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70’s

5 Proprietary & Confidential | wim.hagen@thermofisher.com | 11-June-2024



ThermoFisher

SCIENTIFIC

Microscopes
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Philips Tecnai series
Late 90’s
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FEI Titan series,
Since 2004.

Easy usage for all skill levels!
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Source.

Condenser.

Objective (= specimen).
Projector.

Enerqy filter.

Detector.
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Gun

filament or ‘source’ of

electons Field Emission Gun < 10e-6 Pa
Gun coils : Thermionic gun ~10e-5 Pa
T Condenser system —
usually two lenses
Condenser

CZ lens — at bottom of
condenser system

Beam coils

Column

Objective 10e-5 Pa

first image plane

A group of lenses which
make up the projector
system

Projector

Projection chamber
~10e-3 Pa

phosphor screen
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« Cryo-shielding improves vacuum quality around the specimen by at least a factor 10:
* Protects a cryo-specimen. From ice contamination build-up.
* Improves local thermal equilibrium which lowers specimen drift.

cold specimen

o
\\ » Electron microscopes need vacuum to minimize
electron interaction other then with the sample.
by \\ * In a vacuum we have molecules colliding with
/ \\‘ ! surfaces (molecular flow).
‘n' \\ » When adsorption on a surface occurs, there is a
n \\ residence time (time on the surface) and an eventual

Q00 desorption of the molecules.
\Q%o OOO,V/ « This residence time is on heated surfaces and
0000~

long on cold surfaces.
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A p‘ cryo-holder

transfer station

grid box

|
T | cryo-holder tip
(where grid is placed)

Cryo-Electron Tomography for Structural Characterization of Macromolecular Complexes, ulia Cope, John Heumann, Andreas Hoenger, Current Protocols in Protein Science, 2011
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http://mww.snaggledworks.com/em_for_dummies/freeze.html
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filament or ‘source’ of
Gun slections Accelerator and Condenser 1 lens (spot size):
Gun coils The electron point source (0.1 -10 microns) is magnified to several hundreds of
microns, illuminating condenser 2 aperture which can be ~10 to ~150 microns in
ooy o s size.
Condenser
Caten - i boten of Condenser 2 aperture/condenser 2 lens:
Beam coils De-magnify image of the condenser aperture to a beam size of a few microns.
_____________________ specimen plane
otfective lens Objective Twin lens:
Objective llluminate & magnify specimen.
_____________________ first image plane
Image coils
Projection system (4 lenses):
A group of lenges which . . . . .
_ make up the projector Project/magnify image or diffraction pattern.
Projector en

Detect image/diffraction pattern.

phosphor screen

http://www.rodenburg.org/
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http://mww.rodenburg.org/
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Brightness

Current Energy spread
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100mrad

angle

The coherence angle can be tuned by changing the magnification
from the source to the source image in the front focal plane of the
upper objective lens. A higher gun lens or a higher spot number gives 10mrad
a smaller source image and a better coherence. However, it also gives

less beam current. This balance between coherence and beam

current is described by the law of conservation of brightness:

|:B-T[OL2 ’ (T[/4) D2 ‘Vrel

Where:

| = beam current on the specimen

B = brightness of the FEG, typically between 5-10.and 2-10-A/m./sr/\V
a = half-coherence angle 10prad -
D = diameter of the illuminated area on the specimen

Ve= V- (1+V/V,) , the relativized high tension (Vo= 2MeexaCz/€ = 1022KkV)

Tmrad 4

0. 1mrad +

furad - | ) !
0.1nm 1nm 10nm 100nm fum 10um 100zm
illummated arca

Beam current as a function of illuminated area and coherence angle for a FEG operated at brightness
B=10" Aim’/sr/V.

Titan condenser manual
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Physics of Schottky electron sources
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optic axis

Angle = Lambda (wavelength) / d (resolution)
Maximum angle = R (radius aperture) / F (focal length)

Cut off = F x Lambda /R
object exit wave

Focal length:
Titan CTWIN = 3.4 mm
Tecnai TWIN =29 mm
Tundra = 2.5 mm
FT JEOL cryo - 28 mm
\J
diffraction pattern
Thermo Scientific Cut-off Cut-off
CTWIN systems @300kV @200 kv
100 ym 1.3 A 1.7 A
FT' 70 pm 1.9 A 2.4 A
50 um 2.7 A 3.4 A
v 30 um 4.5 A 5.7 A

image wave

https://www.microscopy.ethz.ch/TEM_mathe.htm
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K. K. Christenson, J.A. Eades / Skew thoughts on parallelism
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Fig. 10. Schematic diagram showing the trajectory of an elec-
tron through a magnetic lens. After Loretto [12], p. 9-

Fig. 11. Diagram to show the variation in| the angle of inci-
Ultramicroscopy 26 (1988) 113-132 dence of an electron beam at the specimen in an immersion
North-Holland, Amsterdam lens. After ref. [1].
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FIGURE 41 The delocalization area of both the isotropic/radial (light grey) and the
anisotropic/azimuthal (dark grey) off-axial coma. For increasing circles in the image
plane, the shape of the comet-tail-like delocalization figure is depicted. The diameter
of the shape increases linearly with the distance to the aberration-free axial point. If a
semi-aplanat is perfectly aligned, only the azimuthal component remains.

Advances in imaging and electron physics: aberration-corrected electron microscopy, Volume 153
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Journal of Structural Biology 174 (2011) 1-10

Contents lists available at ScienceDirect

Journal of Structural Biology

journal homepage: www.elsevier.com/locate/yjsbi

Review

Precise beam-tilt alignment and collimation are required to minimize the
phase error associated with coma in high-resolution cryo-EM

Robert M. Glaeser ®*, Dieter Typke ?, Peter C. Tiemeijer ®, James Pulokas ¢, Anchi Cheng ©

 Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
b FEI Company, P.O. Box 80066, 5600 KA Eindhoven, The Netherlands
“National Resource for Automated Molecular Microscopy, The Scripps Research Institute, La Jolla, CA 92037, USA
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Off-axis coma can, in principle, be avoided by combining paral-
lel illumination of a relatively small area, deflection of the beam to
successive positions, and dynamic adjustment of the tilt angle at
each new position. This same approach was used previously by
Eades to maintain a fixed orientation of the beam relative to the
specimen over extended areas of a thin crystal (Eades, 2006). The
concept in our case is to ensure that both the isotropic and aniso-
tropic coma can be ignored within any one spot, regardless of its
position. We emphasize that dynamic compensation for the posi-
tion-dependence of coma should not be required if data are to be
collected from positions that are only ~2 um or less from the
coma-free axis, but that it is likely to be useful for automated data
collection covering much larger areas.
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“Beam tilt compensation”
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Spatial coherence

i) = x| - (22)" (ZD)) — g (22 (0w + A

Temporal coherence Focal spread

1 | &I : 2 ﬂE 2 &V 2
Er_ [ﬂ-] = exp [——{ .}nlﬁ}zﬂ_il s 8= 4 obj i acc

2 c I+ + v + v )

https://en.wikipedia.org/wiki/High-resolution_transmission_electron_microscopy
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100mrad

angle

The coherence angle can be tuned by changing the magnification
from the source to the source image in the front focal plane of the
upper objective lens. A higher gun lens or a higher spot number gives 10mrad
a smaller source image and a better coherence. However, it also gives

less beam current. This balance between coherence and beam

current is described by the law of conservation of brightness:

|:B-T[OL2 ’ (T[/4) D2 ‘Vrel

Where:

| = beam current on the specimen

B = brightness of the FEG, typically between 5-10.and 2-10-A/m./sr/\V
a = half-coherence angle 10prad -
D = diameter of the illuminated area on the specimen

Ve= V- (1+V/V,) , the relativized high tension (Vo= 2MeexaCz/€ = 1022KkV)

Tmrad 4

0. 1mrad +

furad - | ) !
0.1nm 1nm 10nm 100nm fum 10um 100zm
illummated arca

Beam current as a function of illuminated area and coherence angle for a FEG operated at brightness
B=10" Aim’/sr/V.

Titan condenser manual
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Titan Krios 1000 nm defocus, 0.3 A pixel size, high dose rate"

-

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80
1/A

—E-spatial (g) —E-temporal (g) —ctf**
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Titan Krios 1000 nm defocus, 0.3 A pixel size, low dose rate"

1.2
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0.8
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0.4

0.2
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0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80
1/A

—E-spatial (g) —E-temporal (g) —ctf**
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K. K. Christenson, J.A. Eades / Skew thoughts on parallelism
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Fig. 10. Schematic diagram showing the trajectory of an elec-
tron through a magnetic lens. After Loretto [12], p. 9-

Fig. 11. Diagram to show the variation in| the angle of inci-
Ultramicroscopy 26 (1988) 113-132 dence of an electron beam at the specimen in an immersion
North-Holland, Amsterdam lens. After ref. [1].
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FIGURE 41 The delocalization area of both the isotropic/radial (light grey) and the
anisotropic/azimuthal (dark grey) off-axial coma. For increasing circles in the image
plane, the shape of the comet-tail-like delocalization figure is depicted. The diameter
of the shape increases linearly with the distance to the aberration-free axial point. If a
semi-aplanat is perfectly aligned, only the azimuthal component remains.

Advances in imaging and electron physics: aberration-corrected electron microscopy, Volume 153

40  Proprietary & Confidential | wim.hagen@thermofisher.com | 11-June-2024



. . ThermoFisher
Mlcroscope baS|CS BCOR SCIENTIFIC

1,/I/1”y’;*'fr-—."~-=~‘-;=\‘\\ 1//‘/, __,_,.,_l-ﬂh&;\‘\\'
’,f’,f..._-hxt"\\\‘\ __

,;V,,,!‘,‘,.u.u_ﬂ\tk\‘\\

05 ;o ‘t\?‘\\ 05
{;I/f S
';4';" v o b

IR ::Jr; :
Py 4
2

05 MY S m e AT 0.5
\\\\‘EWH__,_.;AJ/‘/;

1 \\\*H“h__,__,,rf,r//’/ 8

(c) -1 -0.5 0 0.5 1 (c) -1 -0.5 0 0.5 1

41  Proprietary & Confidential | wim.hagen@thermofisher.com | 11-June-2024



. ThermoFisher
Microscope BCOR

« BCOR adds Cc.

* Focal spread from increased Cc can be somewhat compensated by using source with smaller

energy spread.
 E-CFEG.

« Monochromator.

« Difficult to automate so far.
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Microscope Cc-correction

« Too early to say.
 First results seem to indicate it only works in-focus.
« Working in-focus requires phase plate.
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https://en.wikipedia.org/wiki/Electron_scattering
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modified from http//astrophys-assist.com/educate/solarobs/ses01p02.htm



Microscope energy filtering
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a. unfiltered b. ZLP-filtered

H - EEE

slitinserted
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Microscope energy filtering

t/nm (for 300 kV) a. unfiltered b. ZLP-filtered
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Microscope energy filtering, post vs in-column

H - EEE
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Microscope basics phase contrast

PHASE CONTRAST, A NEW METHOD FOR THE
MICROSCOPIC OBSERVATION OF
TRANSPARENT OBJECTS

by F. ZERNIKE, Groningen

PART 1

Every microscopist knows that transparent objects show light or
dark contours under the microscope in different ways varying with
change of focus and depending on the kind of ifllumination used.
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{b) Defocus phase {C] Zernike phase {d) Schrieren (E} Hilbert differential
contrast (DPC) contrast (ZPC) optics (S0O) contrast (HDC)
E +«—— plane wave — ' +
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Nagayama, K. (2011).
Another 60 years in electron microscopy: development of phase-plate electron microscopy and biological applications.
Journal of Electron Microscopy, 60(supplement 1), S43—-S62. http://doi.org/10.1093/jmicro/dfr037

Proprietary & Confidential | wim.hagen@thermofisher.com | 11-June-2024



ThermoFisher

SCIENTIFIC

Microscope basics phase contrast

A

N
oy

Spatial frequency [1/nm]

Buijsse, B., van Laarhoven, F. M. H. M., Schmid, A. K., Cambie, R., Cabrini, S., Jin, J., & Glaeser, R. M. (2011).
Design of a hybrid double-sideband/single-sideband (schlieren) objective aperture suitable for electron microscopy.
Ultramicroscopy, 111(12), 1688-1695. http://doi.org/10.1016/j.ultramic.2011.09.015
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Specimen

Objective

lens Back focal plane
Lorentz -

fana - Cavity mirrors
Laser in Magnified

diffraction pattern

Transfer

lens

i Image plane

Schwartz, Osip, Jeremy J. Axelrod, Sara L. Campbell, Carter Turnbaugh, Robert M. Glaeser, and Holger Miiller.
“Laser Phase Plate for Transmission Electron Microscopy.”
Nature Methods 16, no. 10 (October 1, 2019): 1016—20. https://doi.org/10.1038/s41592-019-0552-2.
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image wave

https://www.microscopy.ethz.ch/TEM_mathe.htm
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Ultramicroscopy
Volume 108, Issue 9, August 2008, Pages 921-928

Restoration of weak phase-contrast images
recorded with a high degree of defocus:
The “twin image” problem associated with
CTF correction

Kenneth H. Downing, Robert M. Glaeser 2 X
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Microscope

« Optics are good but can still be made better (BCOR, monochromator, Cc-correction?).

« Should we fix certain aberrations in hardware or software (e.g. Relion, cryoSPARC)
- Camera is the biggest limitation instrument-wise.

Sample prep is the biggest problem in cryo-EM!
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Cameras

* Film

* Imaging plates

 Electronic image converters
« CCD

* Direct detection

 Electron counting
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Cameras, electronic image converters
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Cameras, electronic image converters

K.-H. Herrmann et al. | Image processing system for CTEM

Videorecorder

QO

/ Norm puise
) Tape
A £le: . P
Signal processor] Single
electron mode

0 Camera

ADC -mode

nator

Discrimi-

Intensilier
chain

Terminal Moniter Monitor
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L ! _

Computer DEC-10

Fig. 1. Block diagram of the image processing system.

A tv system.or image recording and processing in conventional transmission electron microscopy

K.H. Herrmann, D. KRAHL and H.P. Rust
Institut fiir Elektronenmikroskopie, Fritz-Haber-Institut 1978
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Cameras, slow scan charged coupled device

» Direct electrons damage the chip.

« Direct electrons saturate the pixel fast.

« Compromise:
electrons to light, light to CCD.

* Incident photons build up charge.

« Charged cells are readout.

« All cells are reset for next image.

« Performance decreases when increasing
accelerating voltage.

Applications of slow-scan CCD cameras in transmission electron microscopy
O.L. Krivanek and P.E. Mooney
Gatan Research and Development, 6678 Owens Driue, Pleasanton, CA 94588, USA 1992
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Fig. 1. Schematic diagram illustrating the detection of one

100 keV electron by a slow-scan CCD camera using a YAG

scintillator (or GOS phosphor) and a fiber-optic coupling. The

numbers appropriate to the GOS phosphor are shown in
brackets.



Cameras, slow scan charged coupled device

Scintillator:

- yttrium-aluminum garnet single-crystal scintillator
(YAG).

- gadolinium oxysulphide powder phosphor
(GOS).

Applications of slow-scan CCD cameras in transmission electron microscopy
O.L. Krivanek and P.E. Mooney
Gatan Research and Development, 6678 Owens Driue, Pleasanton, CA 94588, USA 1992
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Fig. 4. Detective quantum efficiency (DQE) in gain-normal-

ized 1000 keV images recorded by slow-scan CCD cameras
utilizing YAG and GOS scintillators.
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Cameras, slow scan charged coupled device
100k

20

contrast transfer (%)

0 10 20

spatial frequency
(line-pairs per mm)

Fig. 3. Modulation transfer function (MTF) of slow-scan CCD

cameras using YAG and GOS scintillators. The Nyquist limits

corresponding to the physical pixel size of the various cur-

rently available CCD chips suitable for slow-scan operation
are indicated by the vertical lines.

Applications of slow-scan CCD cameras in transmission electron microscopy
O.L. Krivanek and P.E. Mooney
Gatan Research and Development, 6678 Owens Driue, Pleasanton, CA 94588, USA 1992
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Cameras, MTF

Modulation Transfer Function, ratio of output to input modulation as a function of
spatial frequency.

Input

llﬂ \/ Imaging
A System
ll.' \ '.;I I|
RIER
TELE

1
D
-1

measures change in the amplitude of sine waves
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Cameras, NPS

Noise Power Spectrum, change in variation in the amplitude of sine waves

Input Output

— —~
E:?L\U Imaging [QW&U_ 7
Ry L

Eu..m..

System

0.1 3 4 g A __2_-_-L1 - -]

B ST 10
5patial Frequency [cyclasimm)
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Cameras, DOQE

2
JUEe)= ESNNIEF:ES}}

SNRutla) = SNR in the output image
SNRw{w) = SNR incident on the detector

_QMTFHe) 40\
DQE(s) = o) (ﬁ

where MTF{a )= MTF of detector

Wi(w) =noise power spectrum of image
gﬂ = gain of the system
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Cameras, decelerator

A charge coupled device camera with electron decelerator for intermediate voltage electron microscopy
Kenneth H. Downing and Paul E. Mooney 2008
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Cameras, decelerator

0 kV 250 kV

A charge coupled device camera with electron decelerator for intermediate voltage electron microscopy
Kenneth H. Downing and Paul E. Mooney 2008
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Cameras, UltraCam

e A transmission- scintillator lens-coupled back-illuminated

4Kx4K CCD camera-equipped post-column energy filter

Lens Coupling

e
J phosphor
(lass pnsm Macro lens amall pixel

CCD

Image Information Transfer through a Post-Column Energy Filter with Detection by a Lens-Coupled Transmission-Scintillator CCD Camera
U. Luecken*, P. Tiemeijer*, M. Barfels**, P. E. Mooney**, B. Bailey** and D. A. Agard***
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Cameras, CCD vs CMOS

Vertical charge

Pixels ,
transfer f/ f/ Pixels

Amplifier

_,__}ﬁ_ R

CCD Carrier Transport Process vs. CMOS Reading Process

Serial Shift Register

https://www.opticsforhire.com/blog/ccd-vs-cmos-image-sensor-selection/
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Cameras, CMOS & direct detection -

 Finally, sensors can be made which can withstand high energy

electron bombardments!
» Old problem, backscatter: back thinning.

* Noise: counting
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Cameras, coincidence loss
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electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-em
Xueming Li1, Paul Mooney2, Shawn Zheng1,3, Christopher R Booth2, Michael B Braunfeld1,3, Sander Gubbens2, David A Agard1,3 & Yifan Chengl
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Cameras, coincidence loss

- What we need: large physical pixels, high speed, event based.

« What we have:
« Small physical pixels, high speed counting (Gatan, Direct Electron).
« Large physical pixels, lower speed counting, (Thermo Fisher Scientific).
« Small physical pixels, high speed counting, event based (Direct Electron).
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What’s next?

« 100 kV TEM.
« Laser phase plate & aberration correction.
« STEM.
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Peet, Mathew J., Richard Henderson, and Christopher J. Russo. “The Energy Dependence of Contrast and Damage in Electron Cryomicroscopy of Biological Molecules.” Ultramicroscopy 203 (August 2019):
125-31. https://doi.org/10.1016/j.ultramic.2019.02.007.
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Aberration correction
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Aberration correction
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Aberration correction
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Danev, Radostin, and Wolfgang Baumeister. “Cryo-EM Single Particle Analysis with the Volta Phase Plate.”
Edited by Sjors HW Scheres. eLife 5 (March 7, 2016): e13046. https://doi.org/10.7554/eLife.13046.
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Magnification

81K

1.7 A physical pixel size
1.27 um beam
nanoprobe spot 9

70 um c2

100 um objective

40 e/Ar2

25.4 sec total

0.635 sec frame

4.74 elp/sec without
sample

2 A/sec drift
Single image per hole

105K

1.34 A physical pixel size
1.38 um beam
nanoprobe spot 8

70 um c2

100 um objective

40 e/Ar2
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0.37 sec frame
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3 A/sec drift
Single image per hole
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Data collection: magnification

Pizel size check

E 2:4 \\\
e

0 20 40 60 80
Acquisition time [minutes]

Number of particles for 2.39 A best resolution for
81K 34546 8331

Time to 2.39 A 00:47 00:15
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Defocus or in-focus?

* Defocus = CTF correction needed, higher magnifications limited by delocalization.

 In-focus - difficult to acquire images at the right defocus.
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STEM
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Lazi¢, lvan, Maarten Wirix, Max Leo Leidl, Felix de Haas, Daniel Mann, Maximilian Beckers, Evgeniya V. Pechnikova, et al.

e“Single-Particle Cryo-EM Structures from iDPC—STEM at near-Atomic Resolution.”
Nature Methods 19, no. 9 (September 1, 2022): 1126-36. https://doi.org/10.1038/s41592-022-01586-0.
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Fig. 1: Experimental setup of 4D-STEM.

Kugukoglu, Berk, Inayathulla Mohammed, Ricardo C. Guerrero-Ferreira, Massimo Kube, Julika Radecke, Stephanie M. Ribet, Georgios Varnavides, et al.
“Low-Dose Cryo-Electron Ptychography of Proteins at Sub-Nanometer Resolution.”
bioRxiv, January 1, 2024, 2024.02.12.579607. https://doi.org/10.1101/2024.02.12.579607.
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