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� Supersymmetry models contain new sources

of CP violation phases.

� These phases can contribute to the electric

dipole moments of electron, neutron etc.

We have strict experimental limits on elec-

tron and neutron EDMs:

jdej < 4:3�10�27 ecm and jdnj < 6:3�10�26
ecm. [The SM contribution is very small.]

� Phase of O(1) size can predict large EDM,

which can be larger than the experimental

limits.

Conventionally,

� The phases are assumed to be small O(10�2�
10�3).

� The masses are very heavy (several TeV).



Recent proposal:

The EDM constraint can be satis�ed by

tuning the cancellation among di�erent Feyn-

man diagrams which contribute to the cal-

culation of EDM [Ibrahim, Nath '98, Falk,

Olive '98, Brhlik, Good, Kane '99]. For

example,
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� These diagrams can cancel each other and

satisfy the EDM constraint.

� We can have large SUSY phases in the the-

ory even in the regions of smaller sparticle

masses.



In this talk:

� I will discuss the cancellation mechanism

for EDM in the mSUGRA model with a

generalized phase structure. I will show

that the cancellation is �ne tuned at the

GUT scale for certain regions of parame-

ter space.

� I will discuss the �ne tuning problem in the

parameter space allowed by the following

constraints:

(i)The recent result of a�(� (g � 2)=2) of

muon: This has restricted the SUSY pa-

rameter space. The calculation of amSUGRA�

and EDM involve the same set of diagrams.

The former however is related to the real

part.



(ii) Cosmological constraint : The SUSY

model, I dicuss, conserves R parity and

thus the lightest supersymmetric particle

can be a candidate for cold dark matter.

The parameter space is restricted by the

relic density constraint .

(iii)Recent accelerator and rare decay bounds:

The latest bound on Higgs mass and the

CLEO bound on b! s
 put important con-

straint in the model space.



Model Parameters:

Supergravity GUT models with universal

soft breaking of supersymmetry, mSUGRA,

depend upon �ve parameters at the GUT

scale:

m1=2 (the universal gaugino mass),

A0 (the cubic soft breaking mass),

B0 (the quadratic soft breaking mass),

�0 (the Higgs mixing parameter) and

m0 (the universal squark and slepton mass).

� Electroweak symmetry is broken radiatively.

� Magnitudes of � and B are determined from

the electroweak symmetry breaking condi-

tions.



We assume a general phase structure at

the GUT scale i.e.

� ~m1, ~m2, ~m3, A0, B0 and � are complex at

the GUT scale.

� Among these phases, we rotate away one

of the gaugino phases.

� Finally, we have the following phases at the

GUT scale:

� j~m1jei�1, j~m3jei�3, jA0jei�0A,
jB0jei�0B, j�0jei��.



� The RGEs relate these GUT scale param-

eters to the weak scale values.

For example:

~mi =
�i
�G

~m1=2

In the low and intermediate tan� region,

we can solve the RGEs to obtain:

At(t) = D0A0+
X

�ijm1=2ijei�i

the �i are real and O(1), D0 ' 0:25,

B = B0 �
1

2
(1�D0)A0 �

X
�0
ijm1=2ijei�i

[Accomando,Arnowitt, Dutta'99]



� Superpartner masses: The chargino and

the neutralino mass matrices are:

M�� =

 
~m2

p
2MW sin�p

2MW cos� j�jei�
!

M�0 =

0
BBBB@
j~m1jei�1 0 a b

0 ~m2 c d

a c 0 �j�jei�
b d �j�jei� 0

1
CCCCA

where a = �MZsin�W cos�, b =MZsin�Wsin�,

c = �cot�Wa, d = �cot�W b, tan� = v2=v1
(v1;2 =j< H1;2 >j) and �W is the weak mix-

ing angle.

� The phase � is given by

� = �1+ �2+ ��

where at the electroweak scale, < H1;2 >=

v1;2e
i�1;2, and � = j�jei��.

� tan� is a free parameter.



� The slepton mass matrix can be written as

~m2
l =

 
m2
lLL

m2
lLR

m2
lRL

�
m2
lRR

!

m2
lLR

= ml(Ale
�i�Al � j�jei� tan�)

where ml is the lepton mass.

m2
lLL

= m2
L+m2

l �1=2(2cos2�W�1)M2
Zcos2�

m2
lRR

= m2
R+m2

l � sin2�WM2
Zcos2�



Electroweak symmetry breaking and rela-

tion among phases:

� The condition for electroweak symmetry

breaking is obtained by minimizing the ef-

fective potential Veff with respect to v1,

�1, v2 and �2. The Higgs sector of Veff is

Veff = m2
1v
2
1+m2

2v
2
2�2jB�jcos(�+ �B)v1v2

+
g22
8
(v21 + v22)

2+
g1
2

8
(v22 � v21)

2+ V1

where V1 is the one loop contribution, m
2
i =

�2 + m2
Hi

and m2
H1;2

are the H1;2 running

masses.



We now minimize Veff in order to deter-

mine the Higgs VEVs i.e. v1; v2; �1; �2.

� In the tree approximation, the extrema equa-

tions

@Veff=@�i = 0 yield 2jB�jsin(�+ �B) = 0.

Hence the minimum of Veff requires

� = ��B
At the one loop level, one gets a correction

of the form

� = ��B + f1(��B + �Aq
;��B + �Al

)

where f1 is the one loop correction with �

approximated by its tree value [Demir'99,

Pilaftsis, Wagner'99].

� This correction can become signi�cant for

large tan�.

In our analysis we use � = ��.



EDM calculation:
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� The above diagrams cancel with each other

and hence large phases can be allowed.

� The condition we get (assuming �A = 0):

d~�0
1
sin(��+ �1) + d

~�0
1
+~��

1

sin(��) = 0

) tan �B = � sin�1
1+� cos�1

where � =
d
~�0
1

d
~�0
1
+~��

1

.

d
~�0
1
+~��

1

contains diagrams involving chargino

and neutralino and d~�0
1
contains diagrams

involving neutralino only. Typically � ' 0:3.

� This is the situation where we have exact

cancellation and electron EDM is 0. But

the experimental upper bound generates a

spread of �B which depends on the experi-

mental bound on EDM.
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j vs �B for tan� = 40,

m0 = 210 GeV, m1=2 = 400 GeV, �1 = 0:9

and A0 = 0.

� The magnitude of m0 being di�erent com-

pared to tan� = 15 case is because of dark

matter constraint.



Calculation of a�:
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� The real part of the diagrams contribute in

this case.

� BNL 821 experiment gives a 2.6� deviation

from standard model[Brown, hep-ex/0102017]

aEXP� � aSM� = 43(16)� 10�10



� This deviation can be explained in the frame-

work of SUGRA GUT model. [Kosower,

Krauss, Sakai'83, Yuan, Arnowitt, Chamsed-

dine, Nath '84]

� In mSUGRA model, the dominant contri-

bution is given by:

a� ' �

4�

tan�

sin2 �W

m2
�

j~m2jj�j
A[cos ��+� cos(��+�1)]

A is expressed in terms of the ratio of masses

and is O(1).

� Using tan �B = � sin�1
1+� cos�1

(where EDM is

0), we �nd

a� ' �

4�

tan�

sin2 �W

m2
�

j~m2jj�j
A
q
(1 + 2� cos�1+ �2)

for �1 = 0, we have a� / (1 + �),

for �1 = �, we have a� / (1� �).



Calculational details:

� We use the Higgs mass constraint : mh >
111 GeV.

This bound puts constraint on m1=2 e.g.

for tan� = 10, m1=2 > 300 GeV.

� We use the b! s
 constraint.

We use NLO contributions to SUSY and

charged Higgs diagrams[Degrassi etal.'00,

Ciuchini etal.'00]

� We use SUSY one loop correction to b-
mass. This correction is important for large

tan�. [Rattazzi, Sarid' 94; Carena, Wag-

ner, Pokorski'94].

We do not demand b� � uni�cation

� In our calculation m~�0
1
is the lightest SUSY

particle. We use the dark matter constraint

in the parameter space, i.e. 0:02 < 
~�0
1
h2 <

0:25



Dark matter constraint (in detail)

� 
�0
1
h2 / 1

<�v>

� As m0 and m1=2 increase � decreases and


�0
1
h2 increases. The new LEP limit on

the Higgs mass and the b ! s
 constraint

require larger values of m1=2 .

� However, it is possible to decrease 
�0
1
h2

by choosing the mass of one of the scalar

particles to be close to the neutralino and

thereby giving rise to coannihilation in the

early universe.

� In mSUGRA model the lighter stau mass

comes close to the neutralino mass natu-

rally. When this happens we �nd the relic

density in the desired range. [Arnowitt,

Dutta, Santoso'01; Falk, Ellis, Olive, Sred-

nicki'01]



� In the coannihilation corridors m0 gets �xed

within a narrow window for a given value

of m1=2.
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Corridors in the m0�m1=2 plane allowed by

the relic density constraint for tan� = 10,

30 and 40 (from bottom to top), mh > 111

GeV, � > 0 for A0 = 0. The slanted lines

indicate the bound from a�.



Numerical results using di�erent constraints
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�B vs m1=2 for tan� = 40 and A0 = 0.

The upper region is for �1 = 1:2 and the

lower region is for �1 = 0:9. The corridors
appear due to the EDM constraint.

� Since we are in the coannihilation region,

roughly m~�1 � m~�0
1
� 25 GeV. We choose

m0 for a �xed m~�1 �m~�0
1
value.

� The regions terminate at low m1=2 is due

to b ! s
 bound and the termination at

high m1=2 is due to the lower bound on a�.
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�B vs m1=2 for tan� = 40, A0 = 0 and

�1 = 0:9 . The maximum and the min-

imum values of phases correspond to the

entire range of 
~�0
1
h2 i.e. 0:02� 0:25.
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�B vs m1=2 for tan� = 15 and A0 = 0.

The upper region is for �1 = 1:2 and the

lower region is for �1 = 0:9.

� The regions terminate at low m1=2 is due

to the Higgs mass constraint.

� �B is larger in this case compared to the

tan� = 40 case.
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�B vs m1=2 for tan� = 40.

The upper region is for A0 = 0 and the

lower region is for A0 = 2m1=2 and �0A =

0:5.

� A0 = 2m1=2 region requires larger m0 to

satisfy the dark matter constraint.
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The upper region is for �1 = 0:9 and the

lower region is for �1 = 3:4.



Fine tuning of phases at the GUT scale:

� ���
��av

> 1% for most of the parameter space.

[where ��� is the regions allowed in the

pervious �gures by EDM]

� However,
��0B
�0Bav

< 1% for larger values of

�1 and lower values of m1=2.

��0B is the allowed range of �0B at the

GUT scale and is smaller compared to the

��B.

This is because ��0B ' jBj
jB0j

��B and jB0j >
jBj.

� ���1
�1av

> 1% for most of the parameter space.
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� If we require
��0B
�0Bav

> 1% , the lower values

of m1=2 are disfavored.
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vs m1=2 for tan� = 15, A0 = 0.

The upper line is for �1 = 0:9 and the lower

line is for �1 = 1:2.

� If we require
��0B
�0Bav

> 1% , �1 > 1:2 is dis-

favored .
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The upper line is for A0 = 0 and the lower

line is for A0 = 2m1=2 and �0A = 0:5 .
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The upper line is for �1 = 0:9 and the lower

line is for �1 = 1:2.
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The upper line is for �1 = 0:9 and the lower

line is for �1 = 1:2.
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Conclusion:

� The phases allowed by EDM of electron

are not necessarily very small. This hap-

pens due to some cancellation among the

contributing diagrams.

� This cancellation is necessary for the entire

region of the parameter space allowed by a�

in order to allow large CP violating phases.

� However, the phase of B can become �ne

tuned at the GUT scale in certain regions

of the parameter space.

If �ne tuning less than 1% is excluded then

for tan� = 15, �1 � 1:2 in the parameter

space allowed by a� bound.



For the allowed values of �1, the lower val-

ues of m1=2 are disfavored. For example,

for �1 = 0:9, m1=2 < 380 GeV is disfavored.

The large tan� scenarios are better since

a� allows higher values of m0 and m1=2.

The lower values of m1=2 are again dis-

favored and depend on �1, for �1 = 0:9,

m1=2 < 470 GeV is disfavored.
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