Spin Coherence Time

Gerco Onderwater KVI, University of Groningen the Netherlands

pEDM R&D Review, BNL, 7 December 2009

Sensitivity

General expression for the uncertainty of an EDM experiment

$$\sigma_d \propto \frac{1}{P E \sqrt{N} \tau A}$$

N: total number of detected particles

- **P**: initial polarization of sample
- A : analyzing power of polarimeter
- *E* : electric field strength in particle rest frame
 - $\boldsymbol{\tau}$: characteristic time of single measurement

$$=\frac{1}{P E \sqrt{n T_{tot} \tau} A}$$

n : number of detected particles per fill T_{tot} : total time to run the experiment

$\boldsymbol{\tau}$: determined by storage time and spin coherence time

A few words on spin dynamics

Highly simplified spin-EoM

$$\frac{d\vec{S}}{dt} = \left[\vec{\Omega}_{MDM} + \vec{\Omega}_{EDM}\right] \times \vec{S}$$

For frozen spin $\Omega_{MDM} \approx 0$, $\Omega_{MDM} \gg \Omega_{MDM}$

Longitudinal :
$$S_z = S_z^{(\cdot)} \cos \Omega_{MDM} t \simeq S_z^{(\cdot)}$$

Radial : $S_x = S_z^{(\cdot)} \sin \Omega_{MDM} t \simeq 0$
Vertical : $S_y = \int_0^t S_z \Omega_{EDM} dt \simeq S_z^{(0)} \Omega_{EDM} t$

Ex. 1: depolarization from spin tune spread

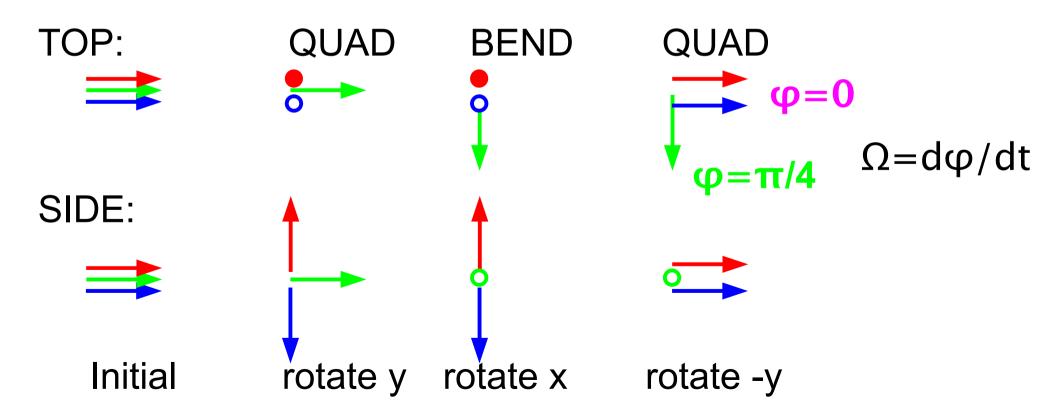
A particle moves through E & B fields

 \rightarrow magnitude Ω_{MDM} varies with $\delta\Omega$

$$P(t) \stackrel{\text{def}}{=} \langle S_z \rangle(t) = S_z^{(0)} \langle \cos \delta \Omega t \rangle \cdot \cos \langle \Omega \rangle t$$
$$\simeq S_z^{(0)} \left| 1 - \frac{1}{2} \langle \delta \Omega^2 \rangle t^2 + \cdots \right|$$

Beam depolarizes with characteristic time $T_2 = 1/\delta\Omega$

 \rightarrow Reduced sensitivity for EDM


$$\langle S_{y} \rangle = \langle \int_{0}^{t} S_{z}(t) \Omega_{EDM} dt \rangle = \Omega_{EDM} \int_{0}^{t} P(t) dt$$

Ex. 2: Depolarization from 3D-rotations

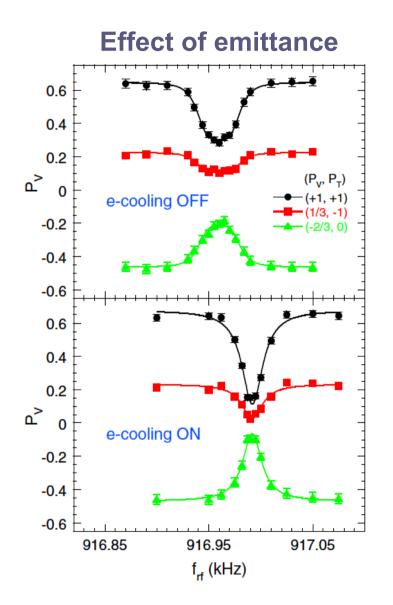
A particle moves through E & B fields

 \rightarrow <u>orientation</u> of Ω_{MDM} varies

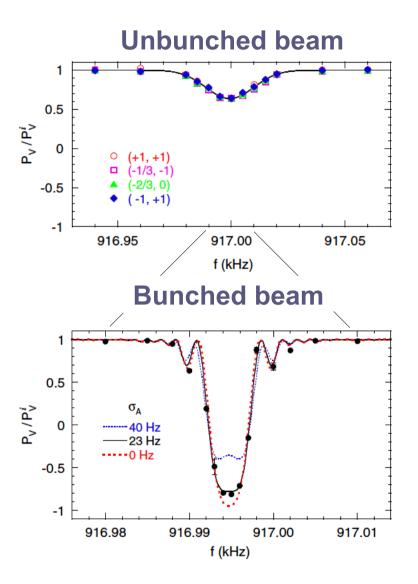
Rotations in 3D do not commute

SCT in practice

Aim: spin coherence time 1000 s


Perspective

- this is about 10⁸-10⁹ particle revolutions
- this corresponds to $\delta\Omega = 1 \text{mHz}$
- observed in E821 (μ^{\pm})
- observed @ COSY-Jülich (D) :


- observed @ VEPP (e[±])

- : **τ** > 10⁵ turns
- : $\tau \sim 1 \times 10^3$ turns (coasting)
- : $\tau \sim 5 \times 10^3$ turns (cooled)
- : $\tau \sim 2x10^4$ turns (bunched)
- : **τ** ~ 10⁷ turns

Spin@COSY Results (²H)

PRL 103, 144801 (2009)

SCT vs. beam dynamics

Spin coherence depends on

- ► Particle properties (J, G, p, m, ...)
- Storage ring lattice (layout, $v_{x,y,s}$, RF, acceptance, ...)
- ▶ Beam dynamics (emittances, ...)
- ▶ Interactions within beam (space charge, ...)
- ► Interactions with environment (stray fields, power, ...)

All may have to be considered to reach SCT of 1000s

MODEL SIMULATION & EXPERIMENTAL VERIFICATION

Simulation Plan

Choose modeling tools

Need well-understood simulation tool that approximates relevant physical phenomena with sufficient precision.

Identify causes & cures for depolarization

Identify all relevant causes for spin decoherence. Apply this knowledge to develop a strategy that guides preparation of ring lattice with the longest possible spin coherence time

Experimentally verify results

Demonstrate robustness of strategy despite limited knowledge of imperfections. Development tools to expose these imperfections.

Simulation Plan

Choose modeling tools

Need well-understood simulation tool that approximates relevant physical phenomena with sufficient precision.

Identify causes & cures for depolarization Identify all relevant causes for spin decoherence. Apply this knowledge to develop a strategy that guides preparation of ring lattice with the longest possible spin coherence time

Experimentally verify results

Demonstrate robustness of strategy despite limited knowledge of imperfections. Development tools to expose these imperfections.

Simulation Ingredients

Mathematics 50.5 Simulation

Computers

Gerco Onderwater, KVI/University of Groningen

Physics Principles

Models should incorporate underlying physics

EM Fields Maxwell's Equations *thin lens hard edge fringe fields:* $\nabla xB=0$ *RF :* $\nabla xH=\partial D/\partial t$? *Images*?

Spin Thomas-BMT Equation reference frame completeness

Phase space

Liouville's Theorem Conservation laws

Dynamics

Lorentz Force Stern-Gerlach? Inter/intra beam? Gravity? Rest gas interaction?

Particles Properties CODATA

Quantum Fundamental Visible?

Mathematical Principles

Techniques should be appropriate

MC Integration

Convergent for dt → 0 Practical stepsize>0 Euler : poor Runge-Kutta : strong(er) Predictor-Corrector : strong

Differential Algebra

Iteratively solve DEs Powerful, but unfamiliar to most

Taylor ExpansionExpansion around fixed point

Practical order « 🛛

Symbolic Manipulation

For analytic solution Applicable to simpler problems

Fourier Expansion Expansion around fixed point Practical order $\ll \infty$

Numerical Accuracy

Limits predictive power

Real Number Representation

Radix + Exponent Float 1:10⁷ Double 1:10¹⁵

Spin Rotation matrix *Orthogonal*

Constants

"Exact" $\pi = 4 \operatorname{atan}(1)$

Beam dynamics

Symplectic Avoid "explosive" solution

Monte Carlo ray-tracing

Flexible, arbitrarily complicated field configurations Can only trace particles, i.e. cannot map <u>Far too slow</u> for detailed studies **Abandoned for detailed studies**

Mad-X+Spink

Limited collection of field configurations Solves beam dynamics for limited order Relies on thin lenses for tracking Spin dynamics is done "after the fact" Abandoned for detailed studies

Unified Accelerator Libraries (UAL)

Very flexible & complete suite of tools Modular set up Spink partially incorporated / ThinSpin being developed Proven in HEP environment **Further developed for detailed studies**

COSY-Infinity

Uses differential algebra to solve EoM to arbitrary order Solves beam & spin dynamics simultaneously Complex field configurations possible Facilitates "knobs" for parametric studies Fast tracking in ROOT Widely used in LE/nuclear environment Ready for use in detailed studies

Simulation Plan

Choose modeling tools

Need well-understood simulation tool that approximates relevant physical phenomena with sufficient precision.

Identify causes & cures for depolarization

Identify all relevant causes for spin decoherence. Apply this knowledge to develop a strategy that guides preparation of ring lattice with the longest possible spin coherence time

Experimentally verify results

Demonstrate robustness of strategy despite limited knowledge of imperfections. Development tools to expose these imperfections.

- 1. What are the sources of spin decoherence at second and higher order?
- 2. What is the magnitude of each of these sources?
- 3. Does electric or magnetic focusing give the smallest spin decoherence?
- 4. To what level can sextupoles and higher multipoles reduce decoherence?
- 5. What is the effect of fringe fields?
- 6. How can two counter propagating beams be accommodated?
- 7. What is the effect of beam heating (necessary for polarimetry)?
- 8. What are the (quantitative) effects of lattice errors?
- 9. ...

10. Many, many more

Complex & diverse list → **needs a structured approach**!

Identify, Quantify, Cure

Some first ideas

Inherent \rightarrow beam dynamics

- \rightarrow multipole expansion of E/B fields
- \rightarrow fringe fields

Imperfections \rightarrow alignment

- \rightarrow alignment \rightarrow strength
 - \rightarrow stability
 - \rightarrow additional multipoles

- \rightarrow earth magnetic field
- \rightarrow accelerator environment
- \rightarrow beam-beam interaction
- \rightarrow wake fields & images

rea

Bottom-Up Approach

Start with simple lattice

consisting of identical unit cells with high degree of symmetry (mirror) that can store particles

Analyze analytically

qualitative insight in sources of SCT

Targeted & systematic mapping of dependencies

Ceteris Paribus condition (change one thing at a time) quantitative insight \rightarrow prioritize, confirm earlier solution

Cure Decoherence

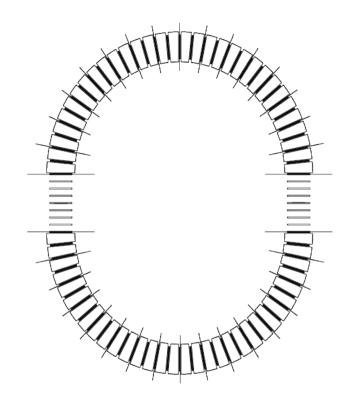
a) Eliminate decoherence

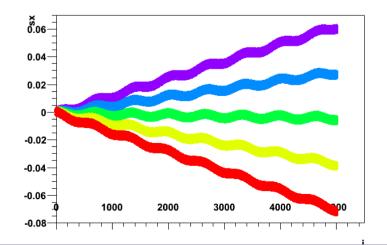
- b) Reduce decoherence to an acceptable level
- c) Discard lattice for unacceptable results

Evolve to more realistic configurations

Incorporate solutions Quantify tolerances (e.g. for PS, BPMs) Meet boundary conditions (e.g. for acceptance, polarimeter, injection)

Status


Analytic work underway


Confirms expected sources SCT of 1000s expected to be doable Ideas for solutions & diagnostics

Simulations started

Lattice defined Using both COSY & UAL <u>Preliminary</u> results match theory <u>Preliminary</u> studies show effect of sextupoles on spin precession

In need of dedicated manpower!

Simulation Plan

Choose modeling tools

Need well-understood simulation tool that approximates relevant physical phenomena with sufficient precision.

Identify causes & cures for depolarization

Identify all relevant causes for spin decoherence. Apply this knowledge to develop a strategy that guides preparation of ring lattice with the longest possible spin coherence time

Experimentally verify results

Demonstrate robustness of strategy despite limited knowledge of imperfections. Develop tools to expose these imperfections.

Real-life test is indispensable

In many respects COSY approaches EDM ring Describe existing lattice Reproduce existing results (spin & beam), e.g. Spin@COSY Proposal accepted at COSY

Demonstrate ability to expose perturbing effects

Create known perturbations Via "contrast" measurements, i.e. with/without/exaggerated Verify effect on coherence <u>quantitatively</u> Identify & quantify other perturbations (for next step)

Demonstrate ability to create long coherence

Apply SCT prolongation strategy to create long coherence Predict & study sensitivities Pragmatically optimize

COSY @ Jülich

TABLE I.COSY parameters for the December 2003 polarizeddeuteron experiment.

1	
Parameter	Value
Circumference	183.4 m
Beam type	Polarized deuterons
Flattop momentum (<i>p</i>)	1.850 GeV/c
Flattop energy (γ)	1.4046
Circulation frequency (f_c)	1.147 430 MHz
Spin tune (ν_s)	-0.20084
Momentum spread $(dp/p)_{\rm rms}$	5×10^{-4}
Horizontal emittance (ϵ_h)	7 mm mrad
Vertical emittance (ϵ_v)	<5 mm mrad
Max. beta-functions (H, V)	30 m in both planes
Max. dispersion function (H)	15 m
Horizontal betatron tune (ν_h)	3.62
Vertical betatron tune (ν_v)	3.60
H. chromaticity $(d\nu/\nu)_{h\nu}$	-2.6
H. chromaticity $(d\nu/\nu)_{h,\nu}$ V. chromaticity (dp/p)	0.2
Synchrotron tune (ν_{syn})	None: rf off on flattop
Transition energy (γ_{tr})	2.2
Transverse coupling	No skew-quads or solenoids
Cooling	Off
Orbit flatness (Δy_{max})	±5 mm
Mag. Align. error $(\Delta \theta_{\text{max}})$	<0.1 mrad
Injection momentum (p_i)	0.538 GeV/c
Acceleration rate (dp/dt)	$1.15 (\text{GeV}/c) \text{s}^{-1}$

Gerco Onderwater, KVI/University of Groningen

Team

Fanglei Lin

- Alfredo Luccio
- **Bill Morse**
- Nikolay Malitsky
- Gerco Onderwater
- Yuri Orlov
- Vadim Ptitsyn
- Yannis Semertzidis analytic
- analytic **Richard Talman**

Mad/Spink/UAL BNL (now NSLS) BNL **BNL BNL COSY-Infinity** KVI Cornell BNL BNL Cornell

Need dedicated/fulltime manpower!

Spink

UAL

UAL

analytic

analytic

Cost Estimate

Item	Amount requested [k\$]	Comments
Postdoc	300	
Graduate student	135	
Stationing	105	
Travel to BNL	45	6 person-trips per year
Travel to COSY	25	3 expt's / 2wks / 3 people
Conference visits	15	2 people-conf. / year
Computing & DAQ facilities	35	Computer + electronics
Sub-total	705	
Miscellaneous (30%)	210	Overheads, unforseen
Total	916	

Simulation Plan

Choose modeling tools

Need well-understood simulation tool that approximates relevant physical phenomena with sufficient precision.

Identify causes & cures for depolarization

Identify all relevant causes for spin decoherence. Apply this knowledge to develop a strategy that guides preparation of ring lattice with the longest possible spin coherence time

Experimentally verify results

Demonstrate robustness of strategy despite limited knowledge of imperfections. Develop tools to expose these imperfections.

