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PROTON-CARBON EFFECTIVE ANALYZING POWER BETWEEN 95 AND 570 MeV

E. APRILE-GIBONI, R. HAUSAMMANN *, E. HEER, R. HESS, C. LECHANOINE-LE LUC,

W. LEO, S. MORENZONI, Y. ONEL and D. RAPIN

DPNC, University of Geneva, CH-1211 Geneva, Switzerland

Received 21 January 1983

The p-C effective analyzing power has been measured with a good accuracy for laboratory scattering angles between 5° and 20° at
25 energies from 95 to 570 MeV. Carbon targets from 3 to 7 cm have been used. Measurements have been made at SIN with multiwire
proportional chambers. A smooth angle and energy depending function has been fitted to the data. Reasonable agreement has been

found with other available data.

1. Introduction

In crder to determine the spin dependence of the
nuclear interaction, measurements of the polarization of
particles in their final state is often required. At inter-
mediate energies (100 MeV to 1 GeV), the measured
asymmetry resulting from a second scattering is widely
used. The polarization of the particles can be extracted
provided the analyzing power A_ of the second scatter-
ing is known.

We present here the calibration measurement of a
carbon polarimeter for protons used at SIN in the p-p
elastic scattering program. These measurements have
allowed us to determine completely the scattering ma-
trix [1,2] by the mean of the measurement of 2- and
3-spin observables {2,3].

* Present address: Physics Department, University of Cali-
fornia at Irvine, Ca 92717, USA,

SCINTILLATION COUNTERS

2. Apparatus

The SIN PMI proton beam line was used in its
parasitic mode. This beam is produced by the elastic
scastering of the 590 MeV unpolarized beam on a
bervllium target at 8° laboratory angle. The resulting
beam polarization is Py = 0.4165 + 0.0043 as shown in
ref. 4. A variable thickness copper degrader is used to
lower the beam energy. Depolarization effects are
negligible since particles are collected at zero degree
after the degrader within a small solid angle and be-
cause the Coulomb interaction is dominant at these
angles. Finally a superconducting solenoid allows a
rotation of the beam polarization within the transversal
plane up to 180°.

Fig. 1. shows a scale drawing of the polanme:er. It
consists of a variable length carbon target sandwiched
by multiwire proportional chambers (MWPC) with 2
mm wire spacing. The incoming and outgoing tracks are
detected by two telescopes consisting of 3 (respectively
4) x-y MWPCs. A scintillator (Z) placed into the first
telescope is used to detect an incoming particle.
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Fig. 1. Scale drawing of the apparatus.

0167-5087 /83 /0000-0000,/$03.00 © 1983 North-Holland

40 %0cm



148 E. Aprile -Giboni et al. / Proton - carbon effective analyzing power

The polanmeter is mounted on a turntable and was
placed directly into tie beam for the present measure-
ment. Two beam counters A and B were also added. No
counters were used behind the carbon target.

A, Data acquisition system

A first level trigger was made with the coincidence
between the A, B and Z counters. This opened the gate
of the wire memories and initiated the MWPC coding
system operations.

A second level hardware trigger, connected to the
MWPC logic, was used to reduce the amount of data
{5)- The <lopes of the particle trajectories and the result-
ing scattering angle were then computed. Events without
significant scattering were rejected. Configurations
which were impossible to reconstruct in a further
processing were also rejected. 90-95% of the events
were rejected. The duration of this decision was about
38 ps.

Events having passed this filter were then transfered
to DPNC 811 minicomputers [6] under the control of a
PDP 11/20. The minicomputers fully reconstructed the
events and accumulated event statistics and histogra ss.
Only sums were recorded onto magnetic tapes.

4. Measurements

The geometrical position of the MWPC's were mea-
sured on-line using unscattered events taken without the
carbon target.

Twentyv-five measurements were made at various en-
ergies with a 3. 5 or 7 ¢m thick carbon target. The 3 cm
target was used mainly at low energies. For each mea-
surement at least two datasets were taken with opposite
beam polarization directions. Some of these were taken
with 4 orientations: up. down. left and right.

During these measurements the operational condi-
tions of the 2nd level trigger were changed in order to
accept some unscattered data for a check of the geome-
try. These data were used to monitor possible residual
misalignments and allowed an off-line correction of the
asymmetries. An estimation of the angular resolution of
the apparatus was also possible with these data.

S. Analysis
51 General formalism

Consider an incident proton beam propagating along
the & direction with a transverse polarization vector Py
described by

Pg=P -X+P V.

Let & and &’ be unit vectors along the trajectories
entering and leaving the carbon. For the scattering in a
plane whose normal vector is given by
di=kxk'/kx k)
the polar  and azimuthal ¢ scattering angles are de-
fined by
sin 8 = |k x k'), sing=—X-4.
The polarized cross section I(8,¢) is expressed by
1(8.9)=Io(9)[1 + 4.(8) Py - 5]

=1,(8)[1+ P.A.(6) cos ¢ — P,A(8) sin ]
=L()[1+¢,(8) cos ¢ +¢.(8) sin ¢ ].

where 1,(#) is the unpolarized cross section, 4.(8) the
carbon analyzing power and €,. ¢, the asymmetries.
These asymmetries can be obtained by a statistical
analysis of the azimuthal distribution. Knowledge of Py
allows extraction of A.

A relative misalignment of the detectors produces
errors in the reconstructed scattering angles 8 and ¢:

A6 =A(wgh-sing). A0, =A(1gh-cos p).

As shown in ref. 7, the effects on the measured asymme-
tries are

oS ¢ = V-a.

de, = .-.\0.,% (log 1,,).
d
tdé
if the misalignments A6, and A8, are small.

These effects can hence be corrected if /,(68). 46,
and A6, are known.

de = A8 (log 1,,).

3.2. On-line analysis

Events accepted by the 2nd level trigger were trans-
ferred to minicomputers for reconstruction. The raw
coordinates were first corrected for the geometrical dis-
placements of the MWPC’s from their nominal posi-
tions. Events were then fully reconstructed and tested
for the following requirements:

1) MWPC track alignment of the incoming and outgo-
ing trajectories. The §2 per degree of freedom was
requested 10 be less than 4 mm?,

2) Projection of the incoming track into the last back-
ward chamber ir order to guarantee a 100% geomet-
rical acceptance.

3) The distance of closest approach between incoming

and outgoing tracks. This had to be less than 4 mm.

The reconstructed longitudinal position of the carbon

vertex was required to fall within the target with an

accuracy of + 27 mm.

5) Range of 8 between 5° and 20°.

Cuts (1) to (4) eliminated mainly events scattered on
the counters or the MWPCs which were accepted by the

4

~



E. Aprile-Giboni et al. / Proton - carbon effective analyzing power 149

2nd level trigger. From 6 to 11% of the processed events
were rejected mainly by cut (1), while 40 to 50% of the
remaining events were rejected by cut (5) mainly be-
cause of a too small scattering angle. Accepted events
were finally accumulated in a two dimensional histo-
gram divided into 15 bins for § and 16 bins for ¢.

Processing of the unscattered events differed slightly.
No vertex was computed and a cut was applied on
whose maximum value depends on energy and target
length. Sums were accumulated in order to evaluate the
mean and the width of the distribution of the projected
angles tg# - cos ¢ and tg8 - sin ¢.

5.3. Off-line analysis

The analysis was facilitated by the 100% geometrical
acceptance. The asymmetries were extracted at each
polar angle 8 by a simple Fourier analysis of the ¢
distributions obtained from the two dimensional histo-
grams. The effect of the bin width in ¢ was also taken
into account. The angular dependence of the un-
polarized inclusive cross section was also obtained from
these histograms.

The residual misalignments were found to be less
than 0.02°. The corresponding corrections have been
applied on the asymmetries. They were of the order of
0.004 and smalier than the statistical errors.

The analyzing power A, was extracted for each beam
polarization orientation. The data are very consistent as
shown in table 1. These have been consequently summed
over the different orientations. This operation generally
cancels the effects of the misalignment corrections.

6. Results

The experimental results for the effective proton
carbon analyzing power A4 are shown in table 1 ard in
fig. 2. 4, is maximum around 200 MeV and decreases
rapidly at low energies. The inclusive differential cross
section (do/d2) results can be seen in table 1. The
cross section values are in arbitrary units. Quoted errors
are purely statistical. The A, results are subject to an
overall normalization uncertainty of 1% coming from
the beam polarization. The given kinetic beam encrgies
are computed at the center of the target.

The target thickness was found to have no visible
effect above 270 McV. At lower energies and at larger
angles however, the 7 cm data shows an higher analyz-
ing power than the 3 cm data. This can be understood
by considering the amount of inelastic events accepted
by the apparatus. Since low energy particles cannot
escape from a thick target, the length of the target acts
as an inelasticity limiter. The 3 cm target allows a larger
amount of inelasticities and the effective analyzing
power is thus reduced.

At low energies A drops rapidiv o0 zero at small
angles. This is due to multiple Coulomb scattering which
extends up to our mecasured angles. This effect is of
course very dependent on the target iength.

7. Energy dependent fits

A parametrization of 4. was necessary iu: the pp
elastic scattering data analysis [3] where the carbon
analyzing power was needed for continuously variable
kinematic conditions. We have performed an angle and
energy dependent smoothing by adjusting the follewing
empirical formula to our experimental data:

A (8. T)=D(8.T)a(T)

x sinf
1+B(T)sin*@++(T)sun'd
+8(T) sin o]‘

This expression is similar to the on¢ suggested in ref
8 but two extra terms 8(T) and D(6. T) have been
added. a. 8. y and 8§ are energy Jdependent poivnomials
of the form:

a(T)=a,+a, X+a, X" +a, N =, X",

where X = (T~ T ). T 0 15 & dimensioniess cn-
ergy variable depending on the region where the fit 1~
applied.

D(6.T) i1s an empirical damping factor used to
reproduce the sharp drop of A toward smull angles
induced by multiple Coulomb scattering at low energies
This can be expressed as:

1
D(8.T)=- N
( ) e exp[@z,".’.@:(T)]

The term 83(T) = C, + C,(15/pB8)°" is an attempt
describe the angular resolution as the sum of the con-
stant MWPC resolution plus a mementum dependent
multiple scattering term. C, has been fixed to the mea-
sured value of the MWPCs resolution extrapolated to
T - 0. C and C, are free parameters, the 15 pf term
being expressed in degrees.

Since the target length has a non negligible wnfluence
at low energies, it was not possible to fit all the data
over the eatire encrgy range. To facilitate the analysis of
the pp experiment [3]. two separate fits were made

(1) A high energy fit (denoted by "H™) vahd for ~
cm target from 150 to 371 MeV. This contains all the
present 7 em data, 5 cm data above 270 MeV and 3 cm
data above 300 MeV. Data from our previous experi-
ment (SIN — DRAP, ref. 7). taken with the same beam
and with a similar apparatus above 299 MeV, were also
included.
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Fig. 2A. The effective proton-carbon analyzing power as a function of the laboratory scattening angle §. The dots are our
experimental points. The full lines show our 7 ¢cm high energy fit (H).
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Table 2
Results of our angle and energy dependent parametrization of
the carbon analyzing power (see section 7).

“H” fit 7 cm “L" fit 3 cm
150-571 MeV 90-386 MeV
X= T — 400 MeV y = 7250 Mev
200 MeV 100 MeV
ay 3.3561 3.6991
a -0.91758 0.26957
a, 0.38654 —-0.0012157
ay 0.30807 0.17072
Bo -17.9741 ~8.7225
B8, 5.3176 -3.7161
B 12.532 12.869
B, —-3.1091 -2.6088
Bs - 1.6024
Yo 857.93 351.97
" 810.41 271.44
Y -127.21 -113.71
T —-163.39 - 10.407
Ye - 20.331
8 0.079421 -
8, 0.12568 -
5, -0.082377 -
C 58.361 75.383
G, 0.12 [deg.?) 0.12 [deg.?]
C, 0.38511 0.18472
x2/d.f. 1.14 1.17

(2) A low energy fit (denoted by * L") valid for 3 cm
target from 90 to 386 MeV. This contains all the present
3 ¢m data. In addition, we have also included TRIUMF
3 em data from the BASQUE group [8] between 5° and
20°.

T N T T T v T T T d
I ARc/RAc [X1] 1
10 ) -
Sk ‘\‘ -
‘ 7 ENERGT [MeVD ]

0 1 . | PR | N " N s N

100 200 300 400 S00 600

Fig. 3. Percentage uncertainty of our fits. All errors are in-
cluded. At low energy, the effect of the uncertainty in the beam
energy is dominant.
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The 5 cm 187 MeV data have not heen included n
any fits since it was found that target length 1s sigaufs-
cant at this energy.

Fitted parameters are given in table 2. Resuiting
curves are shown in fig. 2 where solid and dotted lines
are used respectively for the “H” and “L" fits. The x?
per degree of freedom were 1.14 and 1.29 indicating that
the empirical formula adequately describes the data in
our angular range. The relative error of our fit (per-
centage uncertainty of 4_) is shown in fig. 3. Above 170
MeV, it is given mainly by statistical errors and by
beam polarization uncertainty (both of the order of 1%).
At low energy, the error is dominated by the uncertainty
in the beam energy.

In order to check the goodness of our fit at each
measured energy, we have computed a deviation factor
(8 = data/fit) between the measured data and the fitted
formula. This represents the value by which the energy-
dependent fit has to be multiplied to give the bhest
adjustment to the data at a particular energy. i.e..

gw(o).Afn(o)'Aclp(a)
%‘."'(0)4?.[(0)

exp =

where w(8) = 1 /04 is the statistical weight of an cxpen-
mental point. The error in §, is given by

o2 =1/Y w(0)A%,.(6).
L4

and gives the relative statistical error of the data. Values
of &, are given in table 1. They are generally well
distributed around 1 within their error bars indicating
that the relative systematic error introduced by our
smoothing stays on the order of 1% at each energy.

In fig. 4 we show the angle-averaged analyzing power
A_ as a function of the energy. This average was calcu-
lated between 5° and 20° giving equal weight to each
angle. The curves are from our formula and the points
represent the experimental data included in the fits. As
can be seen, the effect of target length appears to be
significant.

For the calculation of the average of expenimental
data we have fixed the angular shape of 4_ as given by
our fit. The experimental averages are simplv calculated
by:

Ac\p = Scxp"hx

This way of computing A_ differs shightly from ref. 10
where the angular shape was adjusted to the data at
each energy. Both methods generally give consistent
results. Ours has the advantage of allowing comparnison
of data when the 5°-20° range is not completely cover~d
or when the statistics are poor.
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Fig. 4. Angle-averaged effective analyzing power. Curves show our fits. Points are the data included in the fits. Errors are statistical
puted deviation factors and averages as explained in

section 7.
Data from our previous experiment at SIN (DRAP
[7D and BASQUE 3 cm data which were both included

only
in our fits are shown in fig. 4. Other data are shown in

8. Comperison with other experiments
Data from different experiments are generally in

very good graphical agreement. In order to compare
various experiments at different energies, we have com-

C. CI 1 T T
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!
3 kBASQUE 6 cM =
QLANPF |
$LAMPF-HRS (PRELIN.)
L CERN-SC

L.
e

7

P2 o

!

; ENERGY [HeV]
3 ! i 1 i i i L

2L 3o 400 5606 600
Fig. 5. Angle-averaged effective analyzing power. Curves show the error corridors of our fits. The points come from previous
measurements not included in these fits. The errors shown on the points are purely statistical. The angular range is between 5° and

[

20° (see secticn 8 for details).
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fig. 5 where curves show the error corridors of our fits
with all errors included. These data come from our
previous experiment at the SC-CERN [9] as well as
from TRIUMF (BASQUE 6 cm) [8] and the LAMPF
polarimeter [10]. Averages of the preliminary data from
LAMPF-HRS were taken from ref. 10.

The data are generally in good agreement with per-
haps a small discrepancy above 200 MeV where
BASQUE 6 cm data in our angular range are 4% higher
than ours as already reported in ref. 10. Recent fits of
BASQUE, SIN-DRAP and LAMPF data have also
been presented in ref. 10. They are in reasonable agree-
ment with our 7 cm fit.

9. Conclusion

We have presented new precise measurements of the
proton-carbon effective analyzing power between 95
and 570 MeV. The data can be reproduced by an energy
dependent fit with a relative accuracy of 1-2% above
170 MeV. Reasonable agreement with other available
data has been found. At high energy, the effective
analyzing power is insensitive to the thickness of the
analyzer within statistical accuracy. At low energy how-
ever, it can be affected by the target length because of
the influence of inelastic events.

A better accuracy would require a considerable effort
on systematic effects, especially on the beam polariza-
tion calibration. In such a case, comparison between

different experiments at low energy would also require a
careful study of angular resolution, target length and
inelasticity effects as well as effects coming from the
strong energy dependence of A, below 170 MeV.
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