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Monte Carlo MethodsMonte Carlo Methods
Monte Carlo Methods
– Stochastic solutions to a variety of problems

Performing statistical sampling experiments
Based on random sample estimation

– Slow convergence rate, approximately O(N-1/2)
Acceleration of Monte Carlo methods

– Variance Reduction
– Quasi-Monte Carlo
– Parallel Computing

– Applications are ubiquitous



Variance Reduction TechniquesVariance Reduction Techniques

Stratified Sampling

Control Variates

Importance Sampling

Antithetic Variates
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QuasiQuasi--Monte Carlo (I)Monte Carlo (I)
Quasirandom Numbers vs. Pseudorandom Numbers
– Uniformity (low discrepancy)
– “A picture is worth a thousand words”



QuasiQuasi--Monte Carlo (II)Monte Carlo (II)

Quasi-Monte Carlo Method
– Convergence rate close to O(N-1)

the Koksma-Hlawka Inequality
– Limitations

Integration and the K-H inequality
Smoothness of the integrand
Convergence rate is related to 
dimension, s

Quasirandom Number Sequences
– Van der Corput
– Halton
– Faure
– Sobol’
– Niedirreiter

Convergence  Rates of Quasi-M onte  Carlo and M onte  Carlo
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Parallel Monte Carlo Parallel Monte Carlo 
ApplicationsApplications

Parallelism in Monte Carlo Applications
– Computationally intensive but naturally parallel
– Appropriate for dynamic bag-of-work paradigm
– Requirements

Independence of underlying random number streams
– SPRNG (Scalable Parallel Random Number Generation) library

Large-scale computational resources

– Fits the distributed computing paradigm



LargeLarge--Scale Monte Carlo Scale Monte Carlo 
Applications in a PuzzleApplications in a Puzzle

Development 
of Monte 

Carlo Methods

Large-Scale 
Computational 

Resources

Parallel Random 
Number 

Generators

Applications in 
Science and 
Engineering

Our Goal: To Develop A High Performance and Trustworthy 
Large-scale Monte Carlo Computing Infrastructure



GridGrid--based Monte Carlo based Monte Carlo 
ApplicationsApplications

Grid Computing
– Large-scale resources cooperation and sharing

Issues in Grid Computing
– From application point-of-view

Performance
Trustworthiness (especially from volunteers)

Our Approach
– Address issues from the application level
– Analyze characteristics of Monte Carlo applications

Statistical nature
Cryptographic aspects of underlying random number generator

– Develop strategies and tools



Techniques for GridTechniques for Grid--based based 
Monte Carlo ApplicationsMonte Carlo Applications

Improve Performance
– N-out-of-M Strategy
– Lightweight Checkpointing

Improve Trustworthiness
– Partial Result Validation Scheme
– Intermediate Value Checking



NN--outout--ofof--MM StrategyStrategy

Reality of Grid Computing
– Service providers’

performance varies
– Resources are widely 

distributed
Problems
– A slow node might become 

the bottleneck of the whole 
computation

– A halted subtask may prevent 
the whole task from 
completing

Monte Carlo Applications
– Care: How many random samples are 

estimated?
– Don’t Care: Which random sample set 

is used in the estimate?
N-out-of-M Strategy for Subtask 
Schedule

– Subtasks
Same description of the problem
Different independent random streams

– Enlarge number of subtasks
N subtasks M subtasks, M > N

– Gather N subtasks
N partial results ready Whole 
computation is done



Example of NExample of N--outout--ofof--MM StrategyStrategy

Example

Benefits of N-out-of-M Strategy for Job Scheduling
– None of the subtasks is a “key” subtask
– Can tolerate at most M – N delayed or halted subtasks
– Computation is still reproducible

Subtask 1

Subtask 2

Subtask 3

Subtask 4

Subtask 5

Subtask 10

Subtask 9

Subtask 8

Subtask 7

Subtask 6

0% 100%Tasks Completion
Subtask 1

Subtask 2

Subtask 3

Subtask 4

Subtask 5

Subtask 10

Subtask 9

Subtask 8

Subtask 7

Subtask 6

0% 100%Tasks Completion
Subtask 1

Subtask 2

Subtask 3

Subtask 4

Subtask 5

Subtask 10

Subtask 9

Subtask 8

Subtask 7

Subtask 6

0% 100%Tasks Completion
Subtask 1

Subtask 2

Subtask 3

Subtask 4

Subtask 5

Subtask 10

Subtask 9

Subtask 8

Subtask 7

Subtask 6

0% 100%Tasks Completion

Example of 6-out-of-10 Scheduling



Modeling the NModeling the N--outout--ofof--M M StrategyStrategy

Petri Net Model of the N-out-of-
M Strategy
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p(t) is the probability of a subtask 
completing before time t
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the N-out-of-M Strategy

Model of N-out-of-N



Simulation of Simulation of NN--outout--ofof--MM StrategyStrategy
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Simulations of the N-out-of-M strategy on a grid with node service rates normally distributed
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Lightweight CheckpointingLightweight Checkpointing
Process-level Checkpointing
– A snapshot of a process’ current state

Costly
Platform-dependent

Application-level Checkpointing for Monte 
Carlo Applications
– Amenable to application-based checkpointing

A small amount of information
– Status and parameters of RNG
– Iteration number
– Other intermediate results



Implementation of Lightweight Implementation of Lightweight 
Checkpointing for Monte Carlo ApplicationsCheckpointing for Monte Carlo Applications

Initialization

Main Monte Carlo
Computation

Mean and Standard Error
Estimation

Main
Loop

Random
Number

Generation
Library

Typical Monte Carlo 
Programming Logic Initialization

Main Monte Carlo
Computation

Mean and Standard Error
Estimation

Main
Loop

Random
Number

Generation
Library

Recover Subroutine
Restore RNG status

Restore changed variables
Set iteration index

Checkpoint Subroutine
Save RNG parameters

Save changed variables
Save iteration index

Checkpoint Condition?

Checkpoint Data
File

Checkpoint
Data File

Monte Carlo Application with 
Checkpointing Facilities



Distributed Monte Carlo Distributed Monte Carlo 
Partial Result ValidationPartial Result Validation

Existing Problem in Grid Computing
– “Problematic” Node

Not trustworthy/reliable
Not faithfully executing the code
Faking computation

Our Approach
– Statistical nature of the partial results from Monte Carlo 

applications
– Examine partial results according to the expected distribution

Distributed Monte Carlo Subtasks
– Same program
– Different independent random streams



Partial Result Validation Partial Result Validation 
ProcedureProcedure

Central Limit Theorem
– The mean of partial results

– Standard Error

– 68% confidence in 1 
standard deviation

– 95% confidence in 2 
standard deviation

– 99% confidence in 3 
standard deviation

n Subtasks
– For every partial result fi

– Compute Normal Confidence Interval
With confidence

c: 1 in c runs of size n is expected to be 
outlier

– In confidence interval trustworthy
– Outside confidence interval suspect

Rerun the subtask
Discard
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Example of Monte Carlo Example of Monte Carlo 
Partial Result ValidationPartial Result Validation

Evaluate Integral

– Exact solution in 8-digit
103.81372

– With 1,000 subtasks

Hypothetical Partial Results

∫ ∫ ++
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1

0

1

0
251252221

...
2

42

22
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4... 205

31

dxdxxxxe
xx

exx xx
xx Subtask # Partial Results

1 103.8999347
2 104.0002782
3 103.7795764
4 103.6894540
…
561 89782.048998
…
997 103.9235347
998 103.8727823
999 103.8557640
1000 103.7891408

Partial result of #561 will be expected to happen once in 109 experiments



Intermediate Value CheckingIntermediate Value Checking

Goal
– Detect if a subtask is faithfully 

executed
– Detect bogus results

Intermediate Value Candidates
– To the node

Unknown until reach a specific 
point of the program

– To the program owner
Pre-known or easy generated

Pseudorandom Numbers
– Consumed in Monte Carlo 

applications
– Deterministic
– Unknown to a Computational 

Service Provider until the 
number is generated

– Cheap to calculate during 
validation depending on the 
generator

Our Approach
– Store certain pseudorandom 

numbers during the execution 
of a subtask and compare with 
those computed on server



A GridA Grid--Computing Infrastructure Computing Infrastructure 
for Monte Carlo Applicationsfor Monte Carlo Applications

Task Split Service

Connectivity
Service

Computational
Service

Schedule Service

Connectivity
Service

Computational
Service

Computational
Service

Computational
Service

Connectivity
Service

Storage Service

Collection Service

Storage ServiceStorage ServiceStorage Service

Monte Carlo
Task

M Monte Carlo
Subtasks

Monte Carlo
Subtask

Monte Carlo
Subtask

N Partial Results

Final Result

Connectivity
Service

Partial Result
Validation

M-out-of-N
Strategy

Grid Services

Services in
Monte Carlo

Grid Computing
Inf rastructure

Monte Carlo Light-
w eight Checkpointing

Monte Carlo Light-
w eight Checkpointing

Monte Carlo Light-
w eight Checkpointing

Monte Carlo Light-
w eight Checkpointing

Recomputation

Monte Carlo Runtime
Estimation

Monte Carlo Runtime
Estimation

Monte Carlo Runtime
Estimation

Monte Carlo Runtime
Estimation

Intermediate Results
Checking

Intermediate Results
Checking

Intermediate Results
Checking

Intermediate Results
Checking



GCIMCA: A Globus and SPRNG GCIMCA: A Globus and SPRNG 
Implementation of A GridImplementation of A Grid--Computing Computing 

Infrastructure for Monte Carlo ApplicationsInfrastructure for Monte Carlo Applications

Grid Fabric

GRAM GIS GSI SPRNG

Random Number
Streams

GCIMCA

N-out-of-M
Subtask
Schedule
Services

MC
Application-

level
Checkpointing

MC Partial
Result

Validation

Intermediate
Value

Checking

Grid-based Monte Carlo Applications

GridFTP

Globus
– Facilities to Create and Utilize a 

Computational Grid

SPRNG (Scalable Parallel 
Random Number Generators) 
Library
– Large Scale Parallel Random 

Number Generation



Working Paradigm for GCIMCAWorking Paradigm for GCIMCA

Organization A

Job
Server

MC
Subtask
Agent

Organization B

MC
Subtask
Agent

Organization CMC
Subtask
Agent

Job
File

Server

MC job description

Confirmation of job finish
User

Job files
submission

Retrieve
results

Subtask
Grant

Subtask
Application

Subtask
Application

Subtask
Grant

Submit partial
results

Download MC
subtask files

MC
Subtask
Agent

Monte Carlo
Subtask Callback

Function

globus_gram_client_job_request()

subtask
status changed

Collect partialresults
Report to Job Server

Report to Job
Server

Collect Checkpointing Data
Reschedule subtask

globus_gram_client_callback_allow ()

JOB_STATE_DONE JOB_STATE_FAILED JOB_STATE_PENDING

JOB_STATE_ACTIVE

Working Paradigm

Remote Execution of a 
Monte Carlo Subtask



A Monte Carlo Application: MD/BD Simulation of LigandA Monte Carlo Application: MD/BD Simulation of Ligand--
Receptor Interaction in Structured Protein SystemReceptor Interaction in Structured Protein System

Hybrid Molecular Dynamics (MD)/ 
Brownian Dynamics (BD)
– MD

Analysis of the force autocorrelation 
function
Determine the friction tensor

– BD
The Fokker-Planck equation is solved 
for discrete times

– Assuming the friction tensor remains 
constant at this time step

Computation Analysis
– Autocorrelation Calculation

Computationally costly
Amenable to multiprocessor systems

PDB Files

Read standard PDB files for
ligand and receptor

Create "Topology" f ile from PDB file
(mass, charge, force constants) Topology

file

Determine principal axes of ligand and
initial Euler angles

Hydrate ligand-receptor using Monte
Carlo method

Assign mass and charge to w ater

Perform equilibrium, canonical
ensemble MD to get the grand

frictiontensor for ligand

Numerically invert the grand friction
tensor to obtain the grand diffusion

tensor

Perform BD to get new  ligand position
and orientation



Preliminary Results of GridPreliminary Results of Grid--based based 
MD/BD SimulationMD/BD Simulation

40 ensembles 
on a parallel system

400 ensembles 
on a computational

grid

Validation of each
ensembles



GridGrid--based based ““PlugPlug--DrugDrug”” SystemSystem

PDB

Grid
Data

Service

Grid
Data

Service

Grid
Data

Service

Grid
Data

Service

Grid
Data

Service

Ligands

Computational
Service
Provider

Computational
Service
Provider

Computational
Service
Provider

Computational
Service
Provider

Computational
Service
Provider

Receptor

Data Grid

Computational
Grid

Drug
Candidates

Brownian
Dynamics

Molecular
Dynamics

Data Grid

Computational Grid

Hybrid MD/BD



ConclusionsConclusions

Conclusions
– Accelerate convergence of Monte Carlo 

applications
– Improve performance and trustworthiness of grid 

computing from the application level
Statistical nature of Monte Carlo methods
Characteristics of pseudorandom number generators

– Develop grid-computing infrastructure software
High-performance and reliable large-scale Monte Carlo

– Grid-based MD/BD simulation



Future WorkFuture Work

Future Developments
– GCIMCA based on OGSA
– Grid-based Monte Carlo System
– Remote checkpointing facilities using GSoap
– Grid-based quasi-Monte Carlo applications
– Biologically inspired lightweight scheduling
– Applications to Markov Chain Monte Carlo
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