## **Study Reveals Shared Proteins in Plant Communication Systems**



Analysis of cryo-ET sorghum (A - E) and Arabidopsis (F - J) EVs.

Timothy Chaya, Aparajita Banerjee, Brian D Rutter, Deji Adekanye, Jean Ross, Guobin Hu, Roger W Innes, Jeffrey L Caplan, The extracellular vesicle proteomes of Sorghum bicolor and Arabidopsis thaliana are partially conserved, Plant Physiology, Volume 194, Issue 3, March 2024, Pages 1481–1497, https://doi.org/10.1093/plphys/kiad644

## **Scientific Achievement**

While characterizing extracellular vesicles (EVs), plant organelles involved in intercellular communications, scientists found striking similarities in two different species.

## Significance and Impact

These findings suggest EVs may have a shared function across different plant species. This could help scientists uncover more about plant defense against diseases.

## **Research Details**

- Cryo-Electron Tomography (Cryo-ET) analysis of the sorghum EVs revealed a population of vesicles that had a similar morphological diversity to mammalian-derived vesicles.
- First Cryo-ET tomography work produced at the LBMS
- Some antibodies designed for Arabidopsis EV proteins could also bind to similar proteins in sorghum EVs.





Brookhaven National Laboratory

Work done in part at LBMS



https://science.osti.gov/