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Abstract

A P odd anapole moment of the deuteron is found in the chiral limit, m ™0. The contactp

current generated by the P odd pion exchange does not contribute to the deuteron anapole. Being
combined with usual radiative corrections to the weak electron–deuteron interaction, our calcula-
tion results in a sufficiently accurate theoretical prediction for the corresponding effective constant
C . The experimental measurement of this constant would give valuable information on the P2 d

odd p NN constant and on the s-quark content of nucleons. We calculate also in the same limit
m ™0 the deuteron P odd and T odd multipoles: electric dipole moment and magneticp

quadrupole moment. q 2000 Elsevier Science B.V. All rights reserved.

PACS: 11.30.Er; 12.15.Mm; 13.40.Ks
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1. Introduction

The investigations of nuclear parity violation, both theoretical and experimental, have
already a long history. New light on this problem is shed by observation of the nuclear

Ž . 133 w xanapole moment AM of Cs in atomic experiment 1 . The result of this experiment
is in a reasonable quantitative agreement with the theoretical predictions, starting with
w x w x2,3 , if the so-called ‘‘best values’’ 4 are chosen for the parameters of P odd nuclear
forces.

ŽThe AM is a rather peculiar multipole in the following sense for a more detailed
w x.discussion, see, for instance, 5 . The interaction of a charged probe particle with an

anapole moment is of a contact nature. Therefore, for instance, the interaction of the
electron with the nucleon AM, being on the order of a G, cannot be distinguished in the
general case from other electromagnetic radiative corrections to the weak electron–
nucleon interaction due to the neutral currents. And in a gauge theory of electroweak
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interactions only the total scattering amplitude, i.e., the sum of all diagrams on the order
of a G, is gauge-invariant, independent of the gauge choice for the Green’s functions of

Žheavy vector bosons here a is the fine-structure constant, G is the Fermi weak
.interaction constant . No wonder that, generally speaking, the AM of an elementary

particle or a nucleus is not a gauge-invariant, i.e., physically well-defined, quantity.
However, there is a special case where the anapole moment has a real independent
physical meaning. In heavy nuclei, of course 133Cs included, the AM is enhanced

2r3 w x Ž .;A 3 A is the atomic number , as distinct from common radiative corrections. By
the way, this means that there is an intrinsic limit for the relative accuracy, ;Ay2r3,
with which the AM of a heavy nucleus can be defined. For 133Cs this limiting accuracy
is about 4%.

There is one more object, the deuteron, whose anapole moment could make sense for
w xa sufficiently large P odd p NN constant 2 . The deuteron is a loosely bound system of

a relatively simple structure. Therefore, all the reasons are present to believe that its AM
is induced mainly by the P odd p-meson exchange, the pion being the lightest possible
mediator of the nucleon–nucleon weak interaction. The problem of the deuteron AM

w xwas discussed phenomenologically in Refs. 2,6–8 . In the present work the deuteron
AM, as induced by the P odd p-meson exchange, is explicitly expressed through the P

w xodd p NN coupling constant. The same problem was considered in a recent paper 9 .
w xThe result of the original version of 9 was much smaller than ours because a leading

contribution, that of the isovector magnetic moment of the nucleon, was omitted in it.
w xAfter acquaintance with the preprint of the present work, the authors of 9 corrected

Ž w x .their result see their revised preprint 9 , Section 6. Erratum and Addendum . On the
w xother hand, under the influence of 9 , we have refined our own calculations with the

results presented below.
ŽThe obtained result for the deuteron AM is singular as 1rm in the limit m ™0 ofp p

course, when going over to this limit, one should keep the deuteron radius larger than
.the Compton wavelength of the pion . Being combined with the radiative corrections to

w xthe weak electron–deuteron scattering amplitude 10 , which are regular in m , ourp

calculations result in a sufficiently accurate value for the corresponding effective
constant C .2 d

We also calculate here the P odd and T odd electromagnetic moments of the
deuteron.

2. The deuteron anapole moment

It is convenient to start the discussion with the nucleon AM in the chiral limit. It was
Ž .shown in 1980 by A.I. Vainshtein and one of the authors I.Kh. to be given in this limit

by the diagrams 1 and 2. The circle on the nucleon lines refers to the usual strong
'Ž .interaction p NN vertex coupling constant g 2 , the cross describes the P odd weak

'Ž .p NN interaction coupling constant g 2 . The result for the nucleon AM is

egg 6 m mp p
a sa sa sy 1y ln s . 1Ž .N p n ž /12m m p m mp p p p
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Fig. 1. Nucleon AM in the chiral limit – Diagram 1.

Fig. 2. Nucleon AM in the chiral limit – Diagram 2.

The diagrams discussed lead to the same result for a proton and neutron since under the
permutation pln the strong coupling constant g does not change, and the weak one g

Žchanges sign together with the charge e of the p-meson we assume e)0, exact
definitions of the strong and weak interaction Lagrangians and coupling constants g and

.g are given below . Being the only contribution to the nucleon AM, which is singular in
Ž .m , the result 1 is gauge-invariant. In this respect, it has a physical meaning.p

Unfortunately, in spite of the singularity in m , the corresponding contribution to thep

electron–nucleon scattering amplitude is small numerically as compared to other
radiative corrections to the weak scattering amplitude. Indeed, the radiative corrections
to the effective constants C of the proton and neutron axial neutral-current operators2 p,n' w xGr 2 C s are 102 p,n p,n

C r s0.032"0.030 , C r sy0.018"0.030 . 2Ž .2 p 2 n

'In the same units Gr 2 , the effective axial constants induced by the electromagnetic
Ž .interaction with the proton and neutron anapole moments 1 , is

y1a 5'< <C sya a e Gr 2 s0.07=10 g .Ž .p ,n N

y7 ŽAt the ‘‘best value’’ gs3.3=10 strongly supported by the experimental result for
133 .the Cs anapole moment , we obtain

C a s0.002 . 3Ž .p ,n

Ž .With this value being much less than both central points and error bars in 2 , the notion
Ž .of the nucleon AM practically has no physical meaning. This is why the result 1 was

w x Ž .never published by the authors. It is quoted in book 5 without the logarithmic term
w xjust as a theoretical curiosity. This result was obtained also in Ref. 11 , the logarithmic

w xterm was presented in Ref. 12 .
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w xIt was pointed out in Ref. 13 that a P odd pp NN interaction also generates a
contribution ; lnm to the nucleon AM1. Purely theoretical estimates only are knownp

for the constants of this P odd pp NN interaction. According to the estimates considered
w xby the authors of 13 as relatively reliable, the contribution of the P odd pp NN

Ž .interaction to the nucleon AM is about an order of magnitude smaller than 1 .
However, the situation with the deuteron AM is quite different. Not only the proton

and neutron AMs add up here. The isovector part of the radiative corrections is much
smaller than the individual contributions C r and C r , and is calculated with much2 p 2 n

w xbetter accuracy 10 ,

C r sC r qC r s0.014"0.003 . 4Ž .2 d 2 p 2 n

Moreover, there is the already mentioned, qualitatively new contribution, due to the
isovector magnetic moment of the nucleon, which dominates numerically the deuteron
AM. Thus a acquires a real physical meaning.d

Let us go over now to the problem itself. The Lagrangians of the strong p NN
interaction and of the weak P odd one, L and L , respectively, are well-known,s w

q y 0'L sg 2 pig np qnig pp q pig pynig n p , 5Ž .Ž .Ž .s 5 5 5 5

q y'L sg 2 i pnp ynpp . 6Ž .Ž .w

Our convention for g is5

0 yI
g s ; 7Ž .5 ž /yI 0

Ž1.the relation between our P odd p NN constant g and the common one h isp NN
Ž1.'g 2 sh .p NN

The effective nonrelativistic Hamiltonian of the P odd nucleon–nucleon interaction
due to the pion exchange is in the momentum representation

2 gg I qŽ .
† †V q s N t N N t N . 8Ž . Ž .Ž . Ž .1 1y 1 2 2q 22 2m m qqp p

Here

1Is s qsŽ .p n2

X Ž X . X Ž X .is the deuteron spin, qsp yp sy p yp sp yp sy p yp . Let us note1 1 2 2 n p p n
Ž .that the P odd interaction 8 which interchanges the proton and neutron, when applied
† Ž . † Ž . < : † Ž . † Ž . < :to the initial state a r a r 0 transforms it into a r a r 0 sp 1 n 2 n 1 p 2

† Ž . †Ž . < : 3ya r a r 0 . On the other hand, the coordinate wave function of the admixed Pp 2 n 1 1

state is proportional to the relative coordinate r, which we define as r yr . Therefore,p n

it also changes sign under the permutation pln. Thus, for the deuteron the P odd

1 We are grateful to the referee who has attracted our attention to this circumstance.
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potential can be written in the coordinate representation as a simple function of
rsr yr without any indication of the isotopic variables,p n

gg exp ym rŽ .p
V r s yiIP= . 9Ž . Ž . Ž .

2p m rp

The above expressions are rather standard. As standard is our sign convention for the
w xcoupling constants: gs13.45, and g)0 for the range of values discussed in Ref. 4 .

The discussed P odd interaction V generates a contact current j c. To obtain the
explicit expression for it, we have to consider V in the presence of the electromagnetic
field. Its including modifies the proton momentum: p™pyeA, which results in the

Ž .shift q™qqeA in the interaction 8 . Then in the momentum representation the
contact current is

E V qŽ .
cj q syŽ .

EA

E 2 gg I qqeAŽ .
sy 22EA m m q qqeAŽ .p p

2 egg I 2 q I qŽ .
sy y . 10Ž .2 2 2½ 52 2m m qqp p m qqŽ .p

In the last expression we have neglected the dependence of the contact current on A. In
the coordinate representation it equals

ym rpegg e
cj r s r I = . 11Ž . Ž . Ž .

2p m rp

Let us derive at first a general structure of the deuteron AM generated by a P odd np
interaction, assuming only that the deuteron is a pure 3S state, bound by a spherically1

w xsymmetric potential. We follow here essentially the line of reasoning applied in Ref. 2
Ž w x.see also book 5 to the problem of a single proton in a spherically symmetric potential.

w xIn this case the formula for the AM operator is 2

p e i 2p
2 cw x w xas m r=sy l ,r q r= r= j , 12Ž .p½ 5m 3 3p

with the proton magnetic moment m s2.79. In the case of the deuteron this formulap

generalizes to

p e i p
2 cw x w xa s r= m s ym s y l ,r q r= r= j , 13Ž . Ž .d p p n n½ 52m 6 6p

Ž . Ž .m sy1.91 is the neutron magnetic moment. Both AM operators 12 and 13 aren
Žorthogonal to r neither of them commutes with r, so the orthogonality means here that

. Ž .a rqr as0 . Therefore, the contact current 11 generated by the P odd pion exchange
and directed along r, does not contribute to the nuclear AM.

3 Ž .Let us present now the wave function of the deuteron S state as c r x , where x1 0
Ž 3is the spin wave function for Is1 we neglect here and below a small D admixture in1
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. 3the deuteron . If the P odd interaction conserves the total spin I of the deuteron, the P1
Ž . Ž . Ž Ž .state admixed by it can be written as i I rrr c r both radial wave functions, c r1 0

Ž . .and c r , are spherically symmetric . Simple calculations demonstrate that the deuteron1
Ž .AM, as induced by the operator 13 , is in the absence of the contact contribution,

p e
1a s m ym y dr rc r c r I . 14Ž . Ž . Ž .Ž .Hd p n 0 133mp

So, under the assumptions made, the deuteron AM should depend on the universal
Ž .combination m ym y1r3 .p n

Ž .We confine mainly in our calculation to the naıve zero-range approximation ZRA¨
for the deuteron wave function,

k exp yk rŽ .
Ž0.c r s . 15Ž . Ž .(0 2p r

Here ks m ´ ; ´s2.23 MeV is the deuteron binding energy.( p

Ž .The P odd correction to the deuteron wave function due to V r will be found in the
common stationary perturbation theory. In the same ZRA the admixed 3P states of the1

continuous spectrum are free. Moreover, we can choose plane waves as the intermediate
Ž .states since the perturbation V r selects by itself the P-state from the plane wave. Thus

obtained first-order correction to the wave function is

dk ei k r
XX X Xyi k rc r s dr e V r c r . 16Ž . Ž . Ž . Ž .H H1 03 2y´yk rm2pŽ . p

Rather lengthy calculation leads to the following expression for the matrix element of
the radius-vector,

iIgg 1qj
dr c r rc r sy , 17Ž . Ž . Ž .H 0 1 26p m 1q2jŽ .p

Ž .where jskrm s0.32. With this matrix element and the operator 13 one obtainsp

easily the following result for the deuteron AM:

egg 1qj
1Ž0.a sy m ym y I , 18Ž .Ž .d p n 326m m 1q2jŽ .p p

Ž .in accordance with the general formula 14 . Our overall factor at the structure
Ž . Ž . w xm ym y1r3 is the same as that at m ym in the revised version of 9 .p n p n

w xHowever, the corresponding total result obtained in Ref. 9 , even in it revised version, is
Ž .not proportional to the universal combination m ym y1r3 .p n

Ž .In fact, the range 1rm of the P odd interaction 9 is quite comparable to the rangep

of the usual nuclear forces. Therefore, it is, strictly speaking, inconsistent to use the
Ž .zero-range approximation for calculating effects induced by the perturbation V r . Still,

numerical estimates made with a model deuteron wave function which has somewhat
more realistic properties, indicate that the error introduced by using the ZRA does not
exceed 20%. As to other sources of P violation, different from the pion exchange, there
are no reasons to expect that in the case of deuteron their neglect creates a serious error
if the P odd p NN coupling constant g is at least comparable to its ‘‘best value’’.
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Ž .It looks reasonable to combine the potential contribution 18 with the additive
Ž .contribution of the nucleon anapole moments, which according to 1 is

egg 6 m mp pNa sa qa sy 1y ln I . 19Ž .d p n ž /6m m p m mp p p p

In this way we arrive at the final result for the deuteron AM in the chiral limit,

egg egg
1a sy 0.49 m ym y q0.46 Isy2.60 I . 20Ž .Ž .d p n 36m m 6m mp p p p

This result includes all contributions to the P odd amplitude of ed-scattering, which are
singular in m , and thus is gauge-invariant, independent of the gauge choice for thep

Green’s functions of heavy vector bosons.
Ž .Finally, let us compare the contribution of 20 to the P odd ed scattering amplitude

which is due to the usual radiative corrections, nonsingular in m . For the deuteron thep

axial operator looks as follows:

G
C I .2 d'2

The contributions to the isoscalar axial constant C originate from the anapole moment,2 d

from usual radiative corrections nonsingular in m , and from the admixture of strangep

w xquarks in nucleons 15 . The magnitude of the s-quarks contribution is extremely
interesting, but highly uncertain. As to the usual radiative corrections, their contribution

w x Ž Ž . rto this constant is found in Ref. 10 with good accuracy see 4 : C s0.014"0.003.2 d'In the same units Gr 2 the effective axial constant induced by the electromagnetic
Ž .interaction with the deuteron AM 20 is

y1a 5'C sa a eGr 2 s0.44=10 g . 21Ž .Ž .2 d d

y7 ŽAt the ‘‘best value’’ gs3.3=10 strongly supported by the experimental result for
133 .the Cs anapole moment , we obtain

C a s0.014"0.003 . 22Ž .2 d

ŽWe use here the above estimate of 20% for the accuracy of our calculation for given
. Ž . Ž .g . The numbers in 4 and 22 are quite comparable, and taken together result in the

following value of the total effective constant:

C sC r qC a s0.028"0.005 . 23Ž .2 d 2 d 2 d

We are fully aware of the extreme difficulty of the experimental measurement of the
Ž .constant C . However, with such a good accuracy of the theoretical prediction 23 ,2 d

this experiment becomes a source of the valuable information on the P odd p NN
constant and on the s-quark content of nucleons. As it was 15 years ago, now again
‘‘C seems to be the most interesting parity-violating parameter accessible to atomic-2 d

w xphysics experiments’’ 10 , although for rather different reasons.
Ž .Of course, if necessary the accuracy of our prediction 22 can be improved by using

a more detailed and realistic description of the deuteron. On the other hand, the accuracy
Ž .of radiative corrections 4 can be also improved, at least by using much more precise

w xmodern experimental values of the parameters of the electroweak theory 14 .
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3. The deuteron P odd, T odd moments

The problem of the deuteron P odd, T odd multipoles: electric dipole, magnetic
quadrupole, and the so-called Schiff moment, was treated phenomenologically in Ref.
w x16 . Now we will calculate the electric dipole and magnetic quadrupole moments within
the approach applied above to the anapole. As to the Schiff moment, strong cancella-

w xtions occur when calculating its value for the deuteron 16 . Therefore, one cannot
expect reasonable accuracy for it with our ZRA deuteron wave function, and we will not
consider here this problem.

As distinct from the P odd, T even interaction, there are three independent P odd, T
odd effective p NN Lagrangians. They are conveniently classified by their isotopic
properties,

q y 0'DTs0 , L sg 2 pnp qnpp q ppynn p ; 24Ž .Ž .Ž .0 0

0 0< <DT s1 , L sg NNp sg ppqnn p ; 25Ž .Ž .1 1 1

3 0< <DT s2 , L sg Nt Npy3Nt NpŽ .2 2

q y 0'sg 2 pnp qnpp y2 ppynn p . 26. Ž .Ž .Ž .2

Since the possible values of the isotopic spin for two nucleons is Ts0, 1 only, the last
< <interaction, with DT s2, is not operative in our approach.

The effective P odd, T odd proton–neutron interaction is derived in the same way as
in the AM problem. In the momentum representation it looks as follows:

g iq
W q s 3g yg s y 3g qg s . 27Ž . Ž . Ž . Ž .0 1 p 0 1 n2 22m m qqp p

In the coordinate representation it is

g eym p r

W r s 3g yg s y 3g qg s = . 28Ž . Ž . Ž . Ž .0 1 p 0 1 n8p m rp

The calculation of the deuteron EDM d , i.e., of the er serr2 expectation value,d p

goes along the same lines as that for the anapole moment and results in

egg 1qj1
dsy I . 29Ž .212p m 1q2jŽ .p

Ž .The magnetic quadrupole moment MQM operator is expressed through the current
Ž w x.density j as follows see, for instance, 5,17 :

M s r ´ qr ´ r j . 30Ž . Ž .m n m nr s n m r s r s

This expression transforms to
e

2M s 3m r s qr s y s r q2 q r l qr l . 31Ž . Ž . Ž .� 4m n m n n m m n n m32m

Here m is the total magnetic moment of the particle, q is its charge in the units of e.
The magnetic quadrupole moment is the expectation value MM of the operator M in thez z

state with the maximum total angular momentum projection I s I.z
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In our case, due to the spherical symmetry of the deuteron nonperturbed wave
function, the orbital contribution to M vanishes. The contact current generated by them n

P and T odd charged pion exchange, here is also directed along r, and thus does not
contribute to MQM. So, the deuteron magnetic quadrupole moment originates from the

Ž .spin term in 31 . It equals

eg 1qj
MMsy 3g qg m q 3g yg m . 32Ž . Ž . . Ž .0 1 p 0 1 n212p m m 1q2jŽ .p p
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