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• Microscope basics.

• Optics.

• Cameras/detectors.

• What’s next?



Microscopes
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Philips EM100

1949



Microscopes
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Philips EM200

60’s



Microscopes
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Philips EM300,

70’s



Microscopes

6 Proprietary & Confidential | wim.hagen@thermofisher.com | 11-June-2024

Philips CM series

80’s, 90’s



Microscopes
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Philips Tecnai series 

Late 90’s



Microscopes
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FEI Titan series, 

Since 2004.

Easy usage for all skill levels!



Microscope basics
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• Source.

• Condenser.

• Objective (→ specimen).

• Projector.

• Energy filter.

• Detector.



Microscope basics vacuum
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Field Emission Gun < 10e-6 Pa

Thermionic gun ~10e-5 Pa

Column

~10e-5 Pa

Projection chamber

~10e-3 Pa



Microscope basics vacuum
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Microscope basics cryo shields
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• Cryo-shielding improves vacuum quality around the specimen by at least a factor 10:

• Protects a cryo-specimen. From ice contamination build-up.

• Improves local thermal equilibrium which lowers specimen drift.

• Electron microscopes need vacuum to minimize 

electron interaction other then with the sample.

• In a vacuum we have molecules colliding with 

surfaces (molecular flow).

• When adsorption on a surface occurs, there is a 

residence time (time on the surface) and an eventual 

desorption of the molecules.

• This residence time is short on heated surfaces and 

long on cold surfaces.



Microscope basics cryo-shields
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Microscope basics side-entry cryo-holder

Cryo‐Electron Tomography for Structural Characterization of Macromolecular Complexes, ulia Cope, John Heumann, Andreas Hoenger, Current Protocols in Protein Science, 2011
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Microscope basics side-entry cryo-holder
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Microscope basics side-entry cryo-holder ethane
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http://www.snaggledworks.com/em_for_dummies/freeze.html



Microscope basics side-entry cryo-holder

17 Proprietary & Confidential | wim.hagen@thermofisher.com | 11-June-2024



Microscope basics cryo-shields
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Microscope basics column

http://www.rodenburg.org/
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Accelerator and Condenser 1 lens (spot size):

The electron point source (0.1 -10 microns) is magnified to several hundreds of 

microns, illuminating condenser 2 aperture which can be ~10 to ~150 microns in 

size.

Condenser 2 aperture/condenser 2 lens:

De-magnify image of the condenser aperture to a beam size of a few microns.

Objective Twin lens:

Illuminate & magnify specimen.

Projection system (4 lenses):

Project/magnify image or diffraction pattern.

Detect image/diffraction pattern.



Microscope basics deflectors
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http://www.rodenburg.org/



Microscope basics column source
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Microscope basics column source
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https://assets.thermofisher.com/TFS-Assets/MSD/Application-Notes/xcfeg-application-note-an0171.pdf



Microscope basics column source
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Brightness

Energy spreadCurrent



Microscope basics column source
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Titan condenser manual

The coherence angle can be tuned by changing the magnification 

from the source to the source image in the front focal plane of the 

upper objective lens. A higher gun lens or a higher spot number gives 

a smaller source image and a better coherence. However, it also gives 

less beam current. This balance between coherence and beam 

current is described by the law of conservation of brightness: 

I=B⋅πα2 ⋅(π/4)D2 ⋅Vrel 

Where:
I = beam current on the specimen

B = brightness of the FEG, typically between 5⋅106 and 2⋅107 A/m2/sr/V
α = half-coherence angle

D = diameter of the illuminated area on the specimen
Vrel = V⋅ (1+V/V0) , the relativized high tension (V0 = 2melectronc2/e = 1022kV) 



Microscope basics column source
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http://resolver.tudelft.nl/uuid:7975ef5e-c2ea-4056-be43-6bb6c062c884



Microscope basics column lenses
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Microscope basics objective aperture
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Angle = Lambda (wavelength)  / d (resolution)

Maximum angle = R (radius aperture) / F (focal length)

Cut off = F x Lambda / R

Focal length:

Titan CTWIN  = 3.4 mm

Tecnai TWIN = 2.9 mm

Tundra             = 2.5 mm

JEOL cryo = 2.8 mm

Thermo Scientific 

CTWIN systems

Cut-off 

@300 kV

Cut-off 

@200 kV

100 μm 1.3 Å 1.7 Å

70 μm 1.9 Å 2.4 Å

50 μm 2.7 Å 3.4 Å

30 μm 4.5 Å 5.7 Å

https://www.microscopy.ethz.ch/TEM_mathe.htm



Microscope basics column lenses
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Microscope basics column lenses
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Microscope basics column lenses
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Advances in imaging and electron physics: aberration-corrected electron microscopy, Volume 153



Microscope basics column lenses
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Microscope basics column lenses
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Microscope basics column lenses
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Microscope basics column lenses
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“Beam tilt compensation”



Microscope optics
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Spatial coherence

Temporal coherence Focal spread

https://en.wikipedia.org/wiki/High-resolution_transmission_electron_microscopy



Microscope basics column source

36 Proprietary & Confidential | wim.hagen@thermofisher.com | 11-June-2024

Titan condenser manual

The coherence angle can be tuned by changing the magnification 

from the source to the source image in the front focal plane of the 

upper objective lens. A higher gun lens or a higher spot number gives 

a smaller source image and a better coherence. However, it also gives 

less beam current. This balance between coherence and beam 

current is described by the law of conservation of brightness: 

I=B⋅πα2 ⋅(π/4)D2 ⋅Vrel 

Where:
I = beam current on the specimen

B = brightness of the FEG, typically between 5⋅106 and 2⋅107 A/m2/sr/V
α = half-coherence angle

D = diameter of the illuminated area on the specimen
Vrel = V⋅ (1+V/V0) , the relativized high tension (V0 = 2melectronc2/e = 1022kV) 



Microscope basics coherence
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Microscope basics coherence

38 Proprietary & Confidential | wim.hagen@thermofisher.com | 11-June-2024

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80

1/Å

Titan Krios 1000 nm defocus, 0.3 Å pixel size, low dose rate"

E-spatial (g) E-temporal (g) ctf**



Microscope basics column lenses
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Microscope basics BCOR
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Advances in imaging and electron physics: aberration-corrected electron microscopy, Volume 153



Microscope basics BCOR
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Microscope BCOR
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• BCOR adds Cc.

• Focal spread from increased Cc can be somewhat compensated by using source with smaller 

energy spread.

• E-CFEG.

• Monochromator.

• Difficult to automate so far.



Microscope Cc-correction
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• Too early to say.

• First results seem to indicate it only works in-focus.

• Working in-focus requires phase plate.



Microscope energy filtering
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https://en.wikipedia.org/wiki/Electron_scattering



Microscope energy filtering
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Microscope energy filtering
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A Koster et al, 1997



Microscope energy filtering, post vs in-column
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Microscope basics phase contrast
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Microscope basics phase contrast
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Microscope basics phase contrast
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Microscope basics phase contrast
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Microscope basics phase contrast
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Nagayama, K. (2011).

Another 60 years in electron microscopy: development of phase-plate electron microscopy and biological applications.

Journal of Electron Microscopy, 60(supplement 1), S43–S62. http://doi.org/10.1093/jmicro/dfr037



Microscope basics phase contrast
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Buijsse, B., van Laarhoven, F. M. H. M., Schmid, A. K., Cambie, R., Cabrini, S., Jin, J., & Glaeser, R. M. (2011).

Design of a hybrid double-sideband/single-sideband (schlieren) objective aperture suitable for electron microscopy.

Ultramicroscopy, 111(12), 1688–1695. http://doi.org/10.1016/j.ultramic.2011.09.015



Microscope basics phase contrast
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Schwartz, Osip, Jeremy J. Axelrod, Sara L. Campbell, Carter Turnbaugh, Robert M. Glaeser, and Holger Müller. 

“Laser Phase Plate for Transmission Electron Microscopy.” 

Nature Methods 16, no. 10 (October 1, 2019): 1016–20. https://doi.org/10.1038/s41592-019-0552-2.

https://doi.org/10.1038/s41592-019-0552-2


Microscope basics

55 Proprietary & Confidential | wim.hagen@thermofisher.com | 4-June-2024

https://www.microscopy.ethz.ch/TEM_mathe.htm



Delocalization
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Delocalization
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Phase-flippedRaw



Delocalization
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Phase-flippedRaw



Delocalization
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Microscope
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• Optics are good but can still be made better (BCOR, monochromator, Cc-correction?).

• Should we fix certain aberrations in hardware or software (e.g. Relion, cryoSPARC)

• Camera is the biggest limitation instrument-wise.

Sample prep is the biggest problem in cryo-EM!



Cameras
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• Film

• Imaging plates

• Electronic image converters

• CCD

• Direct detection

• Electron counting



Cameras, electronic image converters
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Cameras, electronic image converters
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A tv system.or image recording and processing in conventional transmission electron microscopy

K.H. Herrmann, D. KRAHL and H.P. Rust

Institut fiir Elektronenmikroskopie, Fritz-Haber-lnstitut 1978



Cameras, slow scan charged coupled device
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Applications of slow-scan CCD cameras in transmission electron microscopy

O.L. Krivanek and P.E. Mooney

Gatan Research and Development, 6678 Owens Driue, Pleasanton, CA 94588, USA 1992

• Direct electrons damage the chip.

• Direct electrons saturate the pixel fast.

• Compromise:

electrons to light, light to CCD.

• Incident photons build up charge.

• Charged cells are readout.

• All cells are reset for next image.

• Performance decreases when increasing 

accelerating voltage.



Cameras, slow scan charged coupled device
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Applications of slow-scan CCD cameras in transmission electron microscopy

O.L. Krivanek and P.E. Mooney

Gatan Research and Development, 6678 Owens Driue, Pleasanton, CA 94588, USA 1992

Scintillator:

- yttrium-aluminum garnet single-crystal scintillator 

(YAG).

- gadolinium oxysulphide powder phosphor 

(GOS).



Cameras, slow scan charged coupled device
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Applications of slow-scan CCD cameras in transmission electron microscopy

O.L. Krivanek and P.E. Mooney

Gatan Research and Development, 6678 Owens Driue, Pleasanton, CA 94588, USA 1992



Cameras, MTF

67 Proprietary & Confidential | wim.hagen@thermofisher.com | 11-June-2024

 

 

Imaging metrics: Modulation transfer function 

Ratio of output to input 

modulation as a function of 

spatial frequency 

12 

See e.g Gerald C. Holst, Testing and Evaluation of IR Imaging 

Systems, SPIE, 1998 .  

 

Modulation Transfer Function, ratio of output to input modulation as a function of 

spatial frequency.



Cameras, NPS
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Noise Power Spectrum, change in variation in the amplitude of sine waves

Imaging metrics: Noise power spectrum 

14 

See  e.g.  Robert  M  Nishikawa,  “The Fundamentals of MTF, 

Wiener Spectra, and DQE”  Un i v ersity  of  Chicago 

 



Cameras, DQE
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Imaging metrics: Detective Quantum Efficiency 

• any image has an inherent signal to noise ratio, before viewing by 

a detector, due to the statistical nature of the illumination  

• this SNR is a function of spatial frequency 

• DQE is a measure of how the available signal to noise ratio is 

degraded by an imaging system 

 

To get DQE, need MTF, NPS and incident flux 

To get MTF, use a knife edge 

To get NPS, use flood illumination 

15 

Imaging metrics: Detective Quantum Efficiency 

• any image has an inherent signal to noise ratio, before viewing by 

a detector, due to the statistical nature of the illumination  

• this SNR is a function of spatial frequency 

• DQE is a measure of how the available signal to noise ratio is 

degraded by an imaging system 

 

To get DQE, need MTF, NPS and incident flux 

To get MTF, use a knife edge 

To get NPS, use flood illumination 

15 



Cameras, decelerator
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A charge coupled device camera with electron decelerator for intermediate voltage electron microscopy

Kenneth H. Downing and Paul E. Mooney 2008



Cameras, decelerator
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A charge coupled device camera with electron decelerator for intermediate voltage electron microscopy

Kenneth H. Downing and Paul E. Mooney 2008

0 kV 250 kV



Cameras, UltraCam
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Image Information Transfer through a Post-Column Energy Filter with Detection by a Lens-Coupled Transmission-Scintillator CCD Camera

U. Luecken*, P. Tiemeijer*, M. Barfels**, P. E. Mooney**, B. Bailey** and D. A. Agard***

• A transmission- scintillator lens-coupled back-illuminated 

4Kx4K CCD camera-equipped post-column energy filter



Cameras, CCD vs CMOS
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https://www.opticsforhire.com/blog/ccd-vs-cmos-image-sensor-selection/



Cameras, CMOS & direct detection
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• Finally, sensors can be made which can withstand high energy 

electron bombardments!

• Old problem, backscatter: back thinning.

• Noise: counting



Cameras, coincidence loss
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electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-em

Xueming Li1, Paul Mooney2, Shawn Zheng1,3, Christopher R Booth2, Michael B Braunfeld1,3, Sander Gubbens2, David A Agard1,3 & Yifan Cheng1



Cameras, coincidence loss
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• What we need: large physical pixels, high speed, event based.

• What we have:

• Small physical pixels, high speed counting (Gatan, Direct Electron).

• Large physical pixels, lower speed counting, (Thermo Fisher Scientific).

• Small physical pixels, high speed counting, event based (Direct Electron).



What’s next?
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• 100 kV TEM.

• Laser phase plate & aberration correction.

• STEM.



100 kV
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Peet, Mathew J., Richard Henderson, and Christopher J. Russo. “The Energy Dependence of Contrast and Damage in Electron Cryomicroscopy of Biological Molecules.” Ultramicroscopy 203 (August 2019): 

125–31. https://doi.org/10.1016/j.ultramic.2019.02.007.

https://doi.org/10.1016/j.ultramic.2019.02.007


100 kV
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Aberration correction
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Cs 40 nm defocus, low Cs 0 nm defocus.



Aberration correction
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Cs 20 nm defocus, low Cs 20 nm defocus.



Aberration correction
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Danev, Radostin, and Wolfgang Baumeister. “Cryo-EM Single Particle Analysis with the Volta Phase Plate.” 

Edited by Sjors HW Scheres. eLife 5 (March 7, 2016): e13046. https://doi.org/10.7554/eLife.13046.

https://doi.org/10.7554/eLife.13046


Magnification
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81K 105K 130K

1.7 Å physical pixel size 1.34 Å physical pixel size 1.04 Å physical pixel size

1.27 um beam 1.38 um beam 0.6 um beam

nanoprobe spot 9 nanoprobe spot 8 nanoprobe spot 9

70 um c2 70 um c2 50 um c2

100 um objective 100 um objective 100 um objective

40 e/Å^2 40 e/Å^2 40 e/Å^2

25.4 sec total 14.8 sec total 10 sec total

0.635 sec frame 0.37 sec frame 0.25 sec frame

4.74 e/p/sec without 

sample 4.8 e/p/sec without sample 4.42 e/p/sec without sample

2 Å/sec drift 3 Å/sec drift 4 Å/sec drift
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Data collection: magnification
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Defocus or in-focus?
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• Defocus → CTF correction needed, higher magnifications limited by delocalization.

• In-focus → difficult to acquire images at the right defocus.



STEM
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Lazić, Ivan, Maarten Wirix, Max Leo Leidl, Felix de Haas, Daniel Mann, Maximilian Beckers, Evgeniya V. Pechnikova, et al. 

e“Single-Particle Cryo-EM Structures from iDPC–STEM at near-Atomic Resolution.” 

Nature Methods 19, no. 9 (September 1, 2022): 1126–36. https://doi.org/10.1038/s41592-022-01586-0.

https://doi.org/10.1038/s41592-022-01586-0


STEM
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Küçükoğlu, Berk, Inayathulla Mohammed, Ricardo C. Guerrero-Ferreira, Massimo Kube, Julika Radecke, Stephanie M. Ribet, Georgios Varnavides, et al. 

“Low-Dose Cryo-Electron Ptychography of Proteins at Sub-Nanometer Resolution.” 

bioRxiv, January 1, 2024, 2024.02.12.579607. https://doi.org/10.1101/2024.02.12.579607.

https://doi.org/10.1101/2024.02.12.579607
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Discussion/questions
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