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Phase contrast and the contrast transfer function



Phase contrast and the contrast transfer function, Part |

1. Complex numbers: review
2. Defocus contrast (the simple version)

3. Image delocalization



Why complex nhumbers?

* They make the equations simpler
 Natural for Fourier transforms

* Give us the magnitude and phase of
structure factors



I, the Imaginary unit

=y

A complex number / Real part

z=a+1b
N

Imaginary part



z=a+1ib
w=c+id

You can do arithmetic with complex numbers

Add

Multiply

Real part
Imaginary part
Absolute value

Conjugate

z+w=(a+c)+i(b+d)
ww = (ab — bd) + i(ad + bc)
Re(z) = a

Im(z) = b

\z\=\/m

7* =a—1b



The exponential function e*

e =2.718...
X2 x>
et=14+x+—+ + ...
2 23

A very important approximation, valid when x << 1, is

e’ ~1+x




The complex exponential ¢’

e = cos@+isin®

Real part




The complex exponential ¢’
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A plot of e'
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Any z can be represented as (a, b) or as (r, 0)

z=a+1b 7z = re'

a is the real part r i1s the magnitude

b is the imaginary part @ is the phase
Imag

Real
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1. Complex numbers: review
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3. Image delocalization



Cryo-EM specimens are imaged by phase contrast

Electrostatic
potential ¢

The imaging electrons are phase-shifted when passing near atomic
nuclei or fixed charges.

The phase shift coefficient o is about 0.5 milliradian per volt-angstrom
of integrated potential.
The phase shift near a single atom is ~1 milliradian.
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Most cryo-EM data are acquired using defocus contrast

object Image
defocus: 0.000:m
105
0
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-50 0 o0 100 -100 -50 0 50

X coordinate, A X coordinate, A

100

* At high defocus, high-
resolution information in the
Image Is strongly delocalized

* Image processing can re-
localize the signals, but at
most only about half of the
theoretical contrast is
preserved by defocusing.
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Most cryo-EM data are acquired using defocus contrast

object Image

defocus: 1.000.:m under
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* At high defocus, high-
resolution information in the
Image Is strongly delocalized

* Image processing can re-
localize the signals, but at
most only about half of the
theoretical contrast is
preserved by defocusing.



Image of an object with 5A periodicity

object Image

* At high defocus, high-
resolution information in the
Image Is strongly delocalized

* Image processing can re-
localize the signals, but at
most only about half of the
theoretical contrast is
preserved by defocusing.
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Defocus contrast in a nutshell

1. The contrast in the image of a grating object varies with the amount of defocus.
2. The grating object produces diffracted waves with shifting phase.

3. When the diffracted waves interfere with the undiffracted waves, we have contrast.
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A snapshot of an electron wave
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For an electron propagating in the z direction,
the time-independent wave function is

\PO — eikz
with
k=2rn/A



Insert a phase-shifting object that perturbs the electron wave function
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Insert a phase-shifting object that perturbs the electron wave function
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The object is a grating,

ep(x) = e cos(nx/d).

Example:
d=5Aande < 1.

At z =0,
P — pi€PW)



The weak-phase approximation

What are the two terms in the approximation?

. Just below the specimen, at z = 0, the electron * There is an undiffracted wave —essentially the
same as the incident wave—of amplitude 1.

We'll call this P,

wave function is ¥ = ¢ €9™).

» Then, by the approximation e* ~ 1 + x we have
just after the specimen

* And there is a new wave combination of
amplitude €. In this example of a grating there

Y~ 1+ iepp(x) are actually two diffracted waves, W, and ‘¥ _

* The full wavefunction is

‘II:\Ilo'I‘\I’_I_‘l‘\{’_

This Is the weak phase approximation.



The contrast of a grating object varies with the distance below the object

abs(¥)>? — Contrast +

Interference between the
undiffracted wave and
diffracted waves
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Waves interfere to make contrast

- The two diffracted waves W 4 and Y _ travel at very small
p ot ¥ angles +60 and —@ to the undiffracted wave.

50  To reach a distance 7 below the specimen, they take a path

sin(d) = A/d longer than W, does. Let { = the path length difference.
5 e
» 2= 100nm ¢ = z & zA*12d*
cos 6

e In our example A = 02A and the grating d = 5A. At the
level z = 100 nm, { = .008A, about half a wavelength.

Displacement z, nm
0
o

* Define ¥ = the phase difference between the undiffracted and
diffracted waves.

y = 2nl/A
= Azl d?

250 » In this example y = 0.87

i
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X, angstroms
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Let’'s unwrap the oscillations in W:
We'll define V' = W/,

Complex number color scheme
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displacement z, nm
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Let’'s unwrap the oscillations in W:
We'll define V' = W/,

Let's remove the undiffracted wave, so we
have just the diffracted waves,

W -1)=Y, +¥_



displacement z, nm
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displacement z, nm
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Extrapolation

What wavefunction above the specimen
would give rise to what we see below it?

We can back-propagate V:
this is what the objective lens “sees”




What happens when the objective lens is focused above the specimen?

Intensity at 7

The grating ¢(x)
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LEEEERERER

h

-50

o))
o

f

Displacement z, nm
o
o

150

200

-100 -50 0] 50
X, angstroms

100

— Contrast +

Terminology

dark (neg) bright (pos)

 “Underfocus” is focusing the
objective lens above the
specimen.

» By convention, defocus values 0
are positive for underfocus:

0=—7%
- Spatial frequencyis s = 1/d

 The phase shift y is proportional
to O.

 The contrast transfer function is
given by




Contrast transfer

X, radians

-15

The basic contrast-transfer function as a function of s
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CTF =sin(x)
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Spatial frequency S

CTF = sin(—zAds?)




A little defocus is actually a long distance

“:1900_ . A
800}
il 1 ym—a moderate defocus for cryo-EM
ol l imaging—is 500,000 wavelengths!
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With large defocus, how bad is the image delocalization?

The dispersion radius is given by
r=otand@

= O0As (small angle approx®) Object

TeeuE For example at 3um defocus and 3A
resolution
5 =3x10°A
A= .02A
s =0.33A"!
then
r = 200A

- S I
PECITEN In this case one would want 200A of space in

the box around each particle image.

*Note: beyond about 3A, spherical aberration needs to
be taken into account too.




Contrast Transfer Function, Part 2: Advanced Topics

* Lens aberrations and the image plane
* Why use underfocus?

* The diffraction plane and phase plate



An objective lens reproduces interference patterns at the camera

In focus Underfocus

The camera “looks” above

L]
............. oo, Camera’
the specimen

Specimen Specimen

- Camera - Camera

"""""""""""""""""""""" Specimen’



With spherical aberration a lens bends high-angle rays more strongly

Spherical aberration changes

the defocus by
8 = — C.A%s*12.

The contrast transfer function now

includes 0’,
CTF = sin(—zA (5 + &) 57

or, expanded,

CTF = sin(— 465> + gcﬁs‘*)

The coefficient C. is typically

~2mm. Spherical aberration
typically becomes important for

s > 0.251&_1, or about 4A

resolution.

Underfocus

Specimen

Specimen’
(at high s)

Camera

....................... -----------  Specimen’

(Gaussian focus)



Very high-angle scattering yields amplitude contrast

Electrons that pass very close to an atomic
nucleus are scattered at high angles, and are

caught by the objective aperture.
Specimen

 The loss of these electrons results in a small
amount of negative amplitude contrast.

 For proteins a is typically around -0.05. —_— ——

Objective aperture

* The amplitude contrast term allows the CTF to
have a small negative value even at zero
spatial frequency.

Combining all these terms, the contrast transfer
function is given by

CTF = sin(—zlds” + gCS/l3s4 -2 | I Camera

defocus sphere abb. amplitude




Defocus 0.25 ym
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Contrast transfer
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1.Complex numbers: review

2.Defocus contrast (the simple version)
3.Contrast at the camera plane
4.Defocus contrast (formal version)

5.Phase plate



Formal derivation of the CTF for a grating of spacing d

The non-oscillating wavefunction
¥’ =1+ ie % . ecos(2nx/d)

can be written as

P =1+ ie % ep(x).

Grating object:

The measured intensity is ep(x) = e cos(Lnx/d)
| P ‘2 = |’ ‘2 = (real part)2 + (imag part)2 Electron propagation:
0 . 9) 2 k — 272'//1
= 1+ 5in(p) )|+ [cost—) g
B -1 ) i ( ) ( )+ 6 2] N [@ 2] Diffracted wave path difference:
= ||l +2sin(y) egp(x € e“|. 5%2/12/2612
Wave aberration function:
In practice y = kC ~ ﬂ/IZ/dz

* \We ignore the constant background intensity.

* Everyone ignores the factor of 2 also.
« SO we say the transfer from phase shift to intensity change is

Alntensity

CTF = = sin(y)

AElectron phase



A phase plate modifies the interference of electron waves at the camera

In focus Phase plate

------------ Specimen

The phase plate shifts the phase of the
undiffracted beam ¥, by some angle ¢.

Then CTF = sin(y — ¢).

If p = 90° then
CTF = — cos(y)

------- Diffraction plane <« - . ...

Phase Plate /

Camera



The phase plate allows in-focus imaging, given precise focusing.

. —T ¢ 1 ¥ I ! & T I T 1T 7T T 3
Cryo-EM single particle analysis with the .
Volta phase plate -
Radostin Danev*, Wolfgang Baumeister
Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, "
Martinsried, Germany 5 0.0
eLife 2016 :
el g (R defocus 0 nm
| | —defocus -7 nm
— defocus -60 nm
* The better low-frequency e+ e
0.0 0.5 1.0 1:5 2.0 25 3.0 3.5 4.0

contrast makes particles
much more visible.

Spatial frequency, [1/nm]

In-focus phase plate
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* The defocus value must be
precise within 60 nm In
order to get 4 A resolution.
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(Optional)

A quick introduction to Fourier transforms



The Fourier transform in one dimension



Fourier reconstruction of a Gaussian function
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0.00369
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0.00369

“Converged” at 6 terms
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The Fourier Transform gives us the coefficients




The formulas

Fourier transform Example:
G(l/l) — Jg(x)e_izﬂuxdx g(x) — e—ﬂ'xz
Gu) =e ™

Inverse Fourier transform

g(x) — JG(u)eHZﬂuxdu



Fourier reconstruction of a rectangular function
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524
y=rect(x)
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2 terms
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4 terms
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8 terms
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Nowhere near convergence at 10 terms
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The Fourier Transform of rect(x) is sinc(u)

-0.5

y=rect(x)
S
05 :
sin(zu)
rect(x) —

JTuU

FT

sin(zu)

is also known as: sinc(u)
Tu



The Fourier transform in two dimensions



Fourier reconstruction of a 2D Gaussian function

Projection

g,y) - Gu,v)

gy G(0,0)=1.0000




Fourier reconstruction of a 2D Gaussian function

Projection 2(x,y) G(u,v)
1 &
3 i
O i
11
2 . .
-2 1 0 1 4
gy G(1,0)=0.8217
1 1
0 0
1 1




Fourier reconstruction of a 2D Gaussian function

Projection

g(x,y)

G(u,v)

G(0,1)=0.8217




Fourier reconstruction of a 2D Gaussian function
Projection 2(x,y) G(u, v)

G(0,2)=0.4559




Fourier reconstruction of a 2D Gaussian function

Projection

g(x,y)

e — \

G(u,v)

G(0,3)=0.1708




2D Fourier transform

G(u,v) = [J 2(x,y) g ~I2TUXEVY) Jx dy

2D Inverse Fourier transform

2(x,y) = JJG(u, V) e 2 dy dy



FT of a square

(a,b) = (0,0)

g = rect(x) rect(y) G = sinc(u) sinc(v)



FT of a disc

(a,b) = (0,0)

g(x, ) = cire(r) _ Ji2ap)

G(u,v) =



2D Fourier transform properties

ab g(ax, by) - G(u/a,v/b)
o(x —a,y — b) = G(u, v)e 2
g§*h— GH
g(x’,y) = Gu',v')

Pyg(x9 )’) — G(u,0)

bv)

Scale

Shift

Convolution

Rotation

Projection



Convolution in 2D

G*x H= Hg(x—s,y— ) h(s,t)dsdt



Convolution with a Gaussian

a(x,y) h(x,y)

lFT Tun

e{(TRY)! H(u,v) G(u,v) H(u,v)
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The rotation property

2D Fourier Transform FT using 2D vectors

Glu,v) = Hg(x’ ye TN dxdy  Gu) = ”g(x)e-izﬂ<u°x>d2x

The dot-product is invariant under rotations!

Let R, signify a rotation, and
(xla y/) — RH (X, y)
(', v') = Ry (u,v)
then
FT g, y) = G(u',v)

or alternatively,

g(Ryx) - G(Rjyu)




Pg(x,y) = [g(x, y)dy

The Fourier Slice Theorem

G(u,v) = ﬂ g(x, y)e W) dxdy

G(u,0) = J ( J g(x, y)dy) e~ dx

= F{P,g]




Reconstruction using the Fourier Slice Theorem

Pg(x,y) = [g(x, y)dy

G(u,v) = ﬂ g(x, y)e W) dxdy

G(u,0) = J ( J g(x, y)dy) e~ dx

= F{P,g]

The rotation property says:
If we can collect projections from all

directions, we can construct all of G(u, v)



The discrete F T is what Is calculated on a computer

2D Fourier transform

G(u,v) = [J g(x, y) e TP dx dy

2D discrete Fourier transform
N/2—1

Z g(l, ]) e—i2ﬂ(ik+jl)®

i, j=—NJ?2

I
Gk, l) = —
k0=~



The DFT of a 32 x 32 pixel image has 32 x 32 complex pixel values

G(k;,l)
15 15 :
10} 10|
DFT
O » 0 ""ri'“'
5 -5}
10 10!




What are the dimensions of the transformed image?

ndx | 1
o K— _
dx ndx 2dx
—> < —> < D
10 | 10}
DFT "
O . O} l~' E ' .

_5 ! _5 .
=10t -10+t

-15 I A " A J -15 h i A A

-10 0 10 -10 0 10

Note that the sampling frequency 1/dx ...... corresponds to twice the maximum

accessible frequency nds/?2.



The 3D transform

3D Fourier transform

G(u,v,w) = ” Jg(x, y, 7)e "W IWI dx dy d

3D Inverse Fourier transform

2(x,y,7) = [J'[G(u, p, w)e TERWEYEWD) dqy iy dw



Theoretical basis of single-particle reconstruction



gx,y) = Gu,v)

Fourier Transform

gxh—> GH Convolution
g® h —> GH* Correlation
g(x,y) = Gu',v) Rotation
P y g(x,y) = G(u,0) Projection



How to get 3D structures from 2D images? The Fourier slice theorem

Fourier

Worm



Tomographic reconstruction: 2D image from 1D projections

EEEENIETTER 0 THTY I T m—




Tomographic reconstruction: 2D image from 1D projections

z k [ : & . = s
. hE iiEmmi L B I T
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Tomographic reconstruction: 2D image from 1D projections

BT = 0 1 [FF N s




Determining the orientation angles: example from the TRPV1 dataset

Structure of the TRPV1 ion channel
determined by electron cryo-microscopy
Maofu Liao'*, Erhu Cao™, David Julius® & Yifan Cheng'

1/4 of a micrograph - empiar.org/10005 One particle image

QQNR



http://empiar.org/10005

The probability of orientations P(¢ | X, V') is remarkably sharp
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The probabillity of orientations P(¢ | X, V) is remarkably sharp
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Single-particle reconstruction

We assume that image X: comes from a projection
in direction ¢. of volume V according to

The goal is to discover the volume V

T,

Project along ¢,

The first step is to compare images to
determine orientations...




Define the “reference”
as the true image A

modified by the CTF C:

R=CA

We wish to compare a
data image X with it.

There are various ways to compare images

Squared difference

IX—RI?= ) (X;—R)

J
= [IX]I* = 2X - R+ [IR|I*

Correlation

Correlation coefficient

~ X-R
| XTIR

Notation used here:

A single pixel in the image X:

Xj —the jth pixel (out of J pixels total)

The i™ image in the dataset X:
Y.

l



First the 2D problem: reconstruct an image

Model of an image

X=CA+N

A “true” image

C contrast-transfer function

N noise image

We can interpret C as either the CTF
operator (x,y space), or just the
multiplicative CTF factor (u,v space)




Modeling the CTF effect on an image
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. Phase flipping

= sgn(C)X

v, A
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1.

A = sgn(0)X

2. Wiener filter

~/

Phase flipping

CX
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How to undo the CTF effects?
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How to undo the CTF effects in noisy images”?

. Phase flipping

= sgn(C)X

-100 0 100

2. Wiener filter
angstroms

A —
C?+k




How to undo the CTF effects in noisy images”?

N= 1 images
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3. Wiener from multiple images




How to undo the CTF effects in noisy images?

N= 1 images

100 |

S0

Y coordinate, A
o

-50 |

-100 ¢

-100 -50 0 50 100
X coordinate, A

3. Wiener from multiple images

- YWex k(s) = 1/SNR
i i

k(s) + Y C?



Image restoration when spectral SNR is known

N= 1 images
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Restoration
from multiple images

Ziv CiX;

e

The defocus varies to fill
in CTF zeros

Image restoration when spectral SNR is known

N= 6 images
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Restoration
from multiple images

Ziv CiX;

1 N
SSNR'ZiCi
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The defocus varies to fill
in CTF zeros

Image restoration when spectral SNR is known
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3D reconstruction in FREALIGN: correlation and Wiener filtering

A Frealign iteration, refining V' to V"D, consists of Notes
two steps:
1. C,; is the CTF corresponding to the

1. Vary the projection direction ¢; to find the projection image X..

image R; = Cinb,V(”) that maximizes the correlation
’ 2. The projection operator P¢ also

coefficient for each image X,
9€ 4 includes translations. So ¢ consists of

X - R, five variables: ¢ = {a, J,7,1,,1,}.
| X || R; | 3. P; is the corresponding back
projection operator. In Fourier space it
2. Knowing the best projection direction ¢; for each yields a volume that is all zeros except

image X, update the volume according to for values along a slice.

N o 4. The sumN

4 N
k+ 2 Pl C?

IS therefore the insertion of N slices.



3D reconstruction in FREALIGN—iIterations

1.Start with a preliminary structure V%, n = 1

2.For each particle image Xl- find the projection angles
¢, that gives the best match, so X; ~ C,P (in(”)

lterate

3.Use the Frealign iteration to produce a new 3D
volume VD



3D Classification in FREALIGN

Suppose our model is that an image X can come
from any of K different particle types

V., V,,..Vrand our images are selected

randomly from these volumes, projected with
noise added.

1. The references are

2. Update the volume according to
Rik — CiP¢in :

We assign k; such that V) yields the k k,+ Y  PTC?
l 1%Y% . k

projection (with direction ¢) that gives the |

highest correlation coefficient with X..



Maximum-likelihood methods



Probabilities, another way to compare images

lmage model: X = R+ N

Probability of the jth pixel value:

P(X;|R;) = X e~ (XR)120°
\/ 2762

Probability of observing an entire image

that comes from R:

POX|R) = =5 o-lix-rne
(2762)712

0.016

0.014 -

0.012 -

0.01 -

0.008 -

0.006 -

0.004 -

0.002 |-

- P(X.|R)
W—> <
1 _,r—ﬂ—.l_ﬂr [ .
3 -2 %

w is the finesse of the pixel
intensity measurements. We’'ll
ignore it (set it to 1).

&FU_’




Simplified image probabillity

X=R+N
0.016 - P(X] ‘ Rj) e

0.014 -

0.012 -

0.01

0.008 -

0.006
Probability of observing an image that el !
comes from R: 0.002 - 1 |
2/2 9 0 l -—:l_ﬂﬁ—lﬂr | | 1 1 r | -

P(X|R) = c e IX=RII"20 P o 1 : :

R X,

(The normalization factor ¢ we’ll treat as a constant
and ignore it.)



The Likelihood
Let X = (X .. Xy} be our “stack” of particle images. We'd like to find

the best 3D volume V consistent with these data, say maximizing the
posterior probability

P(V| X).
According to Bayes’ theorem,
P(V) . . .
P(V|X)=PX|V) PX)’ prior —> = Experiment — posterior

likelihood
- P(X) doesn’t depend on V' so we can ignore it.

- P(V) is called the prior probability. It reflects any knowledge about V
that we have before considering the data set.

- P(X | V) is something we can calculate. It’s called the likelihood of V.

Lik(V) = P(X| V)



We know how to compute the likelihood
We know that

PX|V,}) = c o~ IX=CPVI||*/20°
To get the likelihood for one image we just integrate over all the ¢’s:

PX| V) = JP(X\ V. ) P() dip

assuming P(¢) is uniform.

To get the likelihood for the whole dataset we compute the product over all the images,
N

Pex|v) =] [Peci Vo ds,

For numerical sanity, we compute the log likelihood,

N
L= Zln (JP(Xi\V,gb)dgb).

Maximum-likelihood reconstruction is finding V that maximizes L.



Maximume-likelihood estimation is asymptotically unbiased

If the size of the dataset grows without bounds
(and the number of parameters to be estimated does not)
Maximum Likelihood converges to the right answer.



To maximize the likelihood, we’ll need a probability function I'(¢)

A projection

Probability of observing an image X if we know ¢:

P(Xl ‘ Va ¢) = C €_||Xi_CP¢V||2/2(;2

Probability of a projection direction for X::

Fi(¢) — P(¢‘Xiv V) =



The E-M algorithm finds a local maximum of the likelihood

The Expectation-Maximization (E-M) algorithm has this iteration,
guaranteed to increase the likelihood:

> [TIUPPICX; dep

Kl (n)
Tr2 T zijri (¢)P£CZZ d¢

V(n+1) —

...Relion’s compute-intensive “Expectation” step is basically the

evaluation of I (¢) for each image X, based on the current estimate

V™ of the volume.

For comparison, here is Frealign’s
iteration:

1. Find the best orientation ¢,
for each particle image X,

2. Update the volume according
to

2, Py CX,

V(n+1) _
T2
k+ Y. PTC




3D Classification

We can use Expectation-Maximization to optimize K different

volumes V, V,, .. Vi simultaneously. The formula is essential the For comparison, here is Frealign’s

. iteration:
same except that the function I depends also on &:

™ 1. Find the best orientation ¢, for
¢k each particle image X,

The iteration, guaranteed to increase the likelihood:
2. Update the volume according to

Zi Jrg,nk)(qb)chle d¢ pntl) — ziniCiXi

(n+1) __
Vk =

0> 7 k+ 2. PLC?
—=+2, [TAPPYC? dop

...Relion’s compute-intensive “Expectation” step is basically the

evaluation of I'; ;(¢) for each image X; and volume V;



The orientation determination is the most expensive step

3
No. operations = T 2PN + tn’ + Nn?

8 —_—
- d". 3D recon-
mnding struction

orientations



The orientation determination is the most expensive step

3
No. operations = T~ 2w’ N + tn’ + Nn?

8 —
- d". 3D recon-
qnams struction
orientations

e.g. N=10°, n=128, t=7
No. operations = 6 x 1017 = 19 CPU-years

With efficient programs, ~ 1 CPU-day



Evaluating Fw IS expensive: one of 5 parameters
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Evaluating F¢ IS expensive: one of 5 parameters
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Evaluating F¢ IS expensive: one of 5 parameters

><104
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Evaluating F¢ IS expensive: one of 5 parameters
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Evaluating F¢ IS expensive: one of 5 parameters

.- '

0 50 100 150 200

How to decrease the effort?

0 50 100 150 200
Angle



1. To save time, we

compute probabillities

of orientations at low

resolution.

Domain reduction: branch and bound, illustrated for 1D

50 100 150

200

50 100 150

200

2. We place bounds on
how much higher the
probabilities could be at
full resolution.

Given a cutoff value, we
evaluate over a fraction of
the domain.
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Branch-and-bound in cryoSPARC for integrating over orientations

True error over all poses , Yol R G 4% ]
.\é\ , (expensive, not computed) o e '
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o e .
& Particle image Filtered
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Q

% Azimuth

Reference structure




Branch-and-bound in cryoSPARC for integrating over orientations

True error over all poses - R e S ]

(expensive, not computed) S
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Branch-and-bound in cryoSPARC for integrating over orientations

True error over all poses , M e , 4% ]
S (expensive, not computed) S A
& - ay -~
o e .
& - Particle image Filtered
Fd ‘
Azimuth

Optimal pose
L

<

/F——

Lower bound iteration 1

% Minimum I&wer bound

using true error
computed at %

Lower bound, iteration 2

?inimum Iow@oound

&R

~ Optimal pose located without
exhaustively computing true
error over all poses

Prune
="~ using true error
computed at v




d

Probability of 3D map given images

Probability of 3D map given images

Stochastic gradient descent to avoid model bias

lterative refinement Prem_se, expensive St‘?ps c_;omputed b
using all single-particle images
AN\ Arbitrary
random : ﬁ?ﬁyrit.e |
initialization ~ M"21#aHON

Optimization
objective
function

Correct
Incorrect refined
structure structure

Space of all 3D structures

Stochastic gradient descent (SGD) enables ab initio cryo-EM structure determination
N Arbitrary |
Intermediate Correct ‘ \
randorm tructure structure k ;
initialization S ’ = Approxmate
“ — gradients computed

at each iteration

\ Optimization

v objective
I

Noisy, inexpensive steps computed
using randomly selected subsets of
single-particle images (b)

Space of all 3D structures



GEFORCEGTX

GEFORCEGTX .

GEFORCEGTX .

VS

'. N «.'a"(-"iJ

GEFORCEGTY —

is indistinguishable from magic.
Any sufficiently advanced technology is indisting _Arthur C. Clarke




Resources:

“I don't know of good textbooks. Here's a review that we wrote for
a mathematical audience, but might be useful in understanding
some details. It has a big appendix that may be worth looking at
too.” — Fred Sigworth

Computational Methods for Single-Particle Electron Cryomicroscopy
PMCID: PMC8412055
DOI: 10.1146/annurev-biodatasci-021020-093826

Lecture notes at https://cryoemprinciples.vale.edu/
Select the link to All Files.



https://cryoemprinciples.yale.edu/

