The Role of Positive-Ion Exchange in Arabidopsis

XRF image of calcium (red), zinc (green), and potassium (blue) in 14-day-old leaves of wild-type Arabidopsis (Col-0) and quadruple-mutated (qKO).

Mathew, I.E., Rhein, H.S., Yang, J., Gradogna, A., Carpaneto, A., Guo, Q., Tappero, R., Scholz-Starke, J., Barkla, B.J., Hirschi, K.D., Punshon, T. *Plant Cell Environ.* **47**, 557-573 (2024)

Work performed in part at NSLS-II

Scientific Achievement

Researchers establish that hydrogen-ion and calcium-ion (Ca²⁺) exchange in Arabidopsis plant cells contribute to plant growth, elemental distribution, and stress responses.

Significance and Impact

The work shows the many functions of ion exchange in plants and how suppressed ion uptake can improve anoxia tolerance.

Research Details

Brookhaver

- Arabidopsis leaves were subjected to mutations that inhibited positive-ion transport; samples were studied, in part, at NSLS-II's XFM beamline using x-ray fluorescence (XRF) microscopy.
- Results show that elemental concentrations and distributions in the leaves strongly correlate with the number of mutations.
- Reduced Ca²⁺ abundance is also seen, which promotes tolerance to anoxia (total oxygen deprivation).

National Synchrotron Light Source II