
Beamline: PDF

Scientists Resolve Origin of Perovskite Instability

The room temperature Cs electron density shows strong elongation – a signature of rattling.

D. B. Straus, S. Guo, A. M. M. Abeykoon, R. J. Cava. *Adv. Mater.* **32**, 2001069 (2020).

Work was performed in part at Brookhaven National Laboratory

Scientific Achievement

Scientists have demystified the reason for the instability of the halide perovskite CsPbl₃.

Significance and Impact

Halide perovskites such as CsPbI₃ have the potential for creating highly efficient solar cells; this work shows that the source of their thermodynamic instability is the cesium atom, suggesting new methods for engineering stable CsPbI₃-based solar cells.

Research Details

- Single-crystal X-ray diffraction and X-ray pair distribution function measurements characterized the perovskite CsPbI₃ between 100 and 295 K.
- Measurements used the PDF beamline at NSLS-II.
- Analysis showed that the cesium (Cs) atom "rattles" in its iodine atom cage, causing the instability.
- The limitations of tolerance factor arguments in predicting perovskite stability were revealed.