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Monte Carlo Methods &)

Monte Carlo Methods

— Stochastic solutions to a variety of problems
o Performing statistical sampling experiments
o Based on random sample estimation

— Slow convergence rate, approximately O(N-2)

o Acceleration of Monte Carlo methods
— Variance Reduction
— Quasi-Monte Carlo
— Parallel Computing

— Applications are ubiquitous
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Quasirandom Numbers vs. Pseudorandom Numbers
Uniformity (low discrepancy)
“A picture is worth a thousand words”
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Discrepancies of Pseudorandom Numbers and Quasirandom
Numbers
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Quasi-Monte Carlo Method

— Convergence rate close to O(N*)
o the Koksma-Hlawka Inequality
— Limitations o cusstandon
o Integration and the K-H inequality 10804
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Parallel Monte Carlo g
Applications

Parallelism in Monte Carlo Applications
— Computationally intensive but naturally parallel
— Appropriate for dynamic bag-of-work paradigm

— Requirements

o Independence of underlying random number streams
— SPRNG (Scalable Parallel Random Number Generation) library

o Large-scale computational resources
— Fits the distributed computing paradigm




Development
of Monte
Carlo Methods

Large-Scale
Computational
Resources

Parallel Random
Number
Generators

Applications in
Science and
Engineering

Our Goal: To Develop A High Performance and Trustworthy
Large-scale Monte Carlo Computing Infrastructure




Grid-based Monte Carlggaea
Applications

Grid Computing
— Large-scale resources cooperation and sharing

Issues in Grid Computing
— From application point-of-view
o Performance
o Trustworthiness (especially from volunteers)

Our Approach
— Address issues from the application level

— Analyze characteristics of Monte Carlo applications
o Statistical nature
o Cryptographic aspects of underlying random number generator

— Develop strategies and tools




Monte Carlo Applications™

Improve Performance

— N-out-of-M Strategy

— Lightweight Checkpointing
Improve Trustworthiness

— Partial Result Validation Scheme
— Intermediate Value Checking




N-out-of-M Strategy

Reality of Grid Computing Monte Carlo-Applications
— Service providers’ — Care: How many.random samples are
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- Resources are widely is used in the estimate?
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N-out-of-M Strategy for Subtask
Problems Schedule
— A slow node might become — Subtasks
the bottleneck of the whole o Same description of the prablem
computation o Different independent random streams
— A halted subtask may prevent — Enlarge number of subtasks
the whole task from o N subtasks = M subtasks, M >N
completing — Gather N subtasks

» N partial results ready - Whole
computation is done




Example
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Example of 6-out-of-10 Scheduling

Benefits of N-out-of-M Strategy for Job Scheduling
— None of the subtasks Is a “key” subtask

— Can tolerate at most M — N delayed or halted subtasks

— Computation is still reproducible




Petri Net Model of the N-out-of- Binomial Probability Model of
M Strategy the N-out-of-M Strategy

M
PExaCtly—N—out—of -M (t)= ( N ] pN (t)x Q- p(t))M =N

M M . |
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Model of N-out-of-N

I:)N —out—of —N (t) =P N (t)

p(t) is the probability of a subtask
completing before time t




Simulation of N-out-of-M Str
Model Validation by Simulation
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Lightweight Checkpointfigial)

Process-level Checkpointing

— A snapshot of a process’ current state
o Costly
o Platform-dependent

Application-level Checkpointing for Monte
Carlo Applications

— Amenable to application-based checkpointing

o A small amount of information
— Status and parameters of RNG
— Iteration number
— Other intermediate results




Monte Carlo Application
Typical Monte Carlo Checkpointing Facilities
Programming Logic —

/

Recover Subroutine

Restore RNG status
Restore changed variables
Set iteration index

¢
( W

Checkpoint Subroutine
; m Save RNG paraneters
>
Checkpoint Condition S
Save iteration index

Y

Mean and Standard Error
Estimation




Existing Problem in Grid Computing

— “Problematic” Node
o Not trustworthy/reliable
o Not faithfully executing the code

e Faking computation

Our Approach

— Statistical nature of the partial results from Monte Carlo
applications

— Examine partial results according to the expected distribution

Distributed Monte Carlo Subtasks

— Same program
— Different independent random streams




Partial Result Validation
Procedure

Central Limit Theorem n Subtasks
— The mean of partial results — For every partial result f.
— Compute Normal ‘Confidence Interval

o With confidence Poa iran iy ¥ieig

z

~

[f—2,,,6 f+2Z,,5] where

e C:lincrunsofsize nis expected to be
— 68% confidence in 1 outlier
standard deviation — In confidence interval = trustworthy

— 95% confidence in 2 — Outside confidence interval = suspect
standard deviation
e Rerun the subtask

B - 99% confidence in 3 Discard
e standard deviation °

., £, ..., f are the n partial results




Evaluate Integral Hypothetical Partial Results

2 2%,x4 Subtask #

1 1 4x,x5e
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— Exact solution in 8-digit
o 103.81372

— With 1,000 subtasks

561
997
998

999
(0[0]0)

Partial Results
103.8999347
104.0002782
103.7795764
103.6894540

89782:048998

103.9235347
103.8727323
103.8557640
103.7891408

Partial result of #561 will be expected to happen once in 10° experiments

Jlspecied




— Detect if a subtask is faithfully
executed

— Detect bogus results

Intermediate VValue Candidates

— To the node

o Unknown until reach a specific
point of the program

— To the program owner
o Pre-known or easy generated

Pseudorandom Numbers

— Consumed in Monte Carlo
applications

— Deterministic

— Unknown to a Computational
Service Provider until the
number is generated

— Cheap to calculate during
validation depending on the
generator

Our Approach

— Store certain pseudorandom
numbers during the execution
of a subtask and compare with
those computed on server




Monte Carlo
Task

:] Grid Services

Services in

:] Monte Carlo
Grid Computing
Infrastructure

M Monte Carlo
Subtasks
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Monte Carlo Runtime
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Partial Result
Validation
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Final Result




GCIMCA:-A Globus and SPRNG{g@sy
Implementation of A Grid-Computing==
Infrastructure for Monte Carlo Applications

Globus

— Facilities to Create and Utilize a
Computational Grid

SPRNG (Scalable Parallel
Random Number Generators)

- I
anao umoer

— Large Scale Parallel Random
Number Generation
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globus_gram_client_callback_allow ()

Monte Carlo
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A Monte Carlo Application: MD/BD Simulation of
Receptor Interaction in Structured Protein S ’{,i‘f-ff

Hybrid Molecular Dynamics (MD)/
Brownian Dynamics (BD)
- MD

o Analysis of the force autocorrelation
function

e Determine the friction tensor
- BD

o The Fokker-Planck equation is solved
for discrete times

— Assuming the friction tensor remains

constant at this time step

Computation Analysis

— Autocorrelation Calculation
o Computationally costly
o Amenable to multiprocessor systems

PDB Files
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Read standard PDB files for
ligand and receptor

A

A
Create "Topology" file from PDB file N
(mass, charge, force constants) TOpft_Jllogy
ile

A

Determine principal axes of ligand and
initial Euler angles

A

Hydrate ligand-receptor using Monte
Carlo method

A

Assign mass and charge to w ater

A

Perform equilibrium, canonical
ensemble MD to get the grand
frictiontensor for ligand

A

Numerically invert the grand friction
tensor to obtain the grand diffusion
tensor

A

Perform BD to get new ligand position
and orientation




40 ensembles 400 ensembles Validation of each
on a parallel system on a computational ensembles
grid




Data Grid
Computational Grid
Hybrid MD/BD

Grid Grid
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Conclusions

Conclusions

— Accelerate convergence of Monte Carlo
applications

— Improve performance and trustworthiness of grid
computing from the application level
o Statistical nature of Monte Carlo methods
o Characteristics of pseudorandom number generators
— Develop grid-computing infrastructure software
o High-performance and reliable large-scale Monte Carlo

— Grid-based MD/BD simulation




Future Work

Future Developments

— GCIMCA based on OGSA

— Grid-based Monte Carlo System

— Remote checkpointing facilities using GSoap
— Grid-based quasi-Monte Carlo applications
— Biologically inspired lightweight scheduling
— Applications to Markov Chain Monte Carlo
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