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Abstract

We review several aspects of flavour-diagonal CP-violation, focussing on the role played by
the electric dipole moments (EDMs) of leptons, nucleons, atoms, and molecules, which con-
stitute the source of several stringent constraints on new CP-violating physics. We dwell spe-
cifically on the calculational aspects of applying the hadronic EDM constraints, reviewing in
detail the application of QCD sum-rules to the calculation of nucleon EDMs and CP-odd
pion—nucleon couplings. We also consider the current status of EDMs in the Standard Model,
and on the ensuing constraints on the underlying sources of CP-violation in physics beyond
the Standard Model, focussing on weak-scale supersymmetry.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The search for violations of fundamental symmetries has played a central role in
the development of particle physics in the 20th century. In particular, tests of the dis-
crete symmetries, charge conjugation C, parity P, and time-reversal 7, have been of
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paramount importance in establishing the structure of the Standard Model (SM).
Perhaps the most famous example was the discovery of parity violation in the weak
interactions [1], which led to the realization that matter fields should be combined
into asymmetric left- and right-handed chiral multiplets, one of the cornerstones
of the Standard Model. The observation of CP-violation, via the mixing of Kaons
[2], also subsequently provided strong evidence for the presence of three quark
and lepton generations, via the Kobayashi-Maskawa mechanism [3], prior to direct
experimental evidence for the third family.

It is interesting to recall that one of the first tests of this kind, actually pre-dating
the discovery of parity violation in the weak interactions, was a probe of parity
invariance within the—at the time unknown—theory of the strong interactions. In
1949, Purcell and Ramsey argued, in a way that at the time was not fully appreciated
that, lacking a theory of the strong interactions, there was no way to “derive’ parity
invariance and thus one must confirm parity conservation by experimental tests, or
discover the lack thereof, rather than rely on a belief that nature ““must be symmet-
ric.” As a probe of parity violation, Purcell and Ramsey proposed that one consider
an intrinsic electric dipole moment of the neutron. Placed in a magnetic and electric
field, a neutral non-relativistic particle of spin S can be described by the following
Hamiltonian:

S S
H=—-uB-=—dE.=. 11
B - < 5 (1.1)
Under the reflection of spatial coordinates, P(B-S)=B-S, whereas
P(E-S)=—E-S. The presence of a non-zero d would therefore signify the existence

of parity violation. It was soon realized that d also breaks time-reversal invariance.
Indeed, under time reflection, 7(B-S)=B"-S and T(E-S)= —E - S. Therefore a
non-zero d may exist if and only if both parity and time-reversal invariance are
broken. Analysis of the existing experimental data on neutron scattering from spin
zero nuclei led to the conclusion, |d,| < 3 x 10~ '8¢ cm [4]. Such a result probes physics
at distances much shorter than the typical scale of nuclear forces ~1 fm, or the Comp-
ton wavelength of the neutron. This initial limit on the neutron EDM implied that P
and T were good symmetries of the strong interactions at percent-level precision.

It was only some 25 years later with the emergence of QCD that the possibility
of T-violation (or CP-violation, on assuming the CPT theorem) in the strong inter-
actions had some theoretical underpinning. Indeed, QCD allows for the addition of
a dimension-four term, known as the 0O-term, with a dimensionless coefficient 0
which, if non-zero, would signify the violation of both P and 7. This term is some-
what unusual, being a purely topological boundary term, but its value determines a
superselection sector in QCD [6] and its presence is intrinsically tied to an elegant
feature of the theory, namely the mechanism via which the mass of the ' meson is
lifted well-above the scale one might naturally expect given its apparent status as a
Goldstone boson [5]. However, were 0 ~ (1), one would predict a neutron EDM
of sufficient size to ensure that the original analysis of Purcell and Ramsey would
have detected it. In fact 6 is now known to be tuned to better than one part in 10°!
This tuning is the well-known strong CP problem of the Standard Model, which
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has been with us for more than 25 years, and has led to interesting dynamical
mechanisms for its resolution; some of these have important consequences and pre-
dictions for other aspects of particle physics and cosmology.

The required tuning of this CP-odd parameter in QCD comes into sharp focus
when we put QCD into its rightful place within the Standard Model, which necessar-
ily means coupling it to the electroweak sector and massive quarks in particular. In
this case the physical value of 0 acquires a contribution from the overall phase of the
quark mass matrix. In this sense the strong CP problem can be phrased as the ab-
sence, to high precision, of flavour-diagonal CP-violation within the Standard Model.
This situation could not contrast more strongly with the situation in the flavour-
changing sector, which is where all currently observed CP-violating effects reside. In-
deed, the original discovery of CP-violation in the system of neutral Kaons [2] can be
explained within this sector through the elegant and indeed rather minimal model of
Kobayashi and Maskawa, which links CP-violation to the single physical phase in
the unitary CKM mixing matrix describing transitions between the three generations
of quarks [3]. This picture has recently received significant support—indeed essential
confirmation—through experiments using neutral B mesons [7]. In contrast to 6, the
phase in the CKM mixing matrix requires no tuning at all—its effects are nicely
masked in the appropriate channels by the flavour structure of the Standard Model.
Indeed, it turns out that the predictions for any CP-violating effect in the flavour-
conserving channel induced by CKM mixing are minuscule, thus denying any hopes
of detecting the experimental manifestation of CKM physics in these channels in the
foreseeable future.

Searches for flavour-diagonal CP-violation, while insensitive to the CKM phase,
thus inherit on the flip-side the status as one of the unique, essentially “back-
ground” free, probes of new physics. Electric dipole moments, through continuous
experimental development since the work of Purcell and Ramsey, remain our most
sensitive probes of this sector. All existing searches have failed to detect any intrin-
sic EDM, and indeed the precision to which EDMs are now known to vanish is
remarkable, and sufficient to render them some of the most important precision
tests of the Standard Model. In this more general context, the strong CP problem,
associated with the tuning of 6, becomes just the most highly tuned example
among many possible CP-odd operators which could contribute to the observable
EDMs of nucleons, leptons, atoms, and molecules. Anticipating the presence of
such CP-odd sources is not without motivation. Indeed, one of the strongest moti-
vations comes from cosmology, where the success of the inflationary scenario, to-
gether with the observed cosmological dominance of baryons over antibaryons,
suggests that a non-zero baryon number was generated dynamically in the early
Universe. According to the Sakharov criteria [8], this requires a source of CP-vio-
lation, and within the Standard Model, neither the Kobayashi-Maskawa phase nor
the 0-term can create conditions that would lead to the generation of an apprecia-
ble net baryon number. This strongly suggests the presence of another, yet to be
discovered, source of CP-violation in nature. Although exceptions exist, e.g., the
leptogenesis scenario, EDMs generally provide a highly sensitive diagnostic for
these new CP-odd sources.
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The second prominent motivation arises from theoretical prejudices about the
physics of the Fermi scale, i.e., the mechanism for electroweak symmetry breaking,
currently the focus of intense theoretical and experimental work. There are several
theoretical motivations to believe that new physics, beyond the SM Higgs boson,
should become apparent at, or just above, this scale, with weak-scale supersymmetry
(SUSY) being a prominent example. Flavour-diagonal CP-violation constitutes a
powerful probe of these scales, since any new physics need not provide the same fla-
vour-dependent suppression factors as does the SM, while the SM itself constitutes a
negligible background. These precision tests are thus highly complementary to direct
searches at colliders. A rough estimate, based on the decoupling of new physics as
the inverse square of its characteristic energy scale A, currently gives us the possibil-
ity to probe an order one CP-violating source at up to A ~ 10° GeV. In many weakly
coupled theories, such as SUSY, this scale is somewhat lower, but often is still be-
yond the reach of existing and/or projected colliders. As with the link between the
Kobayashi-Maskawa mechanism and the three-generation structure, one might
hope that flavour-diagonal CP-violation, or perhaps the lack thereof, will tell us
something profound about the matter sector.

The level of experimental precision achieved in EDM searches has improved dra-
matically since the early work of Purcell and Ramsey, and has been broadened to
many atomic and nuclear quantities. Indeed, following significant progress through-
out the past decade, the EDMs of the neutron [9], and of several heavy atoms and
molecules [10-15], have been measured to vanish to remarkably high precision.
From the present standpoint, it is convenient to classify the EDM searches into three
main categories, distinguished by the dominant physics which would induce the
EDM, at least within a generic class of models. These categories are: the EDMs of
paramagnetic atoms and molecules; the EDMs of diamagnetic atoms; and the EDMs
of hadrons, and nucleons in particular. For these three categories, the experiments
that currently champion the best bounds on CP-violating parameters are the atomic
EDMs of thallium and mercury and that of the neutron, as listed in Table 1.

The upper limits on EDMs obtained in these experiments can be translated into
tight constraints on the CP-violating physics at and above the electroweak scale,
with each category of EDM primarily sensitive to different CP-odd sources. For
example, the neutron EDM can be induced by CP-violation in the quark sector,
while paramagnetic EDMs generally result from CP-violating sources that induce
the electron EDM. Despite the apparent difference in the actual numbers in Table
1, all three limits on d,, dy, and dy, actually have comparable sensitivity to funda-
mental CP-violation, e.g., superpartner masses and CP-violating phases, and thus

Table 1

Current constraints within three representative classes of EDMs

Class EDM Current bound

Paramagnetic 205 |dr] <9 107%e cm (90% C.L.) [10]
Diamagnetic 19Hg ldgl <2 x 1072 cm (95% C.L.) [11]

Nucleon n |d,] < 6x107%% cm (90% C.L.) [9]
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play complementary roles in constraining fundamental CP-odd sources. This fact
can be explained by the way the so-called Schiff screening theorem [16] is violated
in paramagnetic and diamagnetic atoms. The Schiff theorem essentially amounts
to the statement that, in the non-relativistic limit and treating the nucleus as
point-like, the atomic EDMs will vanish due to screening of the applied electric field
within a neutral atom. The paramagnetic and diamagnetic EDMs result from viola-
tions of this theorem due, respectively, to relativistic and finite-size effects, and in
heavy atoms such violation is maximized. For heavy paramagnetic atoms, i.e., atoms
with non-zero electron angular momentum, relativistic effects actually result in a net
enhancement of the atomic EDM over the electron EDM. For diamagnetic species,
the Schiff screening is violated due to the finite size of the nucleus, but this is a weak-
er effect and the induced EDM of the atom is suppressed relative to the EDM of the
nucleus itself. These factors equilibrate the sensitivities of the various experimental
constraints in Table 1 to more fundamental sources of CP-violation.

In this paper, we will review in detail the calculational aspects of applying the
current bounds on EDMs to constrain new CP-violating sources. In order to make
the discussion as systematic as possible, we will proceed by working our way up-
wards in energy scale, using several effective CP-odd Lagrangians at the relevant
thresholds. In the next section, we begin by discussing the current status of the
experimental constraints within three generic classes, namely the neutron EDM,
and the EDMs of paramagnetic and diamagnetic atoms, and describing the contri-
butions to these EDMs at the nuclear scale. We then move to the QCD scale and
introduce an effective CP-odd effective quark—gluon Lagrangian which plays an
important role in the subsequent analysis. The leading term in this effective theory,
of dimension four, is the 0-term and we briefly review the strong CP-problem and
some of its proposed resolutions. We then turn in Section 3 to QCD computations
of the EDMs, and dwell on some of the calculational aspects which are currently
some of the major sources of uncertainty in the application of EDM constraints
(for a detailed discussion of many other aspects we refer the reader to [17]). In Sec-
tion 4, we turn to the generation of these observables within specific models of CP-
violation, reviewing first the significant sources of suppression within the Standard
Model, and then focussing on weak-scale supersymmetry, and the MSSM in par-
ticular, as the source of new physics at the electroweak scale. We discuss the gen-
eric constraints that EDMs impose on combinations of CP-violating parameters in
the SUSY-breaking sector, and also explore some additional effects which may
arise in special parameter regimes. We also emphasize the stringent EDM con-
straints on combined sources of CP- and flavour-violation in more general models.
Finally, we conclude in Section 5 with an outlook on future experimental and the-
oretical developments.

2. EDMs as probes of CP-violation

The majority of EDM experiments are performed with matter as opposed to
anti-matter. Therefore, the conclusion about the relation between d and CP-viola-
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tion relies on the validity of the CPT theorem. The interaction dE - S for a spin 1/2
particle then has the following relativistic generalization:

S I—
Hyp-oaq = —dE'§ - L= —dill/a“‘yslme,. (2.2)

Parenthetically, it is worth remarking that the precision of EDM experiments has
now reached a level sufficient to provide competitive tests of CPT invariance, since
one can also consider a CP-even, but CPT-odd, relativistic form of dE - S, namely
L = dyytyspF wh', with a preferred frame n"=(1,0,0,0), which spontaneously
breaks Lorentz invariance and CPT.

The problem of calculating an observable EDM from the underlying CP-violation
in a given particle physics model can be conveniently separated into different stages,
depending on the characteristic energy/momentum scales. At each step the result can
be expressed as an effective Lagrangian in terms of the light degrees of freedom with
Wilson coefficients that encode information about CP-violation at higher-energy
scales. As usual in effective field theory, it is convenient to classify all possible effec-
tive CP-violating operators in terms of their dimension, with the operators of lowest
dimension usually leading to the largest contributions. This logic may need to be re-
fined if symmetry requirements imply that certain operators are effectively of higher
dimension than naive counting would suggest. This is actually the case for certain
EDM operators due to gauge invariance, as discussed in more detail below.

We will present this analysis systematically in order of increasing energy scale,
working our way upwards in the dependency tree outlined in Fig. 1, which allows
us to remain entirely model-independent until the final step where some high-scale
model of CP-violation can be imposed and then subjected to EDM constraints.

Energy
A

TeV ——

fundamental CP—odd phases

aco - 7

S a
nuclear —— N
CsprT R ' 8N neutron EDM

RN |

EDMs of EDMs of
atomic —— paramagnetic diamagnetic
atoms (T1) atoms (Hg)

Fig. 1. A schematic plot of the hierarchy of scales between the CP-odd sources and three generic classes of
observable EDMs. The dashed lines indicate generically weaker dependencies.
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2.1. Observable EDMs

Let us begin by reviewing the lowest level in this construction, namely the precise
relations between observable EDMs and the relevant CP-odd operators at the nucle-
ar scale. At leading order, such effects may be quantified in terms of EDMs of the
constituent nucleons, d, and d, (where the neutron EDM is already an observable),
the EDM of the electron d,, and CP-odd electron—nucleon and nucleon-nucleon
interactions. In the relevant channels these latter interactions are dominated by pion
exchange, and thus we must also consider the CP-odd pion—nucleon couplings g,y
which can be induced by CP-odd interactions between quarks and gluons. To be
more explicit, we write down the relevant CP-odd terms at the nuclear scale

ff:f?dear =ZLeim + Law + Len, (2.3)
which can be split into terms for the nucleon (and electron) EDMs
i _
Lam==75 Y _ dil(Fo)sy, (24)
i=e,p,n

the CP-odd pion—nucleon interactions
Loy = ZUWNT N7 + g NN7° + g2 (N1*N7* — 3BNTNaP), (2.5)
and finally CP-odd electron—nucleon couplings
Lov = CVeipseNN + CVeeNipsN + CVeyppeat eNa™ N
+ Cél)éiyseN13N + Cg)EeNiy513N + C(Tl)e,u,aﬁéa“"elva“ﬂr3]\]. (2.6)

In certain rare cases, CP-odd nucleon—nucleon forces are not mediated by pions, in
which case the effective Lagrangian must be extended by a variety of contact terms,
e.g., NNNiysN, and the like.

The dependence of the observable EDMs on the corresponding Wilson coeffi-
cients relies on atomic and nuclear many-body calculations which would go beyond
the scope of this review to cover here (see the reviews [17,18] for further details).
However, we will briefly summarize the current status of these calculations, before
turning to our major focus which is the calculation of these coefficients in terms of
higher scale CP-odd sources.

As alluded to earlier on, it is convenient to split the discussion into three parts,
corresponding roughly to the three classes of observable EDMs which currently pro-
vide constraints at a similar level of precision; namely: EDMs of paramagnetic atoms
and molecules, EDMs of diamagnetic atoms, and the neutron EDM.

2.1.1. EDMs of paramagnetic atoms—thallium EDM

Paramagnetic systems, namely those with one unpaired electron, are primarily
sensitive to the EDM of this electron. At the non-relativistic level, this is far from
obvious due to the Schiff shielding theorem which implies, since the atom is neutral,
that any applied electric field will be shielded and so an EDM of the unpaired elec-
tron will not induce an atomic EDM. Fortunately, this theorem is violated by rela-
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tivistic effects. In fact, it is violated strongly for atoms with a large atomic number,
and even more strongly in molecules which can be polarized by the applied field. For
atoms, the parametric enhancement of the electron EDM is given by [19,20,18]

732

J(J +1/2)(J + 1)2de’

dpara(d,) ~ 10 (2.7)

up to numerical @(1) factors, with J the angular momentum and Z the atomic num-
ber. This enhancement is significant, and for large Z, the applied field can be en-
hanced be a factor of a few hundred within the atom. This feature explains why
atomic systems provide such a powerful probe of the electron EDM, since the “ef-
fective” electric field can be much larger than one could actually produce in the lab.

Although the electron EDM is the predominant contributor to any paramagnetic
EDM is most models, one should bear in mind that other contributions may also be
significant in certain regimes. In particular, significant CP-odd electron—nucleon
couplings may also be generated, due for example to CP-violation in the Higgs sec-
tor. Among these couplings, Cg plays by far the most important role for paramag-
netic EDMs because it couples to the spin of the electron and is enhanced by the
large nucleon number in heavy atoms.

Among various paramagnetic systems, the EDM of the thallium atom currently
provides the best constraints on fundamental CP-violation. A number of atomic cal-
culations [20-22] (see also [17] for a more complete list) have established the relation
between the EDM of thallium, d,, and the CP-odd electron-nucleon interactions Cyg:

dr = —585d, — e 43 GeV x (CY) —0.2¢\") (2.8)

with Cg expressed in isospin components. The relevant atomic matrix elements are
known to within 10-20% [18].

As we discuss later on, current experimental work is focussing on the use of para-
magnetic molecules, e.g., YbF and PbO [15,23], which can provide an even larger
enhancement of the applied field due to polarization effects, have better systematics,
and may bring significant progress in measuring/constraining d, and Cs.

2.1.2. EDMs of diamagnetic atoms—mercury EDM

EDMs of diamagnetic atoms, i.e., atoms with total electron angular momentum
equal to zero, also provide an important test of CP-violation [17]. In such systems
the Schiff shielding argument again holds to leading order. However, in this case it
is violated not by relativistic effects but by finite-size effects, namely a net misalign-
ment between the distribution of charge and EDM (i.e., first and second moments) in
the nucleus of a large atom (see e.g. [18] for a review). However, in contrast to the
paramagnetic case, this is a rather subtle effect and the induced atomic EDM is con-
siderably suppressed relative to the underlying EDM of the nucleus.

To leading order in an expansion around the point-like approximation for the nu-
cleus, the contributions arise from an octopole moment (which is only relevant for
states with large spin, and will not be relevant for the cases considered here), and
the Schiff moment S, which contributes to the electrostatic potential
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Ve = 4nS - V(7). (2.9)
CP-odd nuclear moments, such as S, can arise from intrinsic EDMs of the constit-
uent nucleons and also CP-odd nucleon interactions. It turns out that the latter
source tends to dominate in diamagnetic atoms and thus, since such interactions
are predominantly due to pion exchange, we can ascribe the leading contribution
to CP-odd pion—nucleon couplings ngVN for i=0, 1,2 corresponding to the isospin.

There are of course various additional contributions, which are generically sub-
leading, but may become important in certain models. Schematically, we can repre-
sent the EDM in the form

dgia = daia(S[&zan dn), Cs, Cp, Cr,d.), (2.10)

where we note that electron—nucleon interactions may also be significant, as is the
electron EDM itself [17] (although in practice the electron EDM tends to be more
strongly constrained by limits from paramagnetic systems and thus is often ne-
glected).

Currently, the strongest constraint in the diamagnetic sector comes from the
bound on the EDM of mercury—at the atomic level, this is in fact the most precise
EDM bound in existence. As should be apparent from the above discussion, comput-
ing the dependence of dyy, on the underlying CP-odd sources is a non-trivial problem
requiring input from QCD and nuclear and atomic physics. In particular, the com-
putation of S(g,yy) is a non-trivial nuclear many-body problem, and has recently
been reanalysed with the result [24]

S('Hg) = —0.0004gg” — 0.055gg"" +0.009gz® e fm?, (2.11)

where g = g,y is the CP-even pion-nucleon coupling, and g = gf;’)w denote the
CP-odd couplings. The isoscalar and isotensor couplings have been significantly re-
duced relative to previous estimates, while the isovector coupling—which generically
turns out to be most important—has been less affected (within a factor 2). This none-
theless provides some indication of the difficulties inherent in the calculation, and
makes precision estimates more difficult. Moreover, it is worth noting that the sup-
pression of the overall coefficient in front of gg(® below O(0.01) is the result of mu-
tual cancellation between several contributions of comparable size, and therefore is
in some sense accidental and may not hold in future refinements of these nuclear cal-
culations.
Putting the pieces together, we can write the mercury EDM in the form

dyg = —(1.8 x 107* GeV Neg'ly +1072d, + (3.5 x 107 GeV)eCy,  (2.12)

where we have limited attention to the isovector pion—nucleon coupling and Cs which
turns out to be the most important for CP-violation in supersymmetric models.

2.1.3. Neutron EDM

The final class to consider is that of the neutron itself, whose EDM can be
searched for directly with ultracold neutron technology, and currently provides
one of the strongest constraints on new CP-violating physics. In this case, there is
clearly no additional atomic or nuclear physics to deal with, and we must turn di-
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rectly to the next level in energy scale, namely the use of QCD to compute the depen-
dence of d, on CP-odd sources at the quark—gluon level. This statement also applies
to many of the other quantities we have introduced thus far, including in particular
the CP-odd pion—nucleon coupling. Indeed, it is only paramagnetic systems that are
partially immune to QCD effects, although even there we have noted the possible rel-
evance of electron—nucleon interactions.

2.2. The structure of the low-energy Lagrangian at 1 GeV

The effective CP-odd flavour-diagonal Lagrangian normalized at 1 GeV, which is
taken to be the lowest perturbative quark—gluon scale, plays a special role in EDM
calculations. At this scale, all particles other than the u, d, and s quark fields, gluons,
photons, muons, and electrons can be considered heavy, and thus integrated out. As
a result, one can construct an effective Lagrangian by listing all possible CP-odd
operators in order of increasing dimension

Lett = Ldim=4 + Lgim=5 + Ldim=6 + - (2.13)

There is only one operator at dimension four, the QCD 0-term

L iims = G (2.14)

32
where on account of the axial U(1) anomaly, the physical value of —denoted 0—
also includes the overall phase of the quark mass matrix

0= 0+ Arg DetM,. (2.15)

The anomaly can be used to shuffle contributions between the 0-term and imaginary
quark masses, but only the combination 0 is physical and we choose to place it in front
of GG taking Det M, to be real. It should be apparent that if any of the quarks were
massless, we could then rotate § away and it would have no physical consequences.

At the dimension-five level, there are (naively) several operators: EDMs of light
quarks and leptons and colour electric dipole moments of the light quarks

L imes = — Z i (Fo)ysy Z dg,(Go)ysis, (2.16)
i=u,d,s,eu i=u,d,s
where (Fo) and (Go) are a shorthand notation for F,,6*" and G} “a"".

In fact, in most models these operators are really dimension-six operators in dis-
guise. The reason is that, if we proceed in energy above the electroweak scale and
assume the system restores SU(2) x U(1) as in the Standard Model, gauge invariance
ensures that these operators must include a Higgs field insertion [25]. Indeed, were
we to write the basis of down quark EDMs and CEDMs above the electroweak
scale, we should specify the following list of dimension-six operators [25]

P = 2‘7[2@ 24" (Bo) + dE¥ ' (W) + dEV i(G)| (®/v)Dyg + hoc.,
(2.17)
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which are defined in terms of left-handed doublets Q; = (U, D), and right-handed
singlets Dy and the Higgs doublet @, and in terms of the U(1), SU(2), and SU(3)
field strengths B,,, W), and Gj,.

The lesson we draw from (2.17) with regard to EDMs is that, if generated, these
operators must be proportional to the Higgs v.e.v. below the electroweak scale, and
consequently must scale at least as 1/M> for M > M. In practice, this feature can
also be understood in most models by going to a chiral basis, where we see that these
operators connect left- and right-handed fermions, and thus require a chirality flip.
This is usually supplied by an insertion of the fermion mass, i.e., dy~ m/MZ, again
implying that the operators are effectively of dimension six.

Consequently, for consistency we should also proceed at least to dimension six
where we encounter the CP-odd three-gluon Weinberg operator and a host of pos-
sible four-fermion interactions, (,I’ (//l.)(lﬁjil" 7s¥;), where I' denotes several possible
scalar or tensor Lorentz structures and/or gauge structures, which are contracted be-
tween the two bilinears. We limit our attention to a small subset of the latter that will
be relevant later on

1 abe ra 3PP e 7 7o
& dim—6 = §W A bG,wG Gﬁ' + Z Cij(‘ﬂf‘pi)(‘//jlyslpj) +-- (2.18)
ij

In this formula, the operators with Cj; are summed over all light fermions. Going
once again to a chiral basis, we can argue as above that the four-fermion operators,
which require two chirality flips, are in most models effectively of dimension eight.
Nonetheless, in certain cases they may be non-negligible.

2.3. The strong CP problem

The leading dimension-four term in the CP-odd Lagrangian given in Eq. (2.14)
has a special status, in that it is a marginal operator, unsuppressed by any heavy
scale. It is also a total derivative—we can write GG = 9,4 with #" the Chern—
Simons current—and thus plays no role in perturbation theory. However, " is
not invariant under so-called large gauge transformations and thus one may ex-
pect that the 6-term becomes relevant at the non-perturbative level. That it does
so can be argued at the semi-classical level using instanton methods, and more
generally can be understood within QCD via this relation to the U(1) problem.
In particular, we note that the same operator GG arises as the O-term in the
Lagrangian, and also as an anomaly for the axial U(1) current #%, i.e., for mass-
less quarks

0] ~uva
o *S a H
074 =266

- (2.19)

This leads to an intrinsic link between two physical phenomena: namely the 6-depen-
dence of physical quantities and the absence of a light pseudo-Goldstone boson asso-
ciated with spontaneous breaking of the axial current #/ [5] (the corresponding
state, the #’ is instead rather heavy, m, > m,). Although it would take us too far
afield to review the story of this link in detail (see e.g. [5,26-30]), let us note that
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in the large N limit, as discussed by Witten and Veneziano [27,28], use of the anom-
aly equation leads to a simple relation that exemplifies this connection

2 N YM

m, =t (dE> : (2.20)
T f2 \d6*/ o

where N¢is the number of flavours. This relation expresses the #’ mass in terms of the

0-dependence of the vacuum energy in a theory with no light quarks.

In turn, if we now take for granted that m, > m,, use of the anomaly relation al-
lows precise calculations of the 0-dependence of physical observables [26,29]. In par-
ticular, one can obtain an expression for the §-dependence of the vacuum energy
E(0). At leading order in 0,

0) =—0 __L—z. beoic (% ca0). B 66
E(0) = 507 1(0) = — 50 lim / a*ve (2 GG, 2 66(0) ), (2.21)

where y(0) is known as the topological susceptibility. Making use of the anomaly
relation and assuming m, > m,, this may be evaluated as [29]

E(0) = — % 0m.(qq) + 0(0°,m?), (2.22)

where (gq) is the quark vacuum condensate and m, is the reduced quark mass, given
by

m,mgq

(2.23)

m, = ,

m, + my
in two-flavour QCD. This dependence on the reduced quark mass can be straightfor-
wardly understood on recalling that 0 becomes unphysical as soon as any quark
eigenstate becomes massless. Indeed, we see that the result is essentially fixed up
to an order one coefficient by the dictates of the anomalous Ward identity. On gen-
eral grounds, we would expect E(0) ~ gzm*Afmd, where Ap,gq is the characteristic ha-
dronic scale required on dimensional grounds, which the calculation above identifies
with the quark condensate.

The quadratic dependence of the vacuum energy on 0, since it is determined effec-
tively by a two-point function, implies that generic CP-odd observables will inherit a
leading linear dependence on 0. In particular, although we will discuss a more de-
tailed calculation in the next section, we can obtain a similar order of magnitude esti-
mate for the neutron EDM
Om.,

2
had

d, ~e ~0-(6x107") ecm, (2.24)

where we identified An,q =m, and used conventional values for the light quark
masses. The experimental bound then translates into the limit

0] <107°. (2.25)

This remarkable degree of tuning in the value of 0 then constitutes the strong CP
problem. 1t is aggravated by the fact that 0 is a dimensionless parameter, and thus
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can receive corrections from unspecified sources of CP-violation at an arbitrarily
high scale.

If we discard the possibility that this tuning is simply accidental, and search for a
theoretical explanation for why 0 is very small, then we find that the existing theo-
retical attempts to solve the strong CP problem can be divided into those that are
based either on continuous symmetries or on spontaneously broken discrete symme-
tries. To some extent, these two possibilities can also be motivated by two extreme
reference points, namely when 0 is either fully rotated to sit in front of GG, or to
manifest itself as an overall phase of the quark mass matrix. Although inherently ba-
sis-dependent, the former viewpoint suggests that 6 is essentially tied to the gluonic
structure of QCD, while the latter emphasizes instead its links to the flavour sector.

2.3.1. Dynamical relaxation of 0

The energy of the QCD vacuum as a function of 0 (2.22) has a minimum at § = 0.
Thus the relaxation of the f-parameter to zero is possible if one promotes it to a
dynamical field, called the axion [31-33]. This is motivated by the assumption that
the Standard Model, augmented by appropriate additional fields, admits a chiral
symmetry U(1)pq, acting on states charged under SU(3).. When this symmetry is
spontaneously broken at a necessarily high-scale f,, a pseudo-scalar Goldstone bo-
son—the axion—survives as the only low-energy manifestation. Symmetry dictates
that the essential components of the axion Lagrangian are very simple

1 a(x) o _ ~
== fa+—+ — 2.2
L, 26Ma6 a+ T GG, (2.26)
leading to a field-dependent shift of 0
- - a
0—0+—. 2.27
7 (2.27)

If the effects of non-perturbative QCD are ignored, this Lagrangian possesses a symme-
try, a — a + const., and a is a massless field with derivative couplings to the SM fields,
ie., auax/ixyﬂyslﬁ, that are not important for the solution of the strong CP problem.

Below the QCD scale, one finds that U(1)pg is explicitly broken by the chiral
anomaly, and thus the axion is in reality a pseudo-Goldstone boson and acquires a
potential. The form of this potential can be read directly from our earlier discussion
of the 0-dependence of the vacuum energy, namely E(6) ~ %(0)0?/2 + - - - Accounting
for the shift in (2.27), the effective axion Lagrangian becomes

2
P = %a#aaﬂa - % 2(0) <0 + }’) T (2.28)
We see from (2.27) that the vacuum expectation value of the axion field {a) renormal-
izes the value of 0 so that all observables depend on the (0 4 (a)/f,) combination. At
the same time, such a combination must vanish in the vacuum as it minimizes the
value of the axion potential in (2.28). This dynamical relaxation then solves the
strong CP problem. This cancellation mechanism works independently of the “ini-
tial”” value of 0, which is why it is very appealing. However, the excitations around
{a) correspond to a massive axion particle with
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)", (2.29)
a formula analogous to that discussed earlier for #' (2.20). For large f, the axion is
very light and thus has significant phenomenological consequences. Indeed, the neg-
ative results of direct and indirect searches for “invisible axions” [34,35], where f, is a
free scale as we have been discussing here, have now imposed a rather large bound,
f..> 10" GeV, while cosmological constraints imply, on the contrary, that it cannot
be too much larger than this (see e.g. [36]).

An aspect of the axion mechanism that is perhaps not stressed as often as it
should be is that there can be other contributions to the axion potential which shift
its minimum away from (0 4 a/f,) = 0 [37]. In particular, in the analysis above, we
included only the leading term corresponding to the vacuum energy. However, if
there are other CP-odd operators ()cp present at low scales, QCD effects may also
generate terms linear in 6 via non-zero mixed correlators of the form

m, ~

e 0) = =i lim [ d'e(O7(GG(), Ccr(0)]0) (230)

An example of this type is the quark chromoelectric dipole moment,

Ocp = d,qGoysq, appearing in (2.16). The axion potential is then modified

1 . 1o (o a\
7 = 30t~ 1 O)(0- 1) 520 (044 ) 4 @)

and exhibits a minimum shifted from zero. The size of this induced contribution to 0,
ie., Oina = —%0,,(0)/x(0), is linearly related to the coefficient of the CP-odd operator
Ocp generating y,,(0). These effects therefore need to be taken into account in com-
puting the observable consequences of CP-odd sources in axion scenarios, and will
be important for us later on.

Before moving on, it is worth recalling that, were it realized, the simplest solution
to the strong CP problem would fall into the class we are discussing, namely the pos-
sibility that m,, = 0 in the Standard Model Lagrangian normalized at a high-scale M,
or more generically, det(Y,(M)) = 0. In this situation, the Lagrangian already pos-
sesses the appropriate chiral symmetry without the addition of extra fields and, as we
have discussed, 0(M) then becomes unphysical. Since the identification of light
quark masses is indirect, using meson and baryon spectra and chiral perturbation
theory, the possibility that m, =0 has been debated at length in the literature
[38,39], but is strongly disfavoured by conventional chiral perturbation theory anal-
ysis, with recent results implying m,/m,;= 0.553 & 0.043 [40], and this conclusion is
beginning to be backed up by unquenched (but chirally extrapolated) lattice simula-
tions which suggest similar values, m,/m; = 0.43 0.1 [41].

2.3.2. Engineering 0 ~ 0

Another way to approach the strong CP problem is to assume that either P or CP
or both are exact symmetries of nature at some high-energy scale. Then one can
declare that GG be zero at this high scale as a result of symmetry. Of course, to
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account for the parity- and CP-violation observed in the SM, one has to assume that
these symmetries are spontaneously broken at a particular scale A pcp).

The model building problem that this sets up—one which has been made partic-
ularly manifest by the consistency of the recently observed CP-violation in B-meson
decays with the KM mechanism—is that one needs to ensure that the subsequent
corrections to 6 are small, while still allowing for an order one KM phase. Symmetry
breaking at A pcp) may generate the 0-term at tree level through, e.g., imaginary cor-
rections to the quark mass matrices M,, and M,

0 ~ Arg Det(M,M,) + - - (2.32)

where such corrections could affect either the Yukawa couplings Y, or the Higgs
vacuum expectation values, v, (in the SM v, = v}), while the ellipsis denotes the
phases of other coloured fermions. For comparison, the SM CKM-type phase (in ba-
sis-invariant form) is [42]

Oxnm ~ Arg Det[M, M, M M} (2.33)

u?

and one is then led to consider models for flavour in which the second phase (2.33)
can be large, as is required, while the first (2.32) vanishes, or is at least highly sup-
pressed.

One class of models uses exact parity symmetry at some high-energy scale which
implies L <> R reflection symmetry in the Yukawa sector and thus hermitian Yuk-
awa matrices which do not contribute to 0 [43]. However, this necessitates the exten-
sion of the SM gauge group to incorporate SU(2)g, and the reality of v, comes as
an additional constraint on the model which can be achieved, e.g., in its supersym-
metric versions [44,45]. One can instead just demand that CP be an exact symmetry
at high scales, which is then broken spontaneously and CP-violation enters via com-
plex vacuum expectation values of additional scalar fields. Models of this type can be
constructed in which the mass matrices are complex, but have a real determinant
[46,47], although often it is difficult to obtain a sufficiently large CKM phase. An
interesting recent suggestion for getting round this problem is to use low-scale super-
symmetry breaking [48] (see also earlier ideas [49,50]), while CP is broken spontane-
ously at a much higher scale where SUSY is still exact. Strong interactions in the
CP-breaking sector can then generate a large CKM phase, while a SUSY non-ren-
ormalization theorem ensures that 0 is not generated until the much lower scale
where SUSY is broken.

All models of the type discussed above, that attempt to solve the strong CP prob-
lem by postulating exact parity or CP at high scales, have to cope with the very tight
bound on 0. Indeed, it is not enough to obtain 0 = 0 at tree level, as loop effects at
and below Apcp) can lead to a substantial renormalization of the 0-term (see e.g.
[51,52]). If the effective theory reduces to the SM below the scale A pcp), the residual
low-scale corrections to the 0-term can only come via the Kobayashi-Maskawa
phase and the resulting value for 0(Jx)) is small. However, this does not guarantee
that the threshold corrections at A pcpy are also small, as they will depend on differ-
ent sources of CP-violation and do not have to decouple in the limit of large A pcp).
Such corrections are necessarily model-dependent. However, if the underlying theory
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is supersymmetric at the scale 4 pcp) and the breaking of supersymmetry occurs at a
lower-scale Asysy, one expects the corrections to  to be suppressed by power(s) of
the small ratio ASUSY/AP(CP) [48]

To summarize this section, we comment that the way the strong CP problem is
resolved affects the issue of how large additional non-CKM CP-violating sources
can be. The axion solution, as well as m, =0, generically allows for the presence
of arbitrarily large CP-violating sources above a certain energy scale. This scale is
determined by comparison of higher-dimension CP-odd operators (i.e., dim > 5) in-
duced by these sources with the current EDM constraints. On the contrary, models
using a discrete symmetry solution to the strong CP problem usually have tight
restrictions on the amount of additional CP-violation even at higher scales in order
to avoid potentially dangerous contributions to the 6-term.

3. QCD calculation of EDMs

Having discussed the 0-term in detail, we now take a more general approach and
consider all the relevant operators up to dimension six in the CP-odd Lagrangian
(2.13), and move to the next level in energy scale in Fig. 1. To proceed, we need
to determine the dependence of the nucleon EDMs, pion—nucleon couplings, etc.,
on these quark—gluon Wilson coefficients normalized at 1 GeV, i.e.

d,, = dn(é, d,‘, IJ,‘, w, C,‘j),

- N L (3.34)
&y = gnNN(07dlIaWa Cij)-

The systematic project of deducing this dependence was first initiated some 20 years
ago by Khriplovich and his collaborators, and is clearly a non-trivial task as it in-
volves non-perturbative QCD physics. It is nonetheless crucial in terms of extracting
constraints, and in particular one would like to do much better than order of mag-
nitude estimates so that the different dependencies of the observable EDMs may best
be utilized in constraining models for new physics.

It is this problem that we will turn to next. In order to be concrete, we will limit
our discussion to the nucleon EDMs and pion—nucleon couplings. The electron—nu-
cleon couplings, of which Cg plays the most important role for the EDM of para-
magnetic atoms, receive contributions from the semi-leptonic four-fermion
couplings C,. in (2.18), which may be determined straightforwardly using low-energy
theorems for the matrix elements of quark bilinears in the nucleon (see e.g. [53]).

Before we delve into some of the details of these calculations, it is worth outlining
a checklist of attributes against which we can compare the various techniques avail-
able for these calculations. We list below several features that such techniques would
ideally possess:

e Chiral invariance, including the relevant anomalous Ward identities, provides a
very strong constraint on the manner in which CP-odd sources may lead to phys-
ical observables in the QCD sector. As an example, distributing 0 arbitrarily
between GG and giysq cannot alter the prediction for d,(f), and the answer must
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also depend on the correct combination of quark masses, namely the reduced
mass m,. These symmetry constraints are therefore very powerful, and allow a
consistency check of the QCD estimates. Calculations are therefore more trans-
parent if these constraints can be “built in.”
¢ In addition to these chiral properties, the need to deal first of all with the tuning of
0 means that ideally the procedure should also correctly account for additional
contributions generated under PQ relaxation. As argued in the previous section,
the presence of CP-odd operators can shift the position of the axion expectation
value, leading to a new class of contributions, d,,(6;,q). More specifically, this is
the case for the CEDM sources, the presence of which implies that 0 must be
substituted not by zero but by 6;,q given by [54]:
5 -
Oina = —% > %, (3.35)

g=uds 94

independently of the specific details of the axion mechanism. Here m} determines
the strength of the following mixed quark—gluon condensate

£,(qGoq) = m(qq). (3.36)

Thus PQ symmetry may lead to additional vacuum contributions to the EDM.

e In order to make consistent use of the EDM constraints on fundamental CP-odd
phases, it would be desirable to have the same method available for obtaining esti-
mates of d, and g, in terms of the relevant Wilson coefficients. Since different
techniques have different sources of errors, use of the same method may allow
a reduction in the uncertainty between the relative coefficients which, given a suite
of different constraints, is ultimately more important than the overall uncertainty.

e Ideally, the method used should allow for a systematic estimate of the precision of
the relevant QCD matrix elements, i.e., within a framework allowing for a treat-
ment of higher-order subleading corrections.

e The generic dependence of d, on m, poses an additional challenge for obtaining
precise results, through the poorly known values of the light quark masses, and
their strong dependence on the QCD normalization scale. This uncertainty can
be ameliorated given a method which generates answers which depend only on
scale-invariant combinations such as, i.e., (m, + my){gq) = —f>m> or m,/m,.

e For EDMs, the contribution of operators that are not suppressed by the light
quark masses, m,, and my, is of considerable phenomenological interest. An ideal
method would lead to a quantitative prediction for whether d, or w can compete
with the contributions of light quark EDMs and CEDMs. A well-known example
in the 0" channel suggests that this may indeed happen: i.e.,
(N|mss|N) > (N|m,qq|N), where g = u,d.

Since this is a non-perturbative QCD problem, the tools at our disposal are lim-
ited. Ultimately, the lattice may provide the most systematic treatment, but for the
moment we are limited to various approximate methods and none that are currently



136 M. Pospelov, A. Ritz | Annals of Physics 318 (2005) 119-169

available can satisfy all of the demands listed above, although we will argue that
combining QCD sum-rules with chiral techniques can satisfy most of them. While
one can make use of various models of the infrared regime of QCD, we prefer here
to limit our discussion to three (essentially) model-independent approaches, which
vary both in their level of QCD input, and in genericity as regards the calculations
to which they may be applied.

However, we will first recall what is perhaps the most widely used approach
for estimating the contribution of quark EDMs to the EDM of the neutron. This
is the use of the SU(6) quark model, wherein one associates a non-relativistic
wavefunction to the neutron which includes three constituent quarks and allows
for the two spin states of each. Obtaining the contribution of quark EDMs to
d, then amounts to evaluating the relevant Clebsch—-Gordan coefficients and
one finds

d,(d,) ™ = ¥(4d, — d,). (3.37)

Although one may raise many questions regarding the reliability, and expected pre-
cision, of this result, we will emphasize here only the significant disadvantage that
this approach cannot be used for a wider class of CP-odd sources, relevant to the
generation of d, and g,y .

3.1. Naive dimensional analysis

Although historically not the first, conceptually the simplest approach is a form of
QCD power-counting which goes under the rather unassuming name of “naive
dimensional analysis” (NDA) [55]. This is a scheme for estimating the size of some
induced operator by matching loop corrections to the tree-level term at the specific
scale where the interactions become strong. In practice, one uses a dimensionful scale
Anaq ~ 41f, characteristic of chiral symmetry breaking, and a dimensionless coupling
Apaglf= to parametrize the coefficients. The claim is that, to within an order of mag-
nitude, the dimensionless “reduced coupling” of an operator below the scale Aj,q is
given by the product of the reduced couplings of the operators in the effective
Lagrangian above Ay,q which are required to generate it. The reduced couplings
are determined by demanding that loop corrections match the tree-level terms,
and for the coefficient ¢, of an operator (¢ of dimension D, containing N fields, is
given by (4n)* "V AP~%¢,. A crucial, and often rather delicate, point is the precise scale
at which one should perform this matching. Within the quark sector, the identifica-
tion of this scale with 4rf; often seems to work quite well. However, for gluonic
operators, the implied matching occurs at a very low scale where g is very large,
up to g, ~ 4n, and NDA has proved more problematic in this sector.

To illustrate this approach, let us consider the neutron EDM induced by 6, in this
case realized as an overall phase 0, of the quark mass matrix, and also the EDM and
CEDM of a light quark. The dimension five neutron EDM operator has reduced
coupling d,Ap.q/(47). Above the scale Ay,q we need the reduced couplings of the
electromagnetic coupling of the quark, e/(4n), and the CP-odd quark mass term,
0,my/ Apaq. Thus we find
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d,(0,, 1) ~ e0,(1) ™y (1) , (3.38)

where the p-dependence reflects the choice of matching scale. To obtain a similar
estimate for the contribution of a light quark EDM, we note simply that it has a re-
duced coupling given by dyAp.q/(4w) and thus

dn(dqnu) ~ dq(:u)7 (3.39)

which can be contrasted with the quark model estimate above. The contribution of
the quark CEDM is similar, but one needs in addition the reduced electromagnetic
coupling of the quark, e/(4r), so that

d,(dy ) = S ), (3.40)
T
where we have redefined the CEDM operator so that a7q = gsci;. This makes the factor
g, explicit, which seems crucial to the success of NDA for gluonic operators as the
matching needs to be performed at a large value of g, e.g., g, ~ 4m as noted above.
These examples indicate on one hand the simplicity of this approach and also its
general applicability, but also the fact that it does not easily allow one to combine
different contributions into a single result for the neutron EDM. In particular, these
estimates have uncertain signs and thus can only be used independently with an
assumption that the physics which generates them does not introduce any correla-
tions. This will not generically be the case.

3.2. Chiral techniques

Historically, the first model-independent calculation of the neutron EDM [56]
made use of chiral techniques to isolate an infrared log-divergent contribution in
the chiral limit (for an earlier bag model estimate, see [57]). This was one of the land-
mark calculations which made the strong CP problem, and indeed the magnitude of
the required tuning of 6, quite manifest.

The basic observation was that, given a CP-odd pion—nucleon coupling gy, one
could generate a contribution to the neutron EDM via a 7~ -loop (see Fig. 2) which
was infrared divergent in the chiral limit. In reality this log-divergence is cut off by
the finite pion mass, and one obtains

Fig. 2. Chirally enhanced contribution to the neutron EDM.
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slog _ ¢ S0 1A
S I In — (3.41)
where A is the relevant UV cutoff, i.e., 4 = m, or M,,. One can argue that such a con-
tribution cannot be systematically cancelled by other, infrared finite, pieces and thus
the bound one obtains on gs;\),}v in this way is reliable in real-world QCD.
This reduces the problem to one of computing the relevant CP-odd pion—nucleon
couplings. For a given CP-odd source Ocp, we have

(N Ocp|N') = % (N|[Ocp,J§s]IN") + rescattering, (3.42)

justified by the small 7-channel pion momentum. The possible rescattering correc-
tions will be discussed below. If we now specialize to the O-term, as in [56], with
Ocp = —qu*zqui%qf then the commutator reduces to the triplet nucleon sigma
term, and we find

& (0,) = 2 il (1 -2 (3.43)
7NN \Ygq 1 mﬁ : ’
One can then determine (N|gt°g|N) from lattice calculations or, as was done in [56],
by using global SU(3) symmetry to relate it to measured splittings in the baryon oc-
tet.

The final factor on the right-hand side of (3.43) reflects the vanishing of the result
in the limit that the chiral anomaly switches off and # (or #’ in the three-flavour case)
is a genuine Goldtone mode. This factor is numerically close to one and was ignored
in [56]. It arises because in (3.42) we should also take into account the fact that the
CP-odd mass term can produce # from the vacuum and thus, in addition to the
PCAC commutator, there are rescattering graphs with # produced from the vacuum
and then coupling to the nucleon, and the soft pion radiated via the CP-even pion—
nucleon coupling [58].

Although this technique is not universally applicable, one can also contemplate
computing the contribution of certain other sources, e.g., the quark CEDM:s. Using
the same PCAC-type reduction of the pion in (Nn?|0cp|N') as in (3.42), one can re-
duce the calculation of g,,, to the matrix elements of dimension five CP-even oper-
ators. In doing this, one has to take into account a subtlety for CEDM sources, first
pointed out in [59,58,60], namely that a second class of contributions, the pion-pole
diagrams (Fig. 3B), now contribute at the same order in chiral perturbation theory.
In an alternative but physically equivalent approach, one can perform a chiral rota-
tion in the Lagrangian to set (0|.% p|n’) = 0, thus making this additional source of
CP-violation explicit at the level szthe Lagrangian [61].

After this consistent PCAC reduction of the pion, the intermediate result for gy
takes the following form:

1 * n - 3
3 <N|d (ugsG(m—mouu) dd(dgb(Ga)d m(z)dd)|N> 7 — (0 —0inq){N|gt°q|N).

(3.44)
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Fig. 3. Two classes of diagrams contributing to the CP-odd pion—nucleon coupling constant.

The second line in this expression contains the same matrix element as (3.43), and
vanishes when PQ symmetry sets the axion minimum to 6;,4 (3.35). The remaining
terms are proportional to the following combination

(N|gg,Gog — mygq|N), (3.45)

which unfortunately cannot be estimated using chiral techniques, and requires genu-
ine QCD input. A naive vacuum saturation hypothesis in (3.45) leads to the vanish-
ing of this expression. This is a rather fundamental problem which limits the
precision of various approaches, ¢.g., those based on the use of low-energy theorems
to estimate (3.45) [62,63], to obtain the dependence of g,y on the CEDM:s.

This limited applicability is one problem that currently afilicts the chiral ap-
proach. A more profound issue is that the terms enhanced by the chiral log, while
conceptually distinct, are not necessarily numerically dominant. Indeed, there are
infrared finite corrections to (3.41) which, while clearly subleading for m, — 0, are
not obviously so in the physical regime. This dependence on threshold corrections
has been observed to provide a considerable source of uncertainty [64] (see also [65]).

3.3. QCD sum-rules techniques

An alternative to considering the chiral regime directly is to first start at high ener-
gies, making use of the operator product expansion, and attempt to construct QCD
sum-rules [66] for the nucleon EDMs, or the CP-odd pion—nucleon couplings. This
approach in principle allows for a systematic treatment of all the sources, and is
motivated in part by the success of such approaches to the calculation of baryon
masses [67] and magnetic moments [68]. For a recent review of some aspects of
the application of QCD sum-rules to nucleons, see e.g. [69].

The basic idea is familiar from other sum-rules applications. One considers the
two-point correlator of currents, nx(x), with quantum numbers of the nucleon in
question in a background with non-zero CP-odd sources, an electromagnetic field
F,,, and also a soft pion field =“

Q) =i [ d'xe (0|7 (ny 0y O)H0) g . (3.46)

where 0% = —p?, with p the current momentum. It is implicit here that the soft pion
field admits PCAC reduction, and then in the case of CEDM sources corresponds to
an external field coupled to the operator gg,Gog — migq, as in (3.44) and (3.45).
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One then computes the correlator at large O using the operator product expan-
sion (OPE), generalized to incorporate condensates of the fields, and then matches
this to a phenomenological parametrization corresponding to an expansion of the
nucleon propagator to linear order in the background field and CP-odd sources,
and corresponding higher excited states in the relevant channel. In practice, one
makes use of a Borel transform to suppress the contribution of excited states, and
then checks for a stability domain in Q% or rather the corresponding Borel mass
M, where the two asymptotics may be matched.

Let us discuss this procedure in a little more detail. For the neutron, there are two
currents with lowest dimension that are commonly used in QCD sum-rules and lat-
tice calculations

n = Zeabc(dgcysub)dcv

(3.47)

’/’2 = 26abc(dzcub)y5dcu
of which the second, #,, vanishes in the non-relativistic limit, and lattice simula-
tions have shown that #; indeed provides the dominant projection onto the neu-
tron state [69,70]. In the truncated OPE expansion, an admixture of #, can
nonetheless be used to optimize convergence, and thus it is natural to parametrize
the current in the form #, =1, + i, introducing an unphysical parameter . The
truncated OPE will then inherit a dependence on this parameter, which can then be
fixed to improve convergence once the sum-rule has been constructed for a given
physical quantity.

The correlator (3.46) exhibits various Lorentz structures (LS) in its OPE and, in
selecting one to consider, one needs to be aware that in a CP-violating background
the coupling of the current to the neutron state, described by a spinor v, is not invari-
ant under chiral rotations, i.e., (0[,/0) = /¢*>?p. It turns out that of the terms con-
tributing to the neutron EDM, there is a unique structure which is invariant under
chiral rotations, namely LS = {Foys, ﬁ}, thus this is the natural quantity on which to
focus in constructing a sum-rule for the EDM (for alternatives, see [71,72]). Corre-
spondingly, LS = p is the relevant chiral-invariant structure for the g, sum-rule.

In constructing a phenomenological model for the current correlator, it is appar-
ent that in expanding to linear order in the external field we are effectively consider-
ing a three-point function. It is then not particularly useful to work with the spectral
density, as is standard for two-point functions, and the conventional approach is to
parametrize the correlator itself, i.e., [TP"" = LSf(p®) + - - - The function f(p?) will in
general have an expansion in double and single-pole terms, and then a continuum
modelling the transitions between excited states. A Borel transform can be applied
to suppress the contribution of excited states. However, a well-known complication
[68] of baryon sum-rules in external fields is that the single-pole terms, corresponding
to transitions between the neutron and excited states, are not exponentially sup-
pressed by the Borel transform and thus provide the leading contribution from the
excited states, with a coefficient which is not sign definite. This must then be treated
as a phenomenological parameter to be determined from the sum-rules themselves.
In this approximation, we then find [73,58,74]
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hen ) d”m" 4
HP ——{Fa/s,]zﬁ}< '1)2+p2 *m%—'_“. , (3.48)
then -2 )“zgnNNm" + A' 4. (3 49)
o =2 (p? —m2)?  p—m ’ .

where the constants 4, A’ parametrize the single-pole contributions. One can then go
further and construct a full continuum model to match the high-Q? asymptotics, but
as discussed below this refinement has minimal impact in comparison to the single-
pole terms 4 and A’. We now turn to the calculation of the OPE for d, and g, -

3.3.1. Nucleon EDM calculations

The OPE for d, is conveniently constructed in practice by first computing the gen-
eralized quark propagator, expanded in the presence of the background field, the
CP-odd sources, and also the vacuum condensates. One then computes the relevant
contractions in (3.46) to obtain the OPE to the appropriate order. Although it would
take us too far afield to describe this procedure in detail, we can exhibit some of the
dominant physics by looking at just one class of diagrams which arise in evaluating
the OPE for (3.46). In particular, in Fig. 4 two of the quarks in the nucleon current
propagate without interference, carrying the large current momentum, while the
third is taken to be soft and so induces a dependence on the appropriate chiral quark
condensates. We may then make use of standard arguments [29] used to determine
E(0) (2.22), which utilize the anomaly in the axial current and the fact that m, > m,,
to determine the dependence of these condensates on the CP-odd source.

Let us consider the contribution of 0. For additional control over the chiral trans-
formation properties of the answer, we split 0 into several terms in the Lagrangian

2

gs a SHva —_ .
L dim=4 = e QGG;W - [;S m 0 iysy;. (350)
F,

Nn() 7(0)

Fig. 4. A leading contribution to the neutron EDM within QCD sum-rules. Sensitivity to the CP-violating
source enters through the two soft quark lines which lead to a dependence on the chiral condensate.
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The diagram in Fig. 4 then leads to a dependence on
mg(01g7,,75410), = im.06(0|g7,,q10) 5 + O ()
= iy, 06m.F,.(qq) + O(m?). (3.51)

In the first equality the dependence on 0g has been determined as in the standard
computation of E(0) in (2.22) [29], where the terms of ¢/(m?) are subleading only be-
cause there is no U(1)-axial Goldstone mode, i.e., m, > m,. The dependence of
(3.51) on 0O rather than 0 means that there are additional contributions from 0, that
have to be taken into account, at this order in the OPE, in order to restore the depen-
dence on the physical § combination. In fact, it turns out that the procedure is gen-
erally more complicated and one must also incorporate the the mixing of the currents
n and #, (3.47) with their chirally rotated (or CP-conjugate) counterparts [73,58] in
order to restore the dependence on 0 and exclude unphysical parameters such as
O — 0,

In the second line of (3.51) we have introduced the so-called electromagnetic sus-
ceptibility of the quark vacuum, y,, given by

(q00q)r = XqF/w<ZIQ> (3.52)

and chosen for simplicity to be favour independent, y, = e, [68]. In fact, y, is one
among a whole series of mixed quark—gluon condensates that have to be taken into
account in the calculation of the OPE for d,. However, it turns out that numerically
y is rather large, y = —(5-9) GeV 2 [75,76], and results in the diagram of Fig. 4 being
numerically very important. The remaining condensates are numerically quite small
in comparison, and we will neglect them in what follows, referring the reader to
[77,73,58,60,74] for more of the details involved in these calculations.

The leading-order and next-to-leading-order contributions to the OPE induced by
the CP-odd operators of dimension four and five are given by
i

P 2 Xz q 4 A%R
1 ) P p) (i)t + 51— (~ 2 ) ool ).
(3.53)

TOPE(Q?) = —

At leading order the quark EDMs induce nf())
1l = d[10 + 68%] — d,[3+ 28 — 7], (3.54)
while the 0-term, and the CEDMs, are responsible for n(L%

1 = 4(1+ B) ggmaPa — (1 + B)* zumuPy +2(1 — B)m. (1, + 1) (Pu — Pa),
(3.55)

where P, = 0, + ((Z]y5q>qp /1(gqq)) contains the dependence on the CP-odd sources.

The next-to-leading-order terms in (3.53), nnLo, are associated with a class of dia-
grams in which one of the propagators exhibits a logarithmic infrared divergence as
can be seen in (3.53). The magnitude of these terms is clearly ambiguous through the
logarithmic dependence on the cutoff A, although in practice with a cutoff
Ar ~ Agcep the logarithms are not particularly large in the momentum regime for



M. Pospelov, A. Ritz | Annals of Physics 318 (2005) 119-169 143

which the resulting sum-rules are optimal. We will not need to exhibit them explicitly
here, but it is important that for all of these terms nny o o< (1 — f), which differs from
the (1 + B)* dependence of many of the dominant leading-order terms.

The truncated OPE in (3.53) necessarily depends on the unphysical parameter /3,
which can therefore be chosen in such a way as to optimize the convergence of the
expansion. Such optimization problems arise in many areas of physics [78], and in
the present case with only two terms of the series in hand, the most practical approach
is to use “fastest apparent convergence” (FAC), which involves choosing f to set the
highest known term in the series to zero. Historically, loffe [79] introduced an FAC-
like criterion in analysis of the mass-sum rule, which has proved quite successful. For
the CP-even sector this involves the choice f = —1 to cancel the subleading terms. We
shall also follow this approach as it has the added advantage of cancelling the ambig-
uous infrared logarithmic terms. As first discussed in [73,58], for the CP-odd sector
this involves the choice = 1. The difference in f, as compared with the choice in
the CP-even sector, is not surprising as /3 is unphysical and there is then no reason
to expect optimal choices to be the same for different physical observables.

A remarkable feature of the choice f§ = 1 becomes apparent if we now rewrite the
OPE expression for f = 1. All the subleading logarithmic terms in (3.53) are now
cancelled, while the leading-order terms adopt the elegant form:

n;;)il = 4[4y maPq — y,mP.],

’ (3.56)
7'5,1;:1 = 4[4dd — du]

It is remarkable that the contribution of the u quark in each term is precisely —1/4
that of the d quark, which is the combination suggested by the SU(6) quark model!
One might suspect that this is due to the minimal valence quark content of the cur-
rent, but the fact that this structure arises only for the choice f = 1 is rather surpris-
ing given that only the #; current survives in the non-relativistic limit.

One of the most important aspects of the whole calculation is the consistent treat-
ment of the CP-odd vacuum condensates entering via the CP-odd sources P,. This
calculation can be done relatively easily with the use of chiral techniques, and at
leading order in m, /m;,. A useful constraint on this calculation is that the anom-
alous chiral Ward identity must be respected for each quark flavour. This provides a
useful check if we consider artificially decoupling the s-quark, while at the same time
sending either m, or m, to zero. In this regime, the dependence on @ in particular
must vanish, which fixes the remaining quark mass dependence in terms of m,.
The final result for the P, and P, sources, in the limit of m,,; < m,, reads

—~ m m2 617 d) — (jd ci
u Pu = *0 -0 «(@) ) -= 357
Mu(aPu(a) = m 5 ( P ) (3.57)

which respects the anomalous chiral Ward identity. If 0 is removed by PQ symmetry,
i.e., substituted by 6;,4 (3.35), Eq. (3.57) simplifies even further

g
myd,

quf;Q = — 5

(3.58)
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Putting all the ingredients together, after a Borel transform of (3.53) and (3.48), and
using ff =1 as discussed earlier, we obtain the sum-rule

4
Pimndy + AM? = — 2 M (i) [n;,ﬁl + n;’;zl] + oMY, (3.59)

322
where M is the Borel mass, and the relevant contributions are given in (3.56).
Clearly, the presence of three parameters d,, 4, and 4 in (3.59) necessitates the use
of additional sum-rules, and the coupling 4 is conveniently obtained from the
well-known sum-rules for the two-point correlation function of the nucleon currents
in the CP even sector (see e.g. [69] for a review).

Rather than reviewing the full analysis, let us consider a simple estimate obtained
from the leading-order terms in the OPE of (3.59) a la loffe’s derivation of the nu-
cleon mass formula [67]. We set 4 =0, and taking M =m, ~ 1 GeV, we divide
the sum-rule (3.59) by the standard CP-even sum-rule for A obtained for the Lorentz
structure ]6 and f =1 (the choice f = —1 in the latter sum-rule leads to a similar re-
sult). The resulting estimate takes the following form:

51— 2 . .
w 72}(3’”* e(é — Hind) + % (4dd — du) + % (4eddd - eudu) ) (360)
mn

dCSI —
where 0;,q again is a linear combination of d, /m, (3.35). The coefficient in front of the
square brackets in (3.60) is very close to 1, given loffe’s estimate for m,,, m> ~ 8n*|(gq)|
[67]. Indeed, this estimate shows no deviation at all from the naive quark model result
for d,(d,)! Using Vainshtein’s value for y, y = —N,/(4n*f2) ~ —9 GeV~* [76], ob-
tained using pion dominance for the longitudinal part of certain anomalous triangle

diagrams, along with the Toffe formula for m,, the estimate for d,,(0) becomes

est __ em*e

n T T opyr (3.61)

which coincides with the chiral estimate (3.41) if g, (p|gt’q|p) In(A/m,) is of order 2,
where g4 ~ g.vnf./m,. Needless to say that within the accuracy of both methods the
two estimates coincide. If 0 is removed by PQ symmetry, then within the same
approximation the resulting estimate reads

4 1 2me 2~ 1=
dESt:*d _7du_7ﬂ —d *du , 3.62
no 373 m,,(m, + my) (3 4*3 ) (362

where the approximate relatio