

Defocus contrast and the CTF
Correlation and particle picking
Single-particle reconstruction
Maximum-likelihood methods

2D Fourier transform properties

$$
\begin{array}{ll}
a b g(a x, b y) \rightarrow G(u / a, v / b) & \text { Scale } \\
g(x-a, y-b) \rightarrow G(u, v) e^{-i 2 \pi(a u+b v)} & \text { Shift } \\
g * h \rightarrow G H & \text { Convolutio } \\
g\left(x^{\prime}, y^{\prime}\right) \rightarrow G\left(u^{\prime}, v^{\prime}\right) & \text { Rotation } \\
P_{y} g(x, y) \rightarrow G(u, 0) & \text { Projection }
\end{array}
$$

Correlation locates motifs in images

Translational cross-correlation function

$$
\begin{aligned}
& \operatorname{Cor}(x, y)=X \otimes R \\
& \quad=\sum_{s, t} h(s, t) g(x+s, y+t)
\end{aligned}
$$

Correlation is like convolution.

 The FT pair is: $g \otimes h \rightarrow G H^{*}$

Cross-correlation : $\operatorname{Cor}(x, y)$

Correlation locates motifs in images

Translational cross-correlation function

$$
\begin{aligned}
& \operatorname{Cor}(x, y)=X \otimes R \\
& \quad=\sum_{s, t} h(s, t) g(x+s, y+t)
\end{aligned}
$$

CTF-filtered projections and decoys

(8)	(8)	(3)	(1)	(®)	P	(4)	9	(2)	Q	I	(2)	\%	(2)	(8)	(a)	a)	(3)	(2)
(3)	(3)	(3)	c	(3)	(3)	d3		3	\&-	©.	©.		\%	\&	P	\%	S	®
\%	(2)	(2)	(8)	(8)	(2)	(4)		(6)	(4)	20	± 2		8)	(8)	(5)	क)	(3)	8
(\%)	,	\%	8	ल	ल	¢		3	\&	(14)	(1)3		\%	\%	(15)	(3)	(3)	Q.
2	Q	¢	\%	\$	®	\%		8	8	Q	8		8	28	6^{3}	48	48	23
88	68	68	\%8	8	8	δ		S	8	S	¢		5	ก	\%	8	8^{3}	8
8^{5}	\%	8	g^{4}	89	83	8		9	84	89	83		8)	\&	Q	Q	\%	\%
8	σ	\bigcirc	-	©	0	0	d	\triangle	d	d	(1)	(1)		(9)	0	\bigcirc	\bigcirc	\bigcirc
Q	e	-	θ	Q	S	\checkmark		\bigcirc	\bigcirc	D	D		D	D	D	D	0	0
O	,	\bigcirc	\bigcirc															

A correlation-based particle picker

A correlation-based particle picker

A correlation-based particle picker

Max of correlations

A correlation-based particle picker

Green: found particles Red dots: decoys

A correlation-based particle picker

Best-matching references

Defocus contrast and the CTF
Correlation and particle picking
Single-particle reconstruction
Maximum-likelihood methods

2D Fourier transform properties

$$
\begin{array}{ll}
a b g(a x, b y) \rightarrow G(u / a, v / b) & \text { Scale } \\
g(x-a, y-b) \rightarrow G(u, v) e^{-i 2 \pi(a u+b v)} & \text { Shift } \\
g * h \rightarrow G H & \text { Convolution } \\
g\left(x^{\prime}, y^{\prime}\right) \rightarrow G\left(u^{\prime}, v^{\prime}\right) & \text { Rotation } \\
P_{y} g(x, y) \rightarrow G(u, 0) & \text { Projection }
\end{array}
$$

The dot-product is invariant under rotations!

Let R_{θ} signify a rotation, an $\left(x^{\prime}, y^{\prime}\right)=R_{\theta}(x, y)$ $\left(u^{\prime}, v^{\prime}\right)=R_{\theta}(u, v)$ then
$g\left(x^{\prime}, y^{\prime}\right) \rightarrow G\left(u^{\prime}, v^{\prime}\right)$
or alternatively,

$$
g\left(R_{\theta} \mathbf{x}\right) \rightarrow G\left(R_{\theta} \mathbf{u}\right)
$$

The Projection Theorem

2D Fourier Transform

$$
G(u, v)=\iint g(x, y) e^{-i 2 \pi(u x+v y)} d x d y
$$

Values along the u axis

Projection along y

$$
\begin{aligned}
\text { Projection along } y \\
P_{y} g(x, y)=\int g(x, y) d y
\end{aligned} \quad \begin{aligned}
G(u, 0) & =\int\left(\int g(x, y) d y\right) e^{-i 2 \pi(u x)} d x \\
& =\mathscr{F}\left\{P_{y} g\right\}
\end{aligned}
$$

Reconstruction using the Fourier Slice Theorem

Insert as a slice in 2D field

2D inverse
Fourier transform
$g_{\text {rec }}(x, y)$

Reconstruction using the Fourier Slice Theorem

Reconstruction using the Fourier Slice Theorem

Insert as a slice in 2D field

2D inverse
Fourier transform
$g_{\text {rec }}(x, y)$

Single-particle reconstruction

We assume that image X_{i} comes from a projection in direction ϕ_{i} of volume V according to
$X_{i}=C_{i} \mathbf{P}_{\phi_{i}} V+N_{i}$
The goal is to discover the volume V

Project along ϕ_{i}

There are various ways to compare images

Squared difference

$$
\begin{aligned}
& \|X-R\|^{2}=\sum_{j}\left(X_{j}-R_{j}\right)^{2} \\
& =\|X\|^{2}-2 X \cdot R+\|R\|^{2}
\end{aligned}
$$

Correlation

$$
\begin{aligned}
\text { Cor } & =X \cdot R \\
& =\sum_{j} X_{j} R_{j}
\end{aligned}
$$

Correlation coefficient

$$
\mathrm{CC}=\frac{X \cdot R}{|X||R|}
$$

Notation used here:

A single pixel in the image X :
X_{j}-the $j^{\text {th }}$ pixel (out of J
pixels total)

The $i^{\text {th }}$ image in the dataset \mathbf{X} :
X_{i}

The Wiener filter applied to images

Restoration from multiple images

$$
\tilde{A}=\frac{\sum_{i}^{N} C_{i} X_{i}}{k_{w}(s)+\sum_{i}^{N} C_{i}^{2}}
$$

The defocus varies to fill in CTF zeros

FREALIGN combines correlation with Wiener filtering

A Frealign iteration, refining $V^{(n)}$ to $V^{(n+1)}$, consists of two steps:

1. Vary the projection direction ϕ_{i} to find the projection image $R_{i}=C_{i} \mathbf{P}_{\phi_{i}} V^{(n)}$ that maximizes the correlation coefficient for each image X_{i},

$$
\mathrm{CC}=\frac{X_{i} \cdot R_{i}}{\left|X_{i}\right|\left|R_{i}\right|}
$$

2. Knowing the best projection direction ϕ_{i} for each image X_{i}, update the volume according to

$$
V^{(n+1)}=\frac{\sum_{i}^{N} \mathbf{P}_{\phi_{i}}^{\mathrm{T}} C_{i} X_{i}}{k+\sum_{i}^{N} \mathbf{P}_{\phi_{i}}^{\mathrm{T}} C_{i}^{2}}
$$

4. The sum

$$
\sum_{i}^{N} \mathbf{P}_{\phi_{i}}^{\mathbf{T}} C_{i} X_{i}
$$

is therefore the insertion of N slices.

3D reconstruction in FREALIGN-iterations

1.Start with a preliminary structure $V^{(n)}, n=1$
2.For each particle image X_{i} find the projection angles
 volume $V^{(n+1)}$

Suppose our model is that an image X can come from any of K different particle types $V_{1}, V_{2}, \ldots V_{K}$ and our images are selected randomly from these volumes, projected with noise added.

1. The references are

$$
R_{i k}=C_{i} \mathbf{P}_{\phi_{i}} V_{k}
$$

We assign k_{i} such that $V_{k_{i}}$ yields the projection (with direction ϕ_{i}) that gives the highest correlation coefficient with X_{i}.
2. Update the volume according to

$$
V_{k}^{(n+1)}=\frac{\sum_{i \in k} \mathbf{P}_{\phi_{i}}^{\mathrm{T}} C_{i} X_{i}}{k_{w}+\sum_{i \in k} \mathbf{P}_{\phi_{i}}^{\mathrm{T}} C_{i}^{2}}
$$

Defocus contrast and the CTF
Correlation and particle picking
Single-particle reconstruction
Maximum-likelihood methods

Probabilities, another way to compare images

$X=R+N$

Probability of a pixel value:
$P\left(\mathrm{X}_{j} \mid \mathrm{R}_{j}\right)=\frac{\text { 次 } 1}{\sqrt{2 \pi} \sigma^{2}} e^{-\left(\mathrm{X}_{j}-\mathrm{R}_{j}\right)^{2} / 2 \sigma^{2}}$

Probability of observing an image that comes from R :
$P(X \mid R)=\frac{\text { 次 } 1}{\left(2 \pi \sigma^{2}\right)^{J / 2}} e^{-\|X-R\|^{2} / 2 \sigma^{2}}$

w is the finesse of the pixel intensity measurements.
We'll ignore it (set it to 1).

Probabilities, another way to compare images

$X=R+N$

Probability of observing an image that comes from R :
$P(X \mid R)=c e^{-\|X-R\|^{2} / 2 \sigma^{2}}$
(The normalization factor c we'll treat as a constant and ignore it.)

Let $\mathbf{X}=\left\{X_{1} \ldots X_{N}\right\}$ be our "stack" of particle images. We'd like to find the best 3D volume consistent with these data, say maximizing

$$
P(V \mid \mathbf{X})
$$

According to Bayes' theorem,

$$
P(V \mid \mathbf{X})=P(\mathbf{X} \mid V) \frac{P(V)}{P(\mathbf{X})}
$$

1. $P(\mathbf{X})$ doesn't depend on V so we can ignore it.
2. $P(V)$ is called the prior probability. It reflects any knowledge about Vthat we have before considering the data set.
3. $P(\mathbf{X} \mid V)$ is something we can calculate. It's called the likelinood of V.

$$
\operatorname{Lik}(V)=P(\mathbf{X} \mid V)
$$

Integrate over the projection directions to get the likelihood

We already know that

$$
P(X \mid V, \phi)=c e^{-\left\|X-\mathrm{CP}_{\phi} V\right\| / 2 \sigma^{2}}
$$

To get the likelihood for one image we just integrate over all the ϕ 's:

$$
P(X \mid V)=\int P(X \mid V, \phi) P(\phi) d \phi
$$

To get the likelihood for the whole dataset we compute the product over all the images,

$$
P(\mathbf{X} \mid V)=\prod_{i}^{N} \int P\left(X_{i} \mid V, \phi\right) P(\phi) d \phi
$$

or for numerical sanity, we compute the log likelihood,

$$
L=\sum_{i}^{N} \ln \left(\int P\left(X_{i} \mid V, \phi\right) P(\phi) d \phi\right) .
$$

Maximum-likelihood estimation is asymptotically unbiased

If the size of the dataset grows without bounds
(and the number of parameters to be estimated do not)
ML converges to the right answer.

$$
L=\sum_{i}^{N} \ln \left(\int P\left(X_{i} \mid V, \phi\right) d \phi\right)
$$

To maximize the likelihood, we'll need a probability function $\Gamma(\phi)$

A projection

$$
A=\mathbf{P}_{\phi} V
$$

Probability of observing an image X_{i}

$$
P\left(X_{i} \mid V, \phi\right)=c e^{-\left\|X_{i}-\mathbf{C P}_{\phi} V\right\|^{2} / 2 \sigma^{2}}
$$

Probability of a projection direction

$$
\Gamma_{i}(\phi)=P\left(\phi \mid X_{i}, V\right)=\frac{P\left(X_{i} \mid V, \phi\right)}{\int P\left(X_{i} \mid V, \phi\right) d \phi}
$$

The E-M algorithm finds a local maximum of the likelihood

The Expectation-Maximization (E-M) algorithm has this iteration, guaranteed to increase the likelihood:

$$
V^{(n+1)}=\frac{\sum_{i} \int \Gamma_{i}^{(n)}(\phi) \mathbf{P}_{\phi}^{\mathrm{T}} C_{i} X_{i} d \phi}{\frac{\sigma^{2}}{T \tau^{2}}+\sum_{i} \int \Gamma_{i}^{(n)}(\phi) \mathbf{P}_{\phi}^{\mathrm{T}} C_{i}^{2} d \phi}
$$

For comparison, here is Frealign's iteration:

1. Find the best orientation ϕ_{i} for each particle image X_{i}
2. Update the volume according to

$$
V^{(n+1)}=\frac{\sum_{i} \mathbf{P}_{\phi_{i}}^{\mathrm{T}} C_{i} X_{i}}{k+\sum_{i} \mathbf{P}_{\phi_{i}}^{\mathrm{T}} C_{i}^{2}}
$$

...Relion's compute-intensive "Expectation" step is basically the evaluation of $\Gamma_{i}(\phi)$ for each image X_{i}

3D reconstruction in FREALIGN-iterations

1.Start with a preliminary structure $V^{(n)}, n=1$
2.For each particle image X_{i} find $\Gamma_{i}(\phi)$, the probability of projection angles ϕ.
3.Use the E-M iteration to produce a new 3D volume $V^{(n+1)}$

3D Classification

We can use Expectation-Maximization to optimize K different volumes $V_{1}, V_{2}, \ldots V_{K}$ simultaneously. The formula is essential the same except that the function Γ depends also on k :
$\Gamma_{\phi_{i}, k}^{(n)}$ his iteration, guaranteed to increase the likelihood:

$$
V_{k}^{(n+1)}=\frac{\sum_{i} \int \Gamma_{i, k}^{(n)}(\phi) \mathbf{P}_{\phi}^{\mathrm{T}} C_{i} X_{i} d \phi}{\frac{\sigma^{2}}{T \tau^{2}}+\sum_{i} \int \Gamma_{i, k}^{(n)}(\phi) \mathbf{P}_{\phi}^{\mathrm{T}} C_{i}^{2} d \phi}
$$

For comparison, here is Frealign's iteration:

1. Find the best orientation ϕ_{i} for each particle image X_{i}
2. Update the volume according to

$$
V^{(n+1)}=\frac{\sum_{i} \mathbf{P}_{\phi_{i}}^{\mathrm{T}} C_{i} X_{i}}{k+\sum_{i} \mathbf{P}_{\phi_{i}}^{\mathrm{T}} C_{i}^{2}}
$$

...Relion's compute-intensive "Expectation" step is basically the evaluation of $\Gamma_{i, k}(\phi)$ for each image X_{i} and volume V_{k}

Determining the orientation angles: example from the TRPV1 dataset

Structure of the TRPV1 ion channel determined by electron cryo-microscopy
 Maofu Liao ${ }^{1 *}$, Erhu $\mathrm{Cao}^{2 *}$, David Julius ${ }^{2}$ \& Yifan Cheng

1/4 of a micrograph - empiar.org/10005

One particle image

The probability of orientations $P(\phi \mid X, V)$ is remarkably sharp

Particle image

Reference: 8638

The probability of orientations $P(\phi \mid X, V)$ is remarkably sharp

Particle image

Reference: 8989

Reconstruction: on the first EM iteration, angle assignments are not sharp

Iteration 3

Iteration 5

Iteration 14, near convergence: distributions are becoming sharp

The orientation determination is the most expensive step

No. operations $\approx \underbrace{\frac{\pi^{3} t^{2} n^{5} N}{8} N+\underbrace{\pi n^{4}+N n^{2}}_{\begin{array}{c}\text { 3D recon- } \\ \text { struction }\end{array}}}_{\begin{array}{c}\text { finding } \\ \text { orientations }\end{array}}$

The orientation determination is the most expensive step

No. operations $\approx \underbrace{\frac{\pi^{3} t^{2} n^{5} N}{8}+\underbrace{\pi n^{4}+N n^{2}}_{\begin{array}{c}\text { 3D recon- } \\ \text { struction }\end{array}}}_{\begin{array}{c}\text { finding } \\ \text { orientations }\end{array}}$
e.g. $N=10^{5}, n=128, t=7$

No. operations $\approx 6 \times 10^{17} \approx 19$ CPU-years
With efficient programs, ~ 1 CPU-month

Evaluating Γ_{ϕ} is expensive: one of 5 parameters

	\%	Q	Q	\&	
*	今	*	(a)	4	4
(41)	(81)	(81)	818	87	8if
37	(87)	(8)	(4)	3	\%
)	\%	\%	¢	¢
2		\&	8	*	
3	3	*	(3)	(1)	
3			(18)	(18)	
(18)	48	(8)	4	*	
	2	Q	E	\%	

Evaluating Γ_{ϕ} is expensive: one of 5 parameters

		\%	\%	\&	
今	今	s	\$	4	4
(1)	(i1)	(1)	(81)	(8)	(87)
(21)	4	8	(8)	8	8
))	\%	©	
\%				\&	
s	3	3	(3)	(3)	
				(18)	
8	8	23	4	*	
	3	(3)		B	

Evaluating Γ_{ϕ} is expensive: one of 5 parameters

Evaluating Γ_{ϕ} is expensive: one of 5 parameters

당	E	\%	\&		5	
\&	*	4	*		,	4
48	4	48	61		(81)	(8i)
(827	827	83	4		(3)	3
*	\%	c	\%		E	๕
๕	¢	(3)	\%		\%	\$
\&	*	*	*		3	(13)
(13)	13	13	(12)		(18)	[138
183	18	(2)	(2)		令	2
\&	\%	\%	E		5	F
¢						

Evaluating Γ_{ϕ} is expensive: one of 5 parameters

	\%	\&	\&	\&	
\&	*	*	((1)	(17)
41)	(81)	(81)	(81)	87	87
(4)	(37)	(3)	(3)	3	\%
))	c	1	\%	\%
\bigcirc	๕	©	\&	\&	
	\$	*	(1)	(3)	
	13	(13)	118	18	
18	(18)	(18)	(2)	8	
	(3)	\%	¢	\%	

Domain reduction: branch and bound, illustrated for 1D

1. To save time, we compute probabilities of orientations at low resolution.

2. We place bounds on how much higher the probabilities could be at full resolution.

Given a cutoff value, we evaluate over a fraction of the domain.

In Relion, 2D and 3D classification and refinement use the same algorithm

Quantity	Meaning in 3D classification	Meaning in 2D classification
V_{k}	Class volume	Class average image
ϕ	3 Euler angles of orientation + 2 translations	1 angle of rotation + 2 translations
\mathbf{P}_{ϕ}	Projection operator 3D \rightarrow 2D	Image rotation and shift
\mathbf{P}_{ϕ}^{T}	Back-projection operator 2D $\rightarrow 3 \mathrm{D}$	Reverse shift and rotation

loop_

_rinMicrographName \#0
_rinCoordinateX \#1
_rlnCoordinateY \#2
_rinGroupName \#3
rInDefocusU \#4
_rInDefocusV \#5
_rlnDefocusAngle \#6
_rInOpticsGroup \#7
_rInClassNumber \#8
_rinAnglePsi \#9
_rInAutopickFigureOfMerit \#10
_rInImageName \#11

_rInAngleRot \#12

_rInAngleTilt \#13
_rInOriginXAngst \#14
_rInOriginYAngst \#15
_rInNormCorrection \#16
_rInLogLikeliContribution \#17
_rInMaxValueProbDistribution \#18
_rInNrOfSignificantSamples \#19
_rInGroupNumber \#20
_rInRandomSubset \#21
Merged/2020-12-30_19_50_41_025035_1_240-1_0000_X-1Y-1-1_v.mrc 2927.9100003601 .070000 group_14 20129.60000019778 .200000 $22.059200 \quad 11110.822758$-999.00000 000003@Extract/job049/Merged/2020-12-30_19_50_41_025035_1_240-1_0000_X-1Y-1-1_v.mrcs $\begin{array}{llllllllll}-24.83200 & 7.681132 & 4.095966 & -3.44403 & 0.590449 & 54185.894732 & 0.264938 & 17 & 1 & 2\end{array}$

Merged/2020-12-30_19_50_41_025035_1_240-1_0000_X-1Y-1-1_v.mrc 1028.8200003304 .810000 group_14 20129.60000019778 .200000 $22.059200 \quad 1 \quad 1 \quad 1 \quad-76.56167-999.00000$ 000006@Extract/iob049/Merged/2020-12-30_19 50_41_025035_1_240-1_0000_X-1Y-1-1_v.mrcs $\begin{array}{lllllllll}38.965843 & 12.031761 & -2.68403 & -3.44403 & 0.61869454275 .743065 & 0.086554 & 45 & 1 & 1\end{array}$

Merged/2020-12-30_19_50_54_025035_1_240-1_0001_X-1Y-1-2_v.mrc 2431.500000 3073.850000 group_14 19509.00000018928 .900000
$\begin{array}{lllllllllll}10.654800 & 1 & 1 & 143.393906 & -999.00000 & 000008 @ E x t r a c t / j 0 b 049 / M e r g e d 2020-12-30 _19 _50 _54 _025035 _1 _240-1 _0001 _X-1 Y-1-2 _v . m r c s ~ \\ -4.83292 & 121.793929 & -3.44403 & 1.835966 & 0.60510754180 .246800 & 0.093273 & 63 & 1 & 2 & \end{array}$

