Understanding Superconductivity via Atomic Lattice Fluctuations

XPCS data show temperature-dependent fluctuation measurements. The CDW peak (gray) is also shown. Inset: diffraction pattern for timedomain measurements collected at 60 K for 5,400 s at a frame rate of 1 Hz.

Z. Porter, L. Shen, R. Plumley, N.G. Burdet, A. N. Petsch, J. Wen, N.C. Drucker, C. Peng, X.M. Chen, A. Fluerasu, E. Blackburn, G. Coslovich, D.G. Hawthorn, J.J. Turner. *PNAS* 121 (50) e2412182121 (2024).

Work was performed in part at NSLS-II

Scientific Achievement

Researchers use X-rays to measure slow, subtle fluctuations of the lattice of a high-temperature (T_c) superconductor.

Significance and Impact

Results help elucidate how and why coupling between electrons and the crystal lattice can yield exotic states, such as superconductivity and charge density waves (CDWs).

Research Details

- X-ray photon correlation spectroscopy (XPCS) at NSLS-II's CHX beamline was used to study atomic fluctuations in the high-T_c superconductor YB₂Cu₃O_{6+y} over thousands of seconds.
- Results showed that the fluctuations slowed down in the CDW state and speed up at T_c and provide insights into the role of slow lattice dynamics in the material's electronic behavior.

11-ID

CHX