Isotropic reconstruction for electron tomography with deep learning

Yun-Tao Liu Postdoc

Hong Zhou lab at California Nanosystems Institute, UCLA

cryo electron tomography and 3D reconstruction

- 1. Low signal to noise ratio: limited electron dose distributed on the images.
- 2. Missing wedge artifact: limited tilt angle range

The influences of missing wedge on cryo-tomograms

Nudelman F, de With G, Sommerdijk NAJM ,Cryo-electron tomography: 3- dimensional imaging of soft mater, 2011, Soft Mater (7)

Missing wedge in cellular tomography

Formulation of missing wedge problem

- 1. No ground truth
- 2. Ensure the AI-generated information is trustworthy

IsoNet's self-supervised strategy

- 1. Assume the observed data is "ground truth"
- 2. (in silico) Remove some information from "ground truth"
- 3. Pretend we do not know that information
- 4. Train a neural network to predict the missing information from the remaining data
- 5. Improving "ground truth" with neural network and goto step1

IsoNet: Isotropic reconstruction of ET with deep learning

Liu et,al. Nat. Comm. 2022

UNet architecture

IsoNet tested on simulated data of apoferritin

IsoNet fills the information in missing wedge region

IsoNet reveals lattice defects of immature HIV

Tan et, al. PNAS 2021

IsoNet reveals architecture of a eukaryotic flagella

A

Imhof & Zhang et, al. 2019

IsoNet recovered missing information in a tomogram of neurons

IsoNet recovered missing information in tomograms of neurons

Visualization of clathrin cages in a neuronal synapse

In situ structure of clathrin cages without averaging

b

In situ structure of clathrin cages without averaging

Possible clathrin structures

32 Sweet potato (R)

20 Dice

In vitro assembled

28 Mini coat

36 D6 barrel

38 Big

apple (R)

Morris et, al. NSMB 2019

20 nm

GUI for IsoNet

Single Particle IsoNet (splsoNet)

Using the information recovery ability to assist cryoEM single particle analysis and subtomogram averaging.

Liu, Fan et, al. bioxriv 2024, Nat. Methods 2025

Preferred orientation is a common problem in cryoEM

Preferred orientation induces artifacts

103

10² Iuag

100

101 *

a 2D class averages

UCLA

Gold standard FSC: 3.6 Å

3D reconstruction

Angular distribution plot

Lander, current opinion in structural biology, 2024

single particle IsoNet

Special designs in splsoNet

- > 3D FSC to represent preferred orientation
- > End-to-end training without refine iterations
- Simultaneous Noise2noise denoising and missing information recovery
- splsoNet regularization for particle alignment

Shared property with cryoET IsoNet

> Learn from your experimental data, no external information or assumption

https://github.com/lsoNet-cryoET/splsoNet

splsoNet Implementation: Two Modules

anisotropy correction

correction

UCLA

Anisotropy Correction module

UCLA

Consistency loss:

Guiding recovery in under-sampled Fourier regions;

- Equivariance loss: Learn to recover in silico removed information in rotated maps;
- Noise2Noise loss:

Uses pairs of noisy inputs to denoise without ground truth;

Performance of the anisotropy correction module of *sp*IsoNet

Anisotropy correction for β-Galactosidase

Only top view, 950 particles

Uncorrected

Corrected

Misalignment correction module

Tilted dataset of hemagglutinin

Performance of misalignment correction

Misalignment Correction

0.4

splsoNet Misalignment Correction

!!! The misalignment correction map is directly reconstructed by RELION

Extreme case almost no side view

Standard Relion Refinement

ent Misalignment Correction

n Misalignment and Anisotropy Correction

Tan et al., Carragher & Lyumkis, 2017, Nature Methods

Near-atomic structure of hemagglutinin from non-tilt dataset

splsoNet improves subtomogram averaging

Isotropic and denoised map improve subtomogram alignment Liu et,al, 2025, Nature Methods

Summary

Self-supervised deep learning from only observed data, leveraging the fact that the true signal distribution invariant to rotation and translation

➢IsoNet to recover missing-wedge for molecular sociology interpretation of cellular cryoET.

➢ splsoNet: the preferred orientation can now be compensated computationally instead of physical and chemical treatments.

Thank You

https://github.com/IsoNet-cryoET

California NanoSystems Institute, UCLA

- Prof. Hong Zhou
- Dr. Hongcheng Fan
- Dr. Hui Wang

University of Science and Technology of China

- Heng Zhang
- Dr. Changlu Tao
- Prof. Guoqiang Bi

June 6, 2025

Recommended spisoNet strategies to address "preferred" orientation problem

Validation using simulated data of symmetric (apoferritin) and asymmetric (ribosome) structures

IsoNet package available at GitHub and SBGrid (Liu & Zhang et al., bioRxiv, 2021; Nat Comm, 2022)