
Deciphering Oxide Reduction at the Atomic Scale

(a) In-situ synchrotron X-ray diffraction (XRD) measurements of NiO reduction under CO flow. A weak Ni(111) reflection appears early (inset), indicating rapid nucleation of metallic Ni, but its intensity remains low over time—suggesting self-limiting surface reduction. (b, c) Time-resolved HRTEM images showing NiO reduction at 400 °C under CO pressures of approximately 1 Pa. (d) Time-resolved XRD during NiO reduction under H₂ shows an initial incubation period, followed by rapid and sustained growth of Ni(111), (200), and (220) reflections, consistent with bulk phase transformation to metallic Ni. (e, f) In situ HRTEM images showing NiO reduction at 400 °C under H2 pressures of approximately approximately 0.08 Pa.

Xiaobo Chen, Jianyu Wang, Shyam Bharatkumar Patel, Shuonan Ye, Yupeng Wu, Zhikang Zhou, Linna Qiao, Yuxi Wang, Nebojsa Marinkovic, Meng Li, Sooyeon Hwang, Dmitri N. Zakharov, Lu Ma, Qin Wu, Jorge Anibal Boscoboinik, Judith C. Yang, Guangwen Zhou. Atomic dynamics of gas-dependent oxide reducibility. *Nature* **644**, 927–932 (2025). https://doi.org/10.1038/s41586-025-09394-0

Work was performed in part at NSLS-II

Scientific Achievement

Scientists reveal that CO and H₂ reduce metal oxides through fundamentally different atomic pathways that were once thought to be similar.

Significance and Impact

This work paves the way for improved catalyst design and more efficient metal production.

Research Details

- Distinct pathways were captured showing carbon monoxide's quick but shallow reduction and hydrogen's delayed onset followed by a rapid, deep reduction.
- *In-situ* X-ray diffraction was performed at the NSLS-II Quick X-ray Absorption & Scattering beamline to complement transmission electron microscopy data.

