

cryo-EM Course Laboratory for BioMolecular Structure (LBMS) Friday, June 6th 2025

Predicted models for cryo-EM

Dorothee Liebschner Lawrence Berkeley Laboratory

Outline

- About AlphaFold predictions
- Using predicted models in cryo-EM
 - 1. Docking
 - 2. Model completion
 - 3. Reference model restraints
- Automated workflow: Iterating prediction and model building

Predicting models with AlphaFold

ΕV	Q]	LV	Έ	SG	G	G]	LV	7Q	Ρ	G	GS	SI	ιR	L	SC	A	Α	S	GI	ΞN	I	ΥS	SS	SI	Н	W٦	7R	Q	A	PC	GR	G	L	Εl	ΝV	7A	Y	Ι
	•		•		•	•		•		•	• •		•	•			•	•	•		F		•	. M	Ι.		•	•	•	•	. Ç).	•	•			•	•
			•										K								Y			. I						.7	Α.	•						
•••	•		•		•	•		•	•	Z	• •			•		•	•	•	•		_		•	-				•	•	• -		•	77	•			•	•
••	•	••	•	•••	•	•	••	•	•	17	• •	•	•	•	••	•	•	•	• •	••	•	••	•	••	•	•••	•	•	•	•••	•	•	v	•	••	•	•	•
••	•	••	•	••	•	•	••	•	•	•	• •	•	•	• 1	Α.	•	•	•	• •	••	•	••	•	•••	•	••	•	•	•	•••	•	•	•	•	••	•	•	•
• •	•	••	•	•••	•	•	••	•	•	•	• •	•	•	•	••	•	•	•	•	••	Г	•••	•	. v	•	•••	•	Ę	•	• •	••	•	•	•	•••	•	•	•
••	•	••	•	• •	•	А		•	•	•	• •	•	•	•	•••	•	•	•	•		•		•	••	•		•	•	•		•	•	• (Q	• •	•	•	•

Sequence Multiple sequence alignment

3D prediction

1. pLDDt (predicted Local Distance Difference Test)

- pLDDt identifies where errors are more likely.
- Per-residue confidence measure.
- Scales from 0 100 (pLDDt > 90: predicted with high accuracy).

Data from 7mjs, Cater, R.J., et al. (2021). Nature 595, 315–319

7*mjs* (3 Å, EMDB 23883)

Residues 100-120

Low sequence coverage, low confidence, low accuracy

7mjs

AlphaFold

Residues 1-100 High sequence coverage and confidence

Data from 7mjs, Cater, R.J., et al. (2021). Nature 595, 315–319

1. pLDDt (predicted Local Distance Difference Test)

- pLDDt identifies where errors are more likely.
- Per-residue confidence measure.
- Scales from 0 100 (pLDDt > 90: predicted with high accuracy).

AlphaFold confidence (pLDDT)	Median prediction error (Å)	Percentage with error over 2 Å
>90	0.6	10
80 - 90	1.1	22
70 - 80	1.5	33
<70	3.5	77

Terwilliger et al. (2023), AlphaFold predictions are valuable hypotheses, and accelerate but do not replace experimental structure determination. Nature Methods 2023: https://doi.org/10.1038/s41592-023-02087-4

1. pLDDt (predicted Local Distance Difference Test)

(PDB entry 6L5L)

Blue: pLDDt > 90 Green: pLDDt 80 - 90

2. Predicted aligned error (PAE)

- Certainty of relative positions between two residues.
- Identifies accurately-predicted domains.
- Dark blue: uncertainty in relative positions < 5 Å.

Using predicted models: B-factors

high pLDDT (high confidence) low pLDDT (low confidence, uncertain)

high B-factor (disordered, uncertain) low B-factor (ordered)

Oeffner RD, Croll TI, Millán C, Poon BK, Schlicksup CJ, Read RJ, Terwilliger TC. Acta Cryst. D, 2022 (78):1303-1314; https://doi.org/10.1107/S2059798322010026

Using predicted models: B-factors

high pLDDT (high confidence) low pLDDT (low confidence, uncertain)

high B-factor (disordered, uncertain) low B-factor (ordered)

B-factor may be used in downstream calculations, e.g. to calculate weights for docking. Residues with high B-factors are downweighed.

 \rightarrow Convert pLDDT to pseudo B-factors.

$$\Delta = 1.5 \exp[4(0.7 - \text{pLDDT})]$$
 $B = \frac{8\pi^2 \Delta^2}{3}$

Oeffner RD, Croll TI, Millán C, Poon BK, Schlicksup CJ, Read RJ, Terwilliger TC. Acta Cryst. D, 2022 (78):1303-1314; https://doi.org/10.1107/S2059798322010026

AlphaFold predictions are great hypotheses

AlphaFold models can be....

Terwilliger et al. (2023), AlphaFold predictions are valuable hypotheses, and accelerate but do not replace experimental structure determination. Nature Methods 2023: https://doi.org/10.1038/s41592-023-02087-4

How to use predictions?

Incorporate predictions into the typical cryo-EM workflow.

How to use predictions?

Incorporate predictions into the typical cryo-EM workflow.

1. Use a predicted model for cryo-EM docking

cryo-EM docking

Cryo-EM maps typically lack the necessary resolution and quality for *ab initio* model building.

 \rightarrow dock a pre-existing model into the map.

Model assumed to look like the sample.

Use a predicted model for cryo-EM docking

Example:

Cryo-EM map (30160 – 7brm) 3.6 Å

>chain ' A' XXXXXXXXXXXXXXCLTAPPKEAARPTLMPRAQSYKDLTHLPAP TGKIFVSVYNIQDETGQFKPYPASNFSTAVPQSATAMLVTALKDS RWFIPLERQGLQNLLNERKIIRAAQENGTVAINNRIPLQSLTAAN IMVEGSIIGYESNVKSGGVGARYFGIGADTQYQLDQIAVNLRVVN VSTGEILSSVNTSKTILSYEVQAGVFRFIDYQRLLEGEVGYTSNE PVMLCLMSAIETGVIFLINDGIDRGLWDLQNKAERQNDILVKYRH MS

cryo-EM map

sequence

Get a prediction

Process prediction

AlphaFold model

Process prediction

Dock processed model

Docking in Phenix

• Dock-in-map (T. Terwilliger) – phenix.dock_in_map

Docking in Phenix

Likelihood-based EM docking:

- Use likelihood scores to dock a model into a map
- Works at low resolution (8.5 Å)

$$\begin{aligned} \text{LLG}(\mathbf{E}_{\text{mean}};\mathbf{E}_{\text{C}}) &= \frac{2}{1 - D_{\text{obs}}^2 \sigma_{\text{A}}^2} D_{\text{obs}} \sigma_{\text{A}} E_{\text{mean}} E_{\text{C}} \cos(\Delta \varphi) \\ &- \frac{D_{\text{obs}}^2 \sigma_{\text{A}}^2 (E_{\text{mean}}^2 + E_{\text{C}}^2)}{1 - D_{\text{obs}}^2 \sigma_{\text{A}}^2} - \ln(1 - D_{\text{obs}}^2 \sigma_{\text{A}}^2). \end{aligned}$$

Read RJ, Millán C, McCoy AJ, Terwilliger TC. Likelihood-based signal and noise analysis for docking of models into cryo-EM maps. Acta Cryst. D 2023 271–80. Millán C, McCoy AJ, Terwilliger TC, Read RJ. Likelihood-based docking of models into cryo-EM maps. Acta Cryst. D 2023 Apr 1;79(Pt 4):281–9.

Docking in Phenix/ChimeraX

- Likelihood-based docking can be done via ChimeraX.
- Can select the region into which the model should be docked.

Docking in Phenix/ChimeraX

- Likelihood-based docking can be done via ChimeraX.
- Can select the region into which the model should be docked.

Dock processed model

Some parts don't fit into the map

Dock processed model

Some parts don't fit into the map \rightarrow fit loops and rebuild

Fit loops and rebuild

Next step: real space refinement

2. Use a predicted model to complete your structure

Use predicted model as hypothesis for missing parts.

Can AF predictions help if the structure is already solved?

Repressor-DNA complex, solved with 2.6 Å SeMet SAD data & refined against 3.1 Å native data

Before AlphaFold, R/Rfree = 0.27/0.29

AlphaFold model: A **hypothesis** about this structure

After AlphaFold, R/Rfree = 0.21/0.24 (it was a good hypothesis)

Jamie Wallen, Western Carolina University

3. Use an Alphafold model for reference model restraints

Restraints: *a priori* knowledge

- Restraints increase the number of observations.
- Restraints modify the target function by creating relationships between independent parameters.
- Example: restrained bond lengths

- the coordinates of the two atoms are independent
- restraint keeps their distance within a certain target value
- imposes a penalty if it deviates too much.

Reference model Restraints

Concept

- Use a related model to generate a set of torsion restraints.
- Restrain each torsion angle in the working model to the corresponding torsion angle in the reference model.
- Allows for structural differences.

When to use

Low resolution (worse than 3Å).

If no high resolution homologue available, could use AF model for reference model (AF models have good geometry).

Reference model Restraints

Reference model Restraints: example

1GTX: 3.0 Å **10HV**: 2.3 Å

4-aminobutyrate-aminotransferase

Reference model Restraints: example

4-aminobutyrate-aminotransferase

Reference model Restraints

How to use

Supply a reference model in phenix.refine; check the corresponding box. (Oleg Sobolev: working on finding reference automatically)

Real-space refinement (Project: 7rpq_AF_reference_m Preferences Help	Run Abort Save Help
Input/Output Refinement Settings	$\triangleleft \triangleright$
By default real-space refinement applies Ramachandran restraints to the model to maintain good stereochem input model contains Ramachandran outliers these restraints may lead to a non-optimal local geometry, whic validation metrics to detect, such as CABLAM and the Rama-Z score. We recommend that you manually fix th real-space refinement. Job title :	nistry. However, if your ch will require other nese outliers before running Input/Output Refinement Settings Strategy
Input Format Data type File path Format Data type \u03c4 /Users/dcliebschner/Documents/7rpq_AF_reference PDB Model file \u03c4 /Users/dcliebschner/Documents/7rpq_AF_reference PDB Reference model \u03c4 /Users/dcliebschner/Documents/7rpq_AF_reference ccp4_mtz M12 mic	Image: Select Atoms Image: Select Atoms Image: Select Ato
Add file Remove file Modify file data type Resolution : Map coefficients label : Ignore symmetry conflicts	Strategy Options Morphing : first Options Reference model restraints Options Other Options
Output Output Prefix : Vrite initial geo file Write final geo file Write all states Run validation	Scattering table : electron image: Weight : Resolution factor : 0.25 Nproc : 1 Random seed : 0 Image: Refine ncs operators Image: Show per residue Model interpretation Rotamers Automatic linking All parameters

Use your working model to get a new AlphaFold prediction

Example: Fab heavy chain

7MJS

Single-Particle Cryo-EM Structure of Major Facilitator Superfamily Domain containing 2A in complex with LPC-18:3

PDB DOI: https://doi.org/10.2210/pdb7MJS/pdb EM Map EMD-23883: EMDB EMDataResource

3.03 Å resolution

A loop that interacts with other chains is not correctly predicted.

AF2 prediction of chain H

AF2 prediction of chain H

Process AF2 prediction

Dock processed model into the map

AF2 prediction of chain H

Loop predicted with low confidence Does not fit into map.

AF2 prediction of chain H

Dock and rebuild model

"predicted-processed-docked-rebuilt" model

Make a new prediction

Using a template improves prediction

Iterate prediction and rebuilding

Iterate prediction and rebuilding

Data from 7mjs, Cater, R.J., et al. (2021). Nature 595, 315–319

Using predicted models

Updated approach: Iterate prediction and model building

Phenix Server for running AlphaFold

put/Output Predictio	on Settings						4				
rediction strategy											
Number of models :	5	✓ Include templates from PDB	🗸 Use MSA	Skip all M	SA after first cycl	le					
rediction Server											
Prediction Server :	PhenixServer 🔇	Allow precalculated results	✓ Allow precalculate	d MSA 🛛 🗸	Stop if internet	not available					
Additional prediction inputs (Note: this GUI is only for prediction, not docking or model-building)											
Predict and Build	Input Files	Prediction Control A	All parameters								

No need for a local AlphaFold installation

SERVER STATUS: UP RUNNING JOBS: 2 WAITING JOBS: 0	
RUNNING JOBS: 2 WAITING JOBS: 0	:
WALLTIME: U MIN	
This server is used in PredictModel and PredictAndBu Colab can be used as an alternative	ild.
≪ ОК	

Process predicted model

Process Predicted Model (Project: 7rpq_AF_reference_model)	Preferences Prefe	Run Abort	C Help
Configure			$\triangleleft \triangleright \mathbf{x}$
ProcessPredictedModel: Prepare predicted model for structure determination Replace values in B-factor field with estimated B values. Optionally remove low-confidence residues and split into domains. Inputs: Model file (PDB, mmCIF)			
Job title :			
Predict	ed model		
Predicted model :	Browse		
Contents of B-value field for input models : plddt 📀			
Optional input files			
Output			
Output file prefix (optional) :			
Options			
✓ Remove low-confidence residues ✓ Split model into compact regions Maximum output B :	999.0		
✓ Remove hydrogen Use only single-letter chain ID Maintain continu	uous chain		
Processing options All parameters			

Iterate with Predict and Build

•••	Predict and	l Build (Proje	ect: 7brm)		Preferences	? Help	Run Abort	t Save	C Help	Phenix Server
Input/Output	Prediction ar	d Building Sett	ngs PredictAndBu	uildCryoEM_17						4 ▷
Prediction st	trategy									
Number of	f models :	L	🗌 Include t	emplates from PDB	🗸 Use MSA	Skip	all MSA aft	ter first cyc	le	
Rebuilding s	trate					Numb	er of	f		
Cycles :	10	Numbe	r of processors :	4	Refine op (no r		tion	/bui	Iding	
Pause	after docking	and renneme	пс со спеск resul	ts					U	
🗸 Updat	e unique seque	ences			ĺ	terati	ons			
Prediction S										
Prediction	Server : Phe	nixServer	Allow p	recalculated results	🗸 Allow precal	culated MSA	🗹 Stop	if internet	t not available	e
Carry on pre	vious run (Resto	re a completed r	un from Job history	to fill this in automatic	ally. You can also selec	t the CarryOn s	ubdirectory i	n a Predict_	_and_Build_xx	directory)
Carry-on o	directory :				Bro	owse Q	□ Co	ontinue thi	s previous ru	n
Advanced in	puts									
Predict a	nd Build	Input Files	Box info	Processing	Search	Building				
Predictio	n	Control	All parameters	5						

Fully automatic – AF prediction, processing, building, refinement.

Strategy for structure determination

1. Predict your structure

Design your experiment accordingly

(choose experimental approach, consider trimming at domain boundaries)

2. Solve your structure

Cryo-EM: docking X-ray: MR; SAD

3. Update your prediction

Run AlphaFold again with your best model as a template

4. Improve your structure

Use your new prediction as hypothesis, rebuild parts

Iterate

Summary

- AlphaFold models are great hypotheses.
- Can be used for cryo-EM docking (need to interpret the confidence measures), model completion, reference model restraints.
- Iterating prediction and model building can lead to improved models.
- Still need experiment to get a model that best explains the data.

Further reading/material

Tom Terwilliger: AlphaFold changes everything

https://youtu.be/ugMPYdPo8Bc?feature=shared

Liebschner D, *et al.*, Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in *Phenix*. Acta Cryst. 2019 **D75**:861–877