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Part 1. Phase contrast and 
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Phase contrast and the contrast transfer function

1. Complex numbers: review 

2. Defocus contrast and the CTF (simple version) 

3. Image delocalization 

4. Objective lens effects on the CTF



Why complex numbers?

• They make the equations simpler 
• Natural for Fourier transforms 
• Give us the magnitude and phase of 

structure factors



i, the imaginary unit

i = −1

A complex number Real part

Imaginary part

z = a + ib

The unit imaginary number



You can do arithmetic with complex numbers

Add 

Multiply 

Real part 

Imaginary part 

Absolute value 

Conjugate

 

 

 

 

 

 

z + w = (a + c) + i(b + d)

zw = (ab − bd) + i(ad + bc)

Re(z) = a

Im(z) = b

|z | = a2 + b2

z* = a − ib

z = a + ib
w = c + id



The exponential function ex

e = 2.718...

ex = 1 + x +
x2

2
+

x3

2 × 3
+ . . .

ex ≈ 1 + x, x ≪ 1

A very important approximation



The complex exponential

eiθ = cos θ + i sin θ



A plot of eiθ



A plot of eiθ



Any  can be represented as  or as z (a, b) (r, θ)
                           
                                                                                         

z = a + ib z = reiθ

 is the magnitude 
 is the phase

r
θ

 is the real part 
 is the imaginary part

a
b

a
Real

b
r

θ

Imag

Recall that 
 

so, when you multiply 
two complex numbers,  
the phases add: 

. 

exey = ex+y

eiθ1eiθ2 = ei(θ1+θ2)
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Electrostatic 
 potential ϕ

The imaging electrons are phase-shifted when passing near 
atomic nuclei or fixed charges. 

The phase shift coefficient  is about 0.5 milliradian per volt-
angstrom of integrated potential.  
The phase shift near a single atom is ~1 milliradian.

σ

E
lastically-scattered electron

unscattered electron

Cryo-EM specimens are imaged by phase contrast



Most cryo-EM data are acquired using defocus contrast

objectobject image

100 Å

• At high defocus, high-
resolution information in the 
image is strongly delocalized. 

• Image processing can re-
localize the signals, but at 
most only about half of the 
theoretical contrast is 
preserved by defocusing.



Image of an object with 5Å periodicity

imageobject image

100 Å

object image

• At high defocus, high-
resolution information in the 
image is strongly delocalized. 

• Image processing can re-
localize the signals, but at 
most only about half of the 
theoretical contrast is 
preserved by defocusing.



Defocus contrast in a nutshell

1. The contrast in the image of a grating object varies with the amount of defocus. 

2. The grating object produces diffracted waves with shifting phase. 

3. When the diffracted waves interfere with the undiffracted waves, we have contrast. 



For an electron propagating in the  direction, 
the time-independent wave function is 

 

with 

 

z

Ψ0 = eikz

k = 2π/λ

A snapshot of an electron wave

Energy (keV) Wavelength 
(Å)

Velocity 
(fraction of c)

120 0.033 0.59

200 0.025 0.70

300 0.020 0.78



Insert a phase-shifting object that perturbs the electron wave function



The object is a grating, 
.  

Example: 
 and .

ϵϕ(x) = ϵ cos(2πx/d)

d = 5Å ϵ ≪ 1

Insert a phase-shifting object that perturbs the electron wave function

At  , 
 

z = 0
Ψ = eiϵϕ(x)



The weak-phase approximation

What are the two terms in the approximation? 

• There is an undiffracted wave —essentially the 
same as the incident wave—of amplitude 1. 
We’ll call this   

• And there is a new wave combination of 
amplitude . In this example of a grating there 
are actually two diffracted waves,  and  

• The full wavefunction is 

 

Ψ0

ϵ
Ψ+ Ψ−

Ψ = Ψ0 + Ψ+ + Ψ−

• Just below the specimen, at  , the electron 
wave function is  . 

• Then, by the approximation   we have 
just after the specimen  

       This is the weak phase approximation.  

z = 0
Ψ = eiϵϕ(x)

ex ≈ 1 + x

Ψ ≈ 1 + iϵϕ(x)



The contrast of a grating object varies with the distance below the object

The grating ϕ(x)

Intensity at z

Interference between the 
undiffracted wave and 
diffracted waves 
produces contrast.
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Waves interfere to make contrast

• The two diffracted waves  and  travel at very small 
angles  and  to the undiffracted wave. 

• To reach a distance  below the specimen, they take a path 
longer than  does. Let   = the path length difference. 

         .  

• In our example  and the grating . At the 
level , , about half a wavelength. 

• Define  = the phase difference between the undiffracted and 
diffracted waves.  

             

               

• In this example 

Ψ+ Ψ−
+θ −θ

z
Ψ0 ζ

ζ =
z

cos θ
− z ≈ zλ2/2d2

λ = .02Å d = 5Å
z = 100 nm ζ = .008Å

χ

χ = 2πζ/λ
= πλz /d2

χ = 0.8π

Ψ
D

is
pl

ac
em

en
t 

, n
m

z

, angstromsx

z = 0

z = 100 nm

Ψ0
Ψ−

Ψ+

θ

 sin(θ) = λ/d



Ψ Ψ′ 

Where the phase of the diffracted waves is right, we have contrast.

Imaginary

Real

Complex number color scheme

Let’s unwrap the oscillations in : 
We’ll define  

 

Ψ
Ψ′ = Ψ/Ψ0



Ψ Ψ′ 

Where the phase of the diffracted waves is right, we have contrast.

Let’s unwrap the oscillations in : 
We’ll define  

Let’s remove the undiffracted wave, so we have 
just the diffracted waves, 

 

   
                    

  

Ψ
Ψ′ = Ψ/Ψ0

(Ψ′ − 1) = Ψ+ + Ψ−

Imaginary

Real

Complex number color scheme



Ψ Ψ′ 

When the phase of the diffracted waves is right, we have contrast.

Imaginary

Real

Complex number color scheme

Ψ′ 1-Ψ′ 

blue / yellow: imaginary 
amplitude, no interference, no 
contrast

red / green: real amplitude; 
interference

Let’s unwrap the oscillations in : 
We’ll define  

Let’s remove the undiffracted wave, so we have 
just the diffracted waves, 

 

   
                    

  

Ψ
Ψ′ = Ψ/Ψ0

(Ψ′ − 1) = Ψ+ + Ψ−
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Ψ Ψ′ Ψ′ 1-

What happens when the objective lens is focused above the specimen?

What wavefunction above the specimen 
would give rise to what we see below it? 

We can back-propagate : 
this is what the objective lens “sees”

Ψ



What happens when the objective lens is focused above the specimen?

The grating ϕ(x)

Intensity at z
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dark (neg)   |   bright (pos)

Terminology 

• “Underfocus” is focusing the 
objective lens above the 
specimen.  

• By convention, defocus values  
are positive for underfocus: 

 

• Spatial frequency is   

• The phase shift  is proportional 
to . 

• The contrast transfer function is 
given by 

       

               

δ

δ = − z

s = 1/d

χ
δ

CTF = sin(χ)
= sin(−πλδ s2)



The basic contrast-transfer function as a function of s

CTF = sin(−πλδs2)
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Ψ Ψ′ 

Where the phase of the diffracted waves is right, we have contrast.

We define  

      

      
and can be written as 

     . 

                    

  

Ψ′ = Ψ/Ψ0
Ψ′ = 1 + ie−ikζ ⋅ ϵ cos(2πx/d)

Ψ′ = 1 + ie−iχ ϵϕ(x)

Grating object: 

 
Electron propagation: 

 
Diffracted wave path difference: 

 
Wave aberration function: 

 

ϵϕ(x) = ϵ cos(2πx/d)

k = 2π/λ

ζ ≈ zλ2/2d2

χ = kζ ≈ πλz /d2

Formal derivation of the defocus-contrast CTF



Formal derivation of the CTF for a grating of spacing d

Grating object: 

 
Wave aberration function: 

 

ϵϕ(x) = ϵ cos(2πx/d)

χ ≈ πλz /d2

    . 

The measured intensity is 

      

          

         . 

In practice 
• We ignore the constant background intensity. 
• Everyone ignores the factor of 2 also. 
• So we say the transfer from phase shift to intensity change is 

    

Ψ′ = 1 + ie−iχ ϵϕ(x)

|Ψ |2 = |Ψ′ |2 = (real part)2 + (imag part)2

= [ 1 + sin(χ) ϵϕ(x) ]2 + [ cos(−χ) ϵϕ(x) ]2

= [ 1 + 2 sin(χ) ϵϕ(x) + 𝒪ϵ2 ] + [ 𝒪ϵ2 ]

CTF =
ΔIntensity

ΔElectron phase
= sin(χ)



1 
µm

 d
ef

oc
us

A little defocus is actually a long distance

1 µm—a moderate defocus for cryo-EM 
imaging–is 500,000 wavelengths! 

This has ramifications regarding 
• beam coherence 

• specimen charging 

• delocalization



The dispersion radius is given by 
        
           (small angle approx.) 

Homework problem:  
• How how much space do I need around my 

particle to include all the information up to 3Å, 
if I use 3µm of defocus? 

• How much space would I need for 1.5µm of 
defocus?

r = δ tan θ
= δλs

With large defocus, how bad is the image delocalization?

δ

r

Focus 

Specimen

θ

Object

3 µm 
defocus



The dispersion radius is given by 
        
           (small angle approx*) 

For example at 3µm defocus and 3Å 
resolution 
    

        

        
then 
        

In this case one would want 200Å of space in 
the box around each particle image. 

________ 
*Note: beyond about 3Å, spherical aberration needs to 
be taken into account too. 

r = δ tan θ
= δλs

δ = 3 × 104Å
λ = .02Å
s = 0.33Å−1

r = 200Å

With large defocus, how bad is the image delocalization?

δ

r

Focus 

Specimen

θ

Object

3 µm 
defocus



Phase contrast and the contrast transfer function

1. Complex numbers: review 

2. Defocus contrast and the CTF (simple version) 

3. Image delocalization 

4. Objective lens effects on the CTF



An objective lens reproduces interference patterns at the camera

In focus 

Specimen

Camera

Underfocus 

Specimen

Camera

Specimen’

The camera “looks” above 
the specimen

Camera’



With spherical aberration a lens bends high-angle rays more strongly

Specimen

Camera

Specimen’  
(Gaussian focus)

Specimen’  
(at high s )

Underfocus 

The contrast transfer function now 

includes , 

      

or, expanded, 

The coefficient  is typically 
~2mm. Spherical aberration 
typically becomes important for  

, or about  
resolution.

δ′ 

CTF = sin(−πλ (δ + δ′ ) s2)

Cs

s ≳ 0.25Å−1 4Å

CTF = sin(−πλδs2 +
π
2

Csλ3s4)

Spherical aberration changes 
the defocus by  

     .δ′ = − Csλ2s2/2



Very high-angle scattering yields amplitude contrast

Electrons that pass very close to an atomic 
nucleus are scattered at high angles, and are 
caught by the objective aperture.  

• The loss of these electrons results in a small 
amount of negative amplitude contrast. 

• For proteins  is typically around 0.05.  

• The amplitude contrast term allows the CTF to 
have a small negative value even at zero 
spatial frequency. 

Combining all these terms, the contrast transfer 
function is given by 

 

α

CTF = sin(−πλδs2 +
π
2

Csλ3s4 − α)
defocus        sphere abb.        amplitude

Objective aperture

Specimen

Camera



The simple defocus contrast is what we’ve seen before

α

 effectCs

Defocus only CTF = sin(−πλδs2 +
π
2

Csλ3s4 − α)
defocus          sphere abb.     amplitude



Now adding in spherical aberration and amplitude contrast

Combining all these terms, the contrast 
transfer function is given by

α

 effectCs

With  and α Cs

Here you can see why everyone uses 
underfocus: the amplitude contrast and 
defocus contrast are additive in this case. 

Also, Cs has the effect of reversing some 
of the oscillations in the CTF.

defocus          sphere abb.     amplitude

 CTF = sin(−πλδs2 +
π
2

Csλ3s4 − α)
defocus          sphere abb.     amplitude



Spherical aberration can be our friend

If we’re not using image processing to remove 
CTF effects, Scherzer defocus is a good solution: 
just enough defocus to give signal over a broad 
range of spatial frequencies.  

It’s popular in materials science but not much for 
cryoEM: the signal transfer at low frequencies is 
poor.



A phase plate modifies the interference of electron waves at the camera

In focus 

Specimen

Camera

Diffraction plane

Phase plate 

The phase plate shifts the phase of the 
undiffracted beam  by some angle .  

Then .  

If  then  

Ψ0 ϕ

CTF = sin(χ − ϕ)

ϕ = 90o

CTF = − cos(χ)

Phase Plate
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Cryo-EM single particle analysis with the
Volta phase plate
Radostin Danev*, Wolfgang Baumeister

Department of Molecular Structural Biology, Max Planck Institute of Biochemistry,
Martinsried, Germany

Abstract We present a method for in-focus data acquisition with a phase plate that enables
near-atomic resolution single particle reconstructions. Accurate focusing is the determining factor
for obtaining high quality data. A double-area focusing strategy was implemented in order to
achieve the required precision. With this approach we obtained a 3.2 Å resolution reconstruction of
the Thermoplasma acidophilum 20S proteasome. The phase plate matches or slightly exceeds the
performance of the conventional defocus approach. Spherical aberration becomes a limiting factor
for achieving resolutions below 3 Å with in-focus phase plate images. The phase plate could enable
single particle analysis of challenging samples in terms of small size, heterogeneity and flexibility
that are difficult to solve by the conventional defocus approach.
DOI: 10.7554/eLife.13046.001

Introduction
Phase plates are one of the technologies holding promise for future performance improvements in
cryo-electron microscopy (cryo-EM). Direct electron detectors already changed the prospects of the
cryo-EM field (Henderson, 2015) with atomic resolution structures becoming almost routine
(Campbell et al., 2015; Bartesaghi et al., 2015). Phase plates improve the image contrast and allow
in-focus data acquisition which, in theory, will result in increase of the signal-to-noise ratio across the
entire frequency spectrum (Glaeser, 2013). This could enable structural investigations of ’difficult’
samples, such as small, heterogeneous and/or flexible molecules or complexes (Hall et al., 2011).
Until now, however, various practical problems and performance issues have prevented the acquisi-
tion of high-resolution datasets with a phase plate (Danev et al., 2009). Here we demonstrate that
with correct use, in particular accurate focusing, one can achieve near-atomic resolutions.

The phase plate is a device that produces phase contrast by introducing a phase shift between
the scattered and unscattered waves at a diffraction plane inside the microscope. Phase contrast
denotes that phase variations of the electron wave caused by the sample will be transformed into
amplitude variations at the camera thus enabling phase observation. Ideally, the phase shift must be
p/2 to realize the so-called Zernike phase contrast (Danev and Nagayama, 2001). In practice, how-
ever, a satisfactory phase contrast performance can be obtained within a range of phase shift values
(p/4 ~ 3p/4) (Danev and Nagayama, 2011). There are other ways to produce phase contrast, the
most common is acquiring images slightly out of focus, also known as defocus phase contrast. This
method is the de facto standard in transmission electron microscopy (TEM) but it has the disadvan-
tage of low overall contrast because of poor performance at low spatial frequencies, i.e. large speci-
men features are not well reproduced in the image.

Phase plates for TEM have been in development for more than 15 years with the thin film Zernike
phase being one of the most promising candidates (Glaeser, 2013). It consists of a thin material
film, typically amorphous carbon, with thickness selected for p/2 phase shift at the operating voltage
of the microscope (~22 nm for 100 kV; ~31 nm for 300 kV) and a small (~1 mm) hole in the center for
the central beam of unscattered electrons (Danev and Nagayama, 2001). Nevertheless, the Zrnike
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The phase plate allows in-focus imaging, given precise focusing.

The phase shift of the VPP is not constant and increases with the accumulated dose on the phase
plate (see Figure 3 below) (Danev et al., 2014, Figure 1). It has a rapid onset in the beginning fol-

lowed by a gradual increase. For single particle data acquisition this would mean that the first

images taken after the phase plate is inserted will have a phase shift below p/2 and later images

may have a phase shift above that value. Figure 1C illustrates the effect of phase shift on the usable

defocus range and resolution. For lower phase shifts (blue area) the defocus ranges are shifted

towards more defocus and there is a slight improvement in the absolute resolution cutoff point

(~2.6 Å). Higher phase shifts (red area) require less defocus but have a worse resolution cutoff

(~3.0 Å).
Figure 1D shows an ideal case of a p/2 phase plate on a Cs-corrected microscope (zero spherical

aberration). There is no resolution cutoff but the allowed defocus range gets progressively narrower

for higher resolutions. A variable phase shift will move the shaded areas to the left or right, similar

to the behavior in Figure 1C, but in order to avoid clutter the effect is not shown in the figure.
The graphs in Figure 1 demonstrate the strict requirements on the focusing accuracy for in-focus

data acquisition with a phase plate. In order to achieve the required nanometer-level focusing preci-

sion we implemented a double focusing area acquisition scheme. Figure 2A shows an illustration of

Figure 1. Volta phase plate CTF examples and allowed defocus ranges versus resolution. (A) Illustration of CTFs at defocus values that limit the

resolution to 4 Å according to a |CTF|=0.5 criterion. (B) Defocus limits versus resolution according to the |CTF|=0.5 criterion for a p/2 phase plate and

2.7 mm spherical aberration. The shaded areas are ’prohibited’ in a sense that for those defocus values the CTF amplitude drops below 0.5 at a

resolution lower than the value on the y-axis. (C) Same as (B) but for three different phase shift values. (D) Same as (B) but for a Cs-corrected

microscope (0 mm spherical aberration).

DOI: 10.7554/eLife.13046.003
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• The better low-frequency 
contrast makes particles 
much more visible.  

• The defocus value must be 
precise within 60 nm in 
order to get 4 Å resolution.

ze
ro
e
s.

T
h
e
fi
rs
t
C
T
F
ze
ro

is
b
e
yo

n
d
th
e
3
.7

Å
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The CTF  actually is a 2D function

Spatial frequency s, Å−1

s y
sx

 CTF = sin(−πλδ(s2
x + s2

y ) +
π
2

Csλ3(s2
x + s2

y )2 − α)

 CTF = sin(−πλδs2 +
π
2

Csλ3s4 − α)
defocus          sphere abb.     amplitude

2D CTF
C

on
tra

st
 tr

an
sf

er



Astigmatism yields a varying defocus depending on the angle

Spatial frequency s, Å−1

s y
sx

C
on

tra
st

 tr
an

sf
er



Black rings in  show the zeros in the CTFCTF2

Spatial frequency s, Å−1

C
TF

C
TF

2



The power spectrum shows the same dark “Thon rings”

Spatial frequency s, Å−1

P
ow

er
 s

pe
ct

ra
l d

en
si

ty

The defocus and other CTF parameters can be 
estimated by curve fitting.



Thon rings in the power spectrum show zeros in the CTF

Power spectrum

Spatial frequency sx , Å−1

S
pa

tia
l f

re
qu

en
cy

 s y
,Å

−
1

Grating at the spatial frequency s = (sx, sy)



Defocus contrast: a summary

1. Electrons have really short wavelengths, and they travel through the column one by one. 

2. The contrast in the image of a grating object varies with the amount of defocus 

3. The grating object produces diffracted waves with shifting phase 

4. When the phase of the diffracted waves is right, we have contrast. 

5. A lens reproduces the wavefronts at the image plane. 

6. Spherical aberration and amplitude contrast introduce new terms in the CTF. 

7. A phase plate alters the wavefronts after they’ve passed through the lens.



Part 2: Fourier Transforms

and their properties



The Fourier transform in one dimension



Reconstruction of a Gaussian function from cosine waves

  y = e− π
4 x2

x

y



1 term

x

y



2 terms

x

y



3 terms

x

y



4 terms

x

y



5 terms

x

y



“Converged” at 6 terms

x

y



 is the frequency variableu

 u = 0.5

 u = 1

 u = 1.5

 u = 2

 u = 2.5

 u = 3
x

y
Coefficients



The Fourier Transform gives us the coefficients

x

y

u

FT

2  2  1  1  3  3  

2  2  1  1  

g(x) G(u)

e−πx2 → e−πu2
A transform pair



The formulas

Fourier transform





Inverse Fourier transform


G(u) = ∫ g(x)e−i2πuxdx

g(x) = ∫ G(u)e+i2πuxdu

Example: 

 g(x) = e−πx2

G(u) = e−πu2



Fourier reconstruction of a rectangular function



2 terms



4 terms



6 terms



8 terms



Nowhere near convergence at 10 terms



The Fourier Transform of rect(x) is sinc(u)

FT

x

y

u
6  6  4  4  2  2  

rect(x) →
sin(πu)

πu
 is also known as:   

sin(πu)
πu

sinc(u)

g(x) G(u)



Reciprocal scaling of FT pairs

g(x) = ae−π(ax)2 G(u) = e−π(u/a)2

x u



Reciprocal scaling of FT pairs

g(x) = ae−π(ax)2

x u

G(u) = e−π(u/a)2



Reciprocal scaling of FT pairs

g(x) = ae−π(ax)2

x u

G(u) = e−π(u/a)2



Reciprocal scaling of FT pairs

g(x) = ae−π(ax)2

x u

Scale property 

 ag(ax) → G(u/a)

G(u) = e−π(u/a)2



Reciprocal scaling of FT pairs

g(x) = ae−π(ax)2

x u

Scale property 

 ag(ax) → G(u/a)

G(u) = e−π(u/a)2



Reciprocal scaling of FT pairs

g(x) = ae−π(ax)2

x u

Scale property 

 

Delta function 

 

FT Pair 

ag(ax) → G(u/a)

δ(x) = lim
a→∞

ae−π(ax)2

δ(x) → 1

G(u) = e−π(u/a)2



Fourier transform pairs

 

 

e−πx2 → e−πu2

rect(x) →
sin(πu)

πu

δ(x) → 1



1D Fourier transform properties

 

 

 

 

g(x) + h(x) → G(x) + H(x)

ag(ax) → G(u/a)

g(x − b) → G(u)e−i2πub

g ⋆ h → G(u)H(u)

Linearity 

Scale 

Shift 

Convolution



Convolution with a Gaussian kernel

Convolution


  means:
f(x) = g ⋆ h

f(x) = ∫ g(x − s)h(s)ds



The Fourier transform in two dimensions



̂g(x, y)

g(x, y) G(u, v)

G        =

Projection

Fourier reconstruction of a 2D Gaussian function



̂g(x, y)

g(x, y) G(u, v)

G        =

Projection

Fourier reconstruction of a 2D Gaussian function



̂g(x, y)

g(x, y) G(u, v)

G        =

Projection

Fourier reconstruction of a 2D Gaussian function



̂g(x, y)

g(x, y) G(u, v)

G        =

Projection

Fourier reconstruction of a 2D circ function



̂g(x, y)

g(x, y) G(u, v)

G        =

Projection

Fourier reconstruction of a 2D circ function



2D transform pairs

 

 

e−π(x2+y2) → e−π(u2+v2)

circ(x, y) →
J1(2πρ)

πρ
, ρ = u2 + v2

δ(x)δ(y) → 1



2D Fourier transform properties

 

 

 

 

ab g(ax, by) → G(u/a, v/b)

g(x − a, y − b) → G(u, v)e−i2π(au+bv)

g * h → GH

g(x′ , y′ ) → G(u′ , v′ )

Py g(x, y) → G(u,0)

Scale 

Shift 

Convolution 

Rotation 

Projection



Convolution in 2D




  

g * h = ∬ g(x − s, y − t) h(s, t) ds dt



Convolution with a Gaussian

FT FT IFT



Visualizing the contrast transfer function

g(x, y)

G(u, v) H

h f = g * h

F = GH



Visualizing the contrast transfer function

g(x, y)

G(u, v) H

h f = g * h

F = GH |F |2

f ⊗ f

Autocorrelation



The rotation property

G(u, v) = ∬ g(x, y)e−i2π(ux+vy)dxdy

2D Fourier Transform

G(u) = ∫ ∫ g(x)e−i2π(u⋅x)d2x

FT using 2D vectors

The dot-product is invariant under rotations!

FT



The Fourier Slice Theorem in 2D

Projection

 3 

      (16) 
 
where the integral is taken over the full y extent of the object. 
 

Now suppose that we know the Fourier transform of the density distribution, which we 
will call F(u,v).  It can be written as 

 
    (17) 

 
If we evaluate it at v=0, we get 
 

  

 
which is just the (1D) Fourier transform of the projection g(x), 
 
 %(', 0) = ∫-(.)/0123456.     (18) 
 
Thus the projection of an object is a section of its Fourier transform.  In pictures: 
 

 
 
This, plus the rotation property of Fourier transforms, is all we are going to need.  Recall that if 
we rotate a 2D function, its FT rotates similarly.  This means that if we rotate the object and then 
collect a projection, we will have obtained a different section of the 2D FT.  If we collect enough 
such projections, we can fill in the whole FT.  Then by transforming back, we obtain the original 
density map of the object. 
 
This procedure is how computed tomography works, and is also how 3D molecular structures are 
obtained.  In the latter case, the 3D version of the projection theorem says, a 2D projection is 
corresponds to a plane (a central section) of the 3D Fourier transform. 
 
To make a 3D reconstruction from 2D projections of an object, you compute the FT of each 
projection image, which gives you a set of values in a plane.  Then you “insert” it into a 3D 

    g(x) = f (x ,y)dy∫

    F(u, v) = f(x, y)e−i2π (ux+ v y)dxdy∫∫

    

F(u, 0) = f (x ,y)e−i2π (ux )dxdy∫∫
= f (x ,y)dy∫[ ]∫ e−i2πuxdx

Slice

g(x, y) G(u, v)

Pyg
x G(u,0)

G(u, v) = ∬ g(x, y)e−i2π(ux+vy)dxdy

 

            

G(u,0) = ∫ (∫ g(x, y)dy) e−i2π(ux)dx

= ℱ{Pyg}

Pyg(x, y) = ∫ g(x, y)dy



(Slides demonstrating tomographic reconstruction)

Tomographic reconstruction using the Fourier slice theorem

Fourier  
transform

Here we’ll demonstrate 
building up a 2D structure 
from 1D projections.



Fourier  
transform

Insert as a slice 
in 2D field

Extract the 
1D projection

2D inverse 
Fourier  
transform

Tomographic reconstruction: 2D image from 1D projections



Fourier  
transform

Insert as a slice 
in 2D field

Extract the 
1D projection

2D inverse 
Fourier  
transform

Tomographic reconstruction: 2D image from 1D projections



Fourier  
transform

Insert as a slice 
in 2D field

Extract the 
1D projection

2D inverse 
Fourier  
transform

Tomographic reconstruction: 2D image from 1D projections



The discrete FT is what is calculated on a computer

2D Fourier transform





2D  discrete Fourier transform


G(u, v) = ∫ ∫ g(x, y) e−i2π(ux+vy)dx dy

G(k, l) =
1
N

N/2−1

∑
i,j=−N/2

g(i, j) e−i2π(ik+jl) / N

 are real numbersu, v

 are integersk, l



The DFT of a 32 x 32 pixel image has 32 x 32 complex pixel values

DFT



But the DFT of a real image has twofold redundancy



What is the pixel size of the transformed image?

Note that the maximum accessible frequency  (the Nyquist frequency) 
corresponds to , twice the sampling period.


n du/2
2dx

DFT

 du                                dx

  n dx

n du/2

 dx =
1

n du
du =

1
n dx

Nyquist frequency



The Fourier transform in three dimensions



The 3D transform

3D Fourier transform





3D Inverse Fourier transform


G(u, v, w) = ∫ ∫ ∫ g(x, y, z)e−i2π(ux+vy+wz)dx dy dz

g(x, y, z) = ∫ ∫ ∫ G(u, v, w)e+i2π(ux+vy+wz)du dv dw



3D Fourier transform properties

 

 

 

 

abc g(ax, by, cz) → G(u/a, v/b, w/c)

g(x − a, y − b, z − c) → G(u, v, w)e−i2π(au+bv+cw)

g * h → GH

g(x′ , y′ , z′ ) → G(u′ , v′ , w′ )

Pz g(x, y, z) → G(u, v,0)

Scale 

Shift 

Convolution 

Rotation 

Projection



The 3D Fourier slice theorem

Suppose we have a 3D density . 
The projection along  is a 2D image we’ll 
call :





Let its Fourier transform be .

f(x, y, z)
z

fp(x, y)

fp(x, y) = ∫ f(x, y, z) dz

Fp(u, v)



The 3D Fourier slice theorem

 is actually the same as the FT of the 3D 
volume, when we evaluate it at . In other 
words,


.


That’s because we can separate out the integral 
over  to get





                           


Fp(u, v)
w = 0

Fp(u, v) = F(u, v,0)

z

F(u, v,0) = ∫ ∫ (∫ f(x, y, z) dz) e−i2π(ux+vy)dx dy

fp(x, y)



Building up a 3D reconstruction

We can make use of the rotation property of 
the 3D FT to compute projections in many 
different directions, and insert the planes at 
the corresponding angles into the 3D Fourier 
volume. 


If we’ve covered the volume completely then 
we can transform back to recover the 
complete 3D volume.




Part 3: Single-particle 

reconstruction



FT of a shifted square

Fourier  
transform

Insert as a slice 
in 2D field

2D inverse 
Fourier  
transform

Reconstruction using the Fourier Slice Theorem

Compute the 
1D projection

Pxg(x, y)

G(u,0)

G(u, v)grec(x, y)



Determining the orientation angles: example from the TRPV1 dataset

Projection

Simulated image

Projection

Simulated image

1/4 of a micrograph - empiar.org/10005 One particle image

http://empiar.org/10005


The probability of orientations  is remarkably sharpP(ϕ |X, V)



The probability of orientations  is remarkably sharpP(ϕ |X, V)



Precise angle determination by image matching

Angle accuracy (50th percentile)Single-particle images (simulated)

  Noiseless projections

  Correct                                Nearby



Visualizing the contrast transfer function

g(x, y)

G(u, v) H

h f = g * h

F = GH |F |2

f ⊗ f

Autocorrelation



Modeling the CTF effect on an image

Can we do the 
deconvolution:

 ??Ã = X/C

X = CA + N

A C C × AC

X



How to undo the CTF effects?

1.  Phase flipping 

Ã = sgn(C)X

Ã

Ã

A



How to undo the CTF effects?

1.  Phase flipping 

 

2. Wiener filter 

 

Ã = sgn(C)X

Ã =
CX

C2 + k

ÃA



How to undo the CTF effects in noisy images?

1.  Phase flipping 

 

2. Wiener filter 

 

Ã = sgn(C)X

Ã =
CX

C2 + k



How to undo the CTF effects in noisy images?

3. Wiener from multiple images 

 Ã =
∑N

i CiXi

k + ∑N
i C2

i



How to undo the CTF effects in noisy images?

3. Wiener from multiple images 

 Ã =
∑N

i CiXi

k + ∑N
i C2

i

 k = 1/SNR

=
|N |2

|A |2

3. Wiener from multiple images 

 Ã =
∑N

i CiXi

k(s) + ∑N
i C2

i

 

    

k(s) = 1/SNR

=
|N |2

|A |2



Image restoration when spectral SNR is known

Restoration  
from multiple images 

 

The defocus varies to fill 
in CTF zeros


Ã =
∑N

i CiXi
1

SSNR + ∑N
i C2

i



Image restoration when spectral SNR is known

Restoration  
from multiple images 

 

The defocus varies to fill 
in CTF zeros


Ã =
∑N

i CiXi
1

SSNR + ∑N
i C2

i



Image restoration when spectral SNR is known

Restoration  
from multiple images 

 

The defocus varies to fill 
in CTF zeros


Ã =
∑N

i CiXi
1

SSNR + ∑N
i C2

i



There are various ways to compare images

Define the “reference” 
as the true image  

modified by the CTF :





We wish to compare a 
data image  with it.

A
C

R = CA

X

Squared difference 

       


                        


Correlation 



           


Correlation coefficient 

∥X − R∥2 = ∑
j

(𝖷j − 𝖱j)2

= ∥X∥2 − 2X ⋅ R + ∥R∥2

Cor = X ⋅ R
= ∑

j

𝖷j𝖱j

CC =
X ⋅ R

|X | |R |

Notation used here:


A single pixel in the image :

            —the   pixel (out of  pixels total)


The  image in the dataset :

          

X
𝖷j jth J

ith X
Xi



2D Classification

We assume that image  comes from a rotated and 
translated copy of , one of  “class images”:




Here,

•  is the CTF of the image

•  is the rotation/translation operator for the 

 image, where .


•  is the 2D noise field

Xi
Ak K

Xi = CiPϕi
Aki

+ Ni

Ci
Pϕi

ith ϕi = {ψ, tx, ty}i
Ni

Xi, i = 1..N

Ak, k = 1..10



2D classification by template matching

Given estimates of  from the  iteration,

1. Vary the rotations and translations  and the class index  to find the 
projection image    that maximizes the correlation coefficient for 
each image ,


              . 


2. Knowing the best rotation and translation  and the index  for each 
image , update the estimate according to 


         


where  is the set of  values for which , and  is the inverse of the 
transformation .


A1 . . . AK nth

ϕi k
Ri = CiPϕi

Aki

Xi

CC =
Xi ⋅ Ri

|Xi | |Ri |
ϕi ki

Xi kth

A(n+1)
k =

∑{i′ } PT
ϕi

CiXi

1
SSNR + ∑{i′ } PT

ϕi
C2

i

{i′ } i ki = k PT
ϕi

Pϕi



Single-particle reconstruction

We assume that image  comes from a projection 
in direction  of volume  according to




The goal is to discover the volume 

Xi
ϕi V

Xi = CiPϕi
V + Ni

V

Xi

Project along ϕi

V

8,310 
micrographs

Demo Particle Picker
3,007,380 particles

Laplacian-of-Gaussian
Auto-picking

2,565,954 particles

2D classifications
318,401 particles 

selected

2D classifications
600,918 particles 

selected

Combine and repeated particles are removed
905,664 particles

3D classification

13.9% 12.7% 53.5% 9.1%10.8%

3D classification 383,936 particles

8.4% 11.3%25.8%54.6%

3D Refine
C4 Symmetry 

266,495 particles

3.6 Å

CTF Refine
Bayesian polishing
Masked 3D Refine

C4 Symmetry 
266,495 particles

3.0 Å

Sup Figure.1 Cryo-EM data processing work flow of inactivated Kv1.2 (W366F). 

The first step is to compare images to 
determine orientations…



3D reconstruction in FREALIGN: correlation and Wiener filtering

A Frealign iteration, refining  to , consists of 
two steps:


1. Vary the projection direction  to find the projection 
image    that maximizes the correlation 
coefficient for each image ,


              . 


2. Knowing the best projection direction  for each 
image , update the volume according to 


         


V(n) V(n+1)

ϕi
Ri = CiPϕi

V(n)

Xi

CC =
Xi ⋅ Ri

|Xi | |Ri |

ϕi
Xi

V(n+1) =
∑N

i PT
ϕi

CiXi

k + ∑N
i PT

ϕi
C2

i

Notes


1.  is the CTF corresponding to the 
image .


2. The projection operator  also 
includes translations.  So  consists of 
five variables: .


3.  is the corresponding back 
projection operator.  In Fourier space it 
yields a volume that is all zeros except 
for values along a slice.


4. The sum 


                


     is therefore the insertion of N slices.

Ci
Xi

Pϕ
ϕ

ϕ = {α, β, γ, tx, ty}

PT
ϕi

N

∑
i

PT
ϕi

CiXi



3D reconstruction in FREALIGN—iterations

1.Start with a preliminary structure 


2.For each particle image  find the projection angles 
 that gives the best match, so 


3.Use the Frealign iteration to produce a new 3D 
volume 

V(n), n = 1

Xi
ϕi Xi ≈ CiPϕi

V(n)

V(n+1)

Iterate



 3D Classification in FREALIGN

Suppose our model is that an image X can come 
from any of  different particle types 

 and our images are selected 
randomly from these volumes, projected with 
noise added.


K
V1, V2, . . VK

2. Update the volume according to 


      
V(n+1)
k =

∑i∈k PT
ϕi

CiXi

kw + ∑i∈k PT
ϕi

C2
i

1. The references are


         .


We assign  such that  yields the 
projection (with direction ) that gives the 
highest correlation coefficient with .


Rik = CiPϕi
Vk

ki Vki

ϕi
Xi



Probabilities, another way to compare images

w

XjRj

P(Xj |Rj)

Image model: 


Probability of the jth pixel value:





Probability of observing an entire image

that comes from :





X = R + N

P(𝖷j |𝖱j) =
w

2πσ2
e−(𝖷j−𝖱j)2/2σ2

R

P(X |R) =
wJ

(2πσ2)J/2
e−||X−R||2/2σ2

 is the finesse of the pixel 
intensity measurements. We’ll 

ignore it (set it to 1).

w

1

1



Simplified image probability

XjRj

P(Xj |Rj)

Probability of observing an image that

comes from :





_______________

(The normalization factor  we’ll treat as a constant 

and ignore it.)


R
P(X |R) = c e−||X−R||2/2σ2

c


X = R + N



The Likelihood
Let  be our “stack” of particle images. We’d like to find 
the best 3D volume  consistent with these data, say maximizing the 
posterior probability


                                    .


According to Bayes’ theorem,


                         .


•  doesn’t depend on  so we can ignore it.


•  is called the prior probability. It reflects any knowledge about 
that we have before considering the data set. 

•  is something we can calculate. It’s called the likelihood of .

X = {X1 . . XN}
V

P(V |X)

P(V |X) = P(X |V)
P(V)
P(X)

P(X) V

P(V) V

P(X |V) V

prior      Experiment      posterior 
 

→ →

Lik(V) = P(X |V)

likelihood



We know how to compute the likelihood
We know that


                  
P(X |V, ϕ) = c e−∥X−CPϕV∥2/2σ2

Maximum-likelihood reconstruction is finding  that maximizes .V L

To get the likelihood for one image we just integrate over all the ’s:


                  ,


assuming  is uniform.


ϕ

P(X |V) = ∫ P(X |V, ϕ) P(ϕ) dϕ

P(ϕ)

To get the likelihood for the whole dataset we compute the product over all the images,


                  ,
P(X |V) =
N

∏
i

∫ P(Xi |V, ϕ) dϕ

For numerical sanity, we compute the log likelihood,


                  .L =
N

∑
i

ln (∫ P(Xi |V, ϕ) dϕ)



Maximum-likelihood estimation is asymptotically unbiased

If the size of the dataset grows without bounds

(and the number of parameters to be estimated does not) 

Maximum Likelihood converges to the right answer.



2D classification by maximum likelihood

Given estimates of  from the  iteration, let  be the 
probability of the transformation  and index  for the  image and  
class. Then the new class estimate in the  iteration will be


         


Again,  is the inverse of the transformation .


A1 . . . AK nth Γi(ϕ, k)
ϕ k ith kth

(n + 1)st

A(n+1)
k =

∑N
i ∫ Γi(ϕ, k)PT

ϕCiXi dϕ
1

SSNR + ∑N
i ∫ Γi(ϕ, k)PT

ϕi
C2

i dϕ

PT
ϕi

Pϕi



To maximize the likelihood, we’ll need a probability function Γ(ϕ)

A projection





Probability of observing an image  if we know :





Probability of a projection direction for :





A = PϕV

Xi ϕ

P(Xi |V, ϕ) = c e−||Xi−CPϕV||2/2σ2

Xi

Γi(ϕ) = P(ϕ |Xi, V) =
P(Xi |V, ϕ)

∫ P(Xi |V, ϕ)dϕ



The E-M algorithm finds a local maximum of the likelihood

The Expectation-Maximization (E-M) algorithm has this iteration, 
guaranteed to increase the likelihood:


            


…Relion’s compute-intensive “Expectation” step is basically the 

evaluation of  for each image , based on the current estimate 

 of the volume.


V(n+1) =
∑i ∫ Γ(n)

i (ϕ)PT
ϕCiXi dϕ

σ2

Tτ2 + ∑i ∫ Γ(n)
i (ϕ)PT

ϕC2
i dϕ

Γi(ϕ) Xi

V(n)

For comparison, here is Frealign’s 
iteration: 


1. Find the best orientation  
for each particle image 


2. Update the volume according 
to


       

ϕi
Xi

V(n+1) =
∑i PT

ϕi
CiXi

k + ∑i PT
ϕi

C2
i



3D Classification

We can use Expectation-Maximization to optimize  different 
volumes  simultaneously. The formula is essential the 
same except that the function  depends also on :

                                       


The iteration, guaranteed to increase the likelihood:


            


…Relion’s compute-intensive “Expectation” step is basically the 

evaluation of  for each image  and volume 


K
V1, V2, . . VK

Γ k
Γ(n)

ϕi,k

V(n+1)
k =

∑i ∫ Γ(n)
i,k (ϕ)PT

ϕCiXi dϕ
σ2

Tτ2 + ∑i ∫ Γ(n)
i,k (ϕ)PT

ϕC2
i dϕ

Γi,k(ϕ) Xi Vk

For comparison, here is Frealign’s 
iteration: 


1. Find the best orientation  for 
each particle image 


2. Update the volume according to


       

ϕi
Xi

V(n+1) =
∑i PT

ϕi
CiXi

k + ∑i PT
ϕi

C2
i



In Relion, 2D and 3D classification and refinement use the same algorithm

Quan%ty Meaning in 3D classifica%on Meaning in 2D classifica%on

Class volume Class average image

3 Euler angles of orienta3on + 2 transla3ons 1 angle of rota3on + 2 transla3ons

Projec3on operator 3D      2D Image rota3on and shi?

Back-projec3on operator 2D      3D Reverse shi? and rota3on→
→

Vk

ϕ

Pϕ

PT
ϕ



2D classification by maximum likelihood
Iteration 
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2D classification by maximum likelihood



2D classification by maximum likelihood



2D classification by maximum likelihood



2D classification by maximum likelihood



2D classification by maximum likelihood



2D classification by maximum likelihood



3D Reconstruction: on the first EM iteration, angle assignments are not sharp



Iteration 3



Iteration 5



Iteration 14, near convergence: distributions are becoming sharp



The orientation determination is the most expensive step

No. operations 



The orientation determination is the most expensive step

No. operations 

e.g. N=105, n=128, t=7 

No. operations ≈ 6 x 1017 ≈ 19 CPU-years 

With efficient programs, ~ 1 CPU-day



Probabilities, another way to compare imagesEvaluating  is expensive: one of 5 parametersΓϕ



Probabilities, another way to compare imagesEvaluating  is expensive: one of 5 parametersΓϕ



Probabilities, another way to compare imagesEvaluating  is expensive: one of 5 parametersΓϕ



Probabilities, another way to compare imagesEvaluating  is expensive: one of 5 parametersΓϕ

How to decrease the effort?



1. To save time, we 
compute probabilities 
of orientations at low 

resolution.


2. We place bounds on 
how much higher the 

probabilities could be at 
full resolution.


Given a cutoff value, we 
evaluate over a fraction of 

the domain. 

Domain reduction: branch and bound, illustrated for 1D
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V/A-ATPase particle images23, the algorithm discerned three 
different conformational states for the enzyme, again from ran-
dom initializations (Fig. 2b). These three states corresponded 
to the three different rotational positions of the central rotor of 
the enzyme24. This finding is particularly notable, as previous 
analysis with reference-based classification12 and the same data 
set of images only detected two of the three states23. The newly 
identified third rotational state is the conformation of the enzyme 
that differs the most from the other two. This observation illus-
trates the importance of reference-free ab initio classification for 
unbiased identification of states that differ from the structures 
expected to be present in the data set.

Branch and bound: rapid refinement of maps to high 
resolution
The primary computational burden in map refinement is the 
search for orientation parameters that best align each 2D single- 
particle image to a 3D density map. The branch-and-bound algo-
rithm design paradigm25 can accelerate this search by quickly and 
inexpensively ruling out large regions of the search space that 
cannot contain the optimum of the objective function (Fig. 3a).

In cryo-EM map refinement, the optimal pose for a particle 
image minimizes the error between the observed image and a 
projection of the 3D map. To find this optimal pose using the 
branch-and-bound approach (Fig. 3b), an inexpensive lower 
bound on the error is first computed across the entire space of 
poses. At the pose that minimizes this lower bound, the compu-
tationally expensive true error function is evaluated. All regions 
of the search space where the lower bound exceeds this computed 
value of the true error function cannot contain the optimal pose 

and can be excluded from further search. A new lower bound is 
then calculated that fits more tightly to the true error function but 
is more expensive to calculate. The process of evaluating the error 
function at the optimum of the lower bound, discarding regions 
of search space where the true error is above the lower bound, and 
recalculating a tighter fitting lower bound, is repeated until only 
the optimal pose remains.

Although conceptually straightforward, application of the 
branch-and-bound strategy requires an informative and inexpen-
sive lower bound for the objective function. Suitable lower bounds 
are well known for other problems26,27, but use of the method for 
determining the orientations of single-particle cryo-EM images 
required derivation of an appropriate bound (Supplementary 
Note 2). The derivation we describe is based on the signal-to-
noise ratio of single-particle images over a range of resolutions. 
It is worth emphasizing that the branch-and-bound approach is 
a global pose search that requires no prior estimate of an optimal 
pose. In contrast, strategies to accelerate orientation determina-
tion based solely on local search risk selection of a pose that is 
not the global optimum12,13. In practice, an approximation to this 
branch-and-bound search that was found to be equally effective 
but even more efficient is used (Supplementary Note 2).

We implemented the branch-and-bound approach and applied it 
to high-resolution structure determination from several published  
data sets: the 20S proteasome from Thermoplasma acidophilum28, 
the 80S ribosome from Plasmodium falciparum29, amphipol- 
solubilized rat TRPV1 (ref. 3), as well as the T. thermophilus  
V/A-ATPase23. Computations were carried out with the same 
desktop workstation and single NVIDIA Tesla K40 GPU used 
for ab initio SGD calculations. Applied to 35,645 TRPV1 particle  
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Figure 3 | The branch-and-bound approach to high-resolution cryo-EM map refinement. (a) Two iterations of a simplified 1D representation of the 
branch-and-bound approach. Candidate poses are iteratively eliminated by evaluation of an inexpensive lower bound over all poses, and the true  
error function at the minimum of the lower bound. (b) For cryo-EM images, the true error function over all poses (top left) for an individual particle  
(top right) is never evaluated. Instead, the entire lower bound is computed (middle left), the true error is calculated at the minimum of the bound,  
and all poses where the lower bound exceeds this calculated error are eliminated (middle right). A tighter lower bound is evaluated and the process 
repeated until the optimum pose is identified (bottom left and right).

Branch-and-bound in cryoSPARC for integrating over orientations
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V/A-ATPase particle images23, the algorithm discerned three 
different conformational states for the enzyme, again from ran-
dom initializations (Fig. 2b). These three states corresponded 
to the three different rotational positions of the central rotor of 
the enzyme24. This finding is particularly notable, as previous 
analysis with reference-based classification12 and the same data 
set of images only detected two of the three states23. The newly 
identified third rotational state is the conformation of the enzyme 
that differs the most from the other two. This observation illus-
trates the importance of reference-free ab initio classification for 
unbiased identification of states that differ from the structures 
expected to be present in the data set.

Branch and bound: rapid refinement of maps to high 
resolution
The primary computational burden in map refinement is the 
search for orientation parameters that best align each 2D single- 
particle image to a 3D density map. The branch-and-bound algo-
rithm design paradigm25 can accelerate this search by quickly and 
inexpensively ruling out large regions of the search space that 
cannot contain the optimum of the objective function (Fig. 3a).

In cryo-EM map refinement, the optimal pose for a particle 
image minimizes the error between the observed image and a 
projection of the 3D map. To find this optimal pose using the 
branch-and-bound approach (Fig. 3b), an inexpensive lower 
bound on the error is first computed across the entire space of 
poses. At the pose that minimizes this lower bound, the compu-
tationally expensive true error function is evaluated. All regions 
of the search space where the lower bound exceeds this computed 
value of the true error function cannot contain the optimal pose 

and can be excluded from further search. A new lower bound is 
then calculated that fits more tightly to the true error function but 
is more expensive to calculate. The process of evaluating the error 
function at the optimum of the lower bound, discarding regions 
of search space where the true error is above the lower bound, and 
recalculating a tighter fitting lower bound, is repeated until only 
the optimal pose remains.

Although conceptually straightforward, application of the 
branch-and-bound strategy requires an informative and inexpen-
sive lower bound for the objective function. Suitable lower bounds 
are well known for other problems26,27, but use of the method for 
determining the orientations of single-particle cryo-EM images 
required derivation of an appropriate bound (Supplementary 
Note 2). The derivation we describe is based on the signal-to-
noise ratio of single-particle images over a range of resolutions. 
It is worth emphasizing that the branch-and-bound approach is 
a global pose search that requires no prior estimate of an optimal 
pose. In contrast, strategies to accelerate orientation determina-
tion based solely on local search risk selection of a pose that is 
not the global optimum12,13. In practice, an approximation to this 
branch-and-bound search that was found to be equally effective 
but even more efficient is used (Supplementary Note 2).

We implemented the branch-and-bound approach and applied it 
to high-resolution structure determination from several published  
data sets: the 20S proteasome from Thermoplasma acidophilum28, 
the 80S ribosome from Plasmodium falciparum29, amphipol- 
solubilized rat TRPV1 (ref. 3), as well as the T. thermophilus  
V/A-ATPase23. Computations were carried out with the same 
desktop workstation and single NVIDIA Tesla K40 GPU used 
for ab initio SGD calculations. Applied to 35,645 TRPV1 particle  
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Figure 3 | The branch-and-bound approach to high-resolution cryo-EM map refinement. (a) Two iterations of a simplified 1D representation of the 
branch-and-bound approach. Candidate poses are iteratively eliminated by evaluation of an inexpensive lower bound over all poses, and the true  
error function at the minimum of the lower bound. (b) For cryo-EM images, the true error function over all poses (top left) for an individual particle  
(top right) is never evaluated. Instead, the entire lower bound is computed (middle left), the true error is calculated at the minimum of the bound,  
and all poses where the lower bound exceeds this calculated error are eliminated (middle right). A tighter lower bound is evaluated and the process 
repeated until the optimum pose is identified (bottom left and right).

Branch-and-bound in cryoSPARC for integrating over orientations
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V/A-ATPase particle images23, the algorithm discerned three 
different conformational states for the enzyme, again from ran-
dom initializations (Fig. 2b). These three states corresponded 
to the three different rotational positions of the central rotor of 
the enzyme24. This finding is particularly notable, as previous 
analysis with reference-based classification12 and the same data 
set of images only detected two of the three states23. The newly 
identified third rotational state is the conformation of the enzyme 
that differs the most from the other two. This observation illus-
trates the importance of reference-free ab initio classification for 
unbiased identification of states that differ from the structures 
expected to be present in the data set.

Branch and bound: rapid refinement of maps to high 
resolution
The primary computational burden in map refinement is the 
search for orientation parameters that best align each 2D single- 
particle image to a 3D density map. The branch-and-bound algo-
rithm design paradigm25 can accelerate this search by quickly and 
inexpensively ruling out large regions of the search space that 
cannot contain the optimum of the objective function (Fig. 3a).

In cryo-EM map refinement, the optimal pose for a particle 
image minimizes the error between the observed image and a 
projection of the 3D map. To find this optimal pose using the 
branch-and-bound approach (Fig. 3b), an inexpensive lower 
bound on the error is first computed across the entire space of 
poses. At the pose that minimizes this lower bound, the compu-
tationally expensive true error function is evaluated. All regions 
of the search space where the lower bound exceeds this computed 
value of the true error function cannot contain the optimal pose 

and can be excluded from further search. A new lower bound is 
then calculated that fits more tightly to the true error function but 
is more expensive to calculate. The process of evaluating the error 
function at the optimum of the lower bound, discarding regions 
of search space where the true error is above the lower bound, and 
recalculating a tighter fitting lower bound, is repeated until only 
the optimal pose remains.

Although conceptually straightforward, application of the 
branch-and-bound strategy requires an informative and inexpen-
sive lower bound for the objective function. Suitable lower bounds 
are well known for other problems26,27, but use of the method for 
determining the orientations of single-particle cryo-EM images 
required derivation of an appropriate bound (Supplementary 
Note 2). The derivation we describe is based on the signal-to-
noise ratio of single-particle images over a range of resolutions. 
It is worth emphasizing that the branch-and-bound approach is 
a global pose search that requires no prior estimate of an optimal 
pose. In contrast, strategies to accelerate orientation determina-
tion based solely on local search risk selection of a pose that is 
not the global optimum12,13. In practice, an approximation to this 
branch-and-bound search that was found to be equally effective 
but even more efficient is used (Supplementary Note 2).

We implemented the branch-and-bound approach and applied it 
to high-resolution structure determination from several published  
data sets: the 20S proteasome from Thermoplasma acidophilum28, 
the 80S ribosome from Plasmodium falciparum29, amphipol- 
solubilized rat TRPV1 (ref. 3), as well as the T. thermophilus  
V/A-ATPase23. Computations were carried out with the same 
desktop workstation and single NVIDIA Tesla K40 GPU used 
for ab initio SGD calculations. Applied to 35,645 TRPV1 particle  
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Figure 3 | The branch-and-bound approach to high-resolution cryo-EM map refinement. (a) Two iterations of a simplified 1D representation of the 
branch-and-bound approach. Candidate poses are iteratively eliminated by evaluation of an inexpensive lower bound over all poses, and the true  
error function at the minimum of the lower bound. (b) For cryo-EM images, the true error function over all poses (top left) for an individual particle  
(top right) is never evaluated. Instead, the entire lower bound is computed (middle left), the true error is calculated at the minimum of the bound,  
and all poses where the lower bound exceeds this calculated error are eliminated (middle right). A tighter lower bound is evaluated and the process 
repeated until the optimum pose is identified (bottom left and right).

Branch-and-bound in cryoSPARC for integrating over orientations
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if driven by hardware advances alone16. Based on the combina-
tion of algorithms, inexpensive hardware, and an easy-to-use  
graphical user interface, cryoSPARC will enable nonspecialist 
cryo-EM users to process data rapidly without needing to pur-
chase or set up their own computer clusters and with minimal 
user input and expertise.

RESULTS
Formally, structure determination by cryo-EM is an optimiza-
tion problem and may be described in a Bayesian likelihood  
framework12,17: 

arg max log ( | )
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The aim of the optimization is to find the 3D structures (V1 
to VK) that best explain the observed images (X1 to XN) by  

(1)(1)

marginalizing over class assignment (j) and the unknown pose 
variable (Fi), which describes a 3D rotation and a 2D translation 
for each single-particle image.

Numerical optimization problems have been studied extensively 
in computer science18. Traditionally, optimization is formulated 
as the maximization of a single, monolithic objective function. 
With this approach, the variables of a function are iteratively 
altered until the ‘best’ values, which give an optimum value to 
the function, are identified. Sophisticated algorithms for iterative 
optimization have been developed19 and are central to a myriad 
of problems in data modeling and engineering. In the case of 
cryo-EM map calculation, the objective function (equation (1)) 
quantifies how well cryo-EM maps explain the collected experi-
mental images, and the variables in the function include the 3D 
maps represented as density voxels on a 3D grid.

We use an SGD optimization scheme to quickly identify one 
or several low-resolution 3D structures that are consistent with a  
set of observed images. This algorithm allows for ab initio hetero-
geneous structure determination with no prior model of the 
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Figure 1 | Stochastic gradient descent for cryo-EM map calculation. (a) Iterative refinement methods are sensitive to initialization. An arbitrary 
initialization far from the correct 3D map will be refined into an incorrect structure that attains a locally optimal probability within the space of all 3D 
maps. An accurate initialization will be refined to the correct structure. Iterative refinement uses all single-particle images in a data set to compute 
each step. (b) Random selection of particle images in the SGD algorithm. At each iteration, a different small random selection of images is used to 
approximate the true optimization objective. Each iteration may use a different number of images. (c) Stochastic gradient descent (SGD) algorithm 
enables ab initio structure determination through insensitivity to initialization. An arbitrary computer-generated random initialization is incrementally 
improved by many noisy steps. Each step is based on the gradient of the approximated objective function obtained by random selection in b. These 
approximate gradients do not exactly match the overall optimization objective. The success of SGD is commonly explained by the noisy sampling 
approximation allowing the algorithm to widely explore the space of all 3D maps to finally arrive near the correct structure.



Any sufficiently advanced technology is indistinguishable from magic. 
                                                                                    -Arthur C. Clarke 




