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The nuclear physics relevant to the electric dipole moment(EDM) of the deuteron is addressed. The general
operator structure of theP- andT-odd nucleon-nucleon interaction is discussed and applied to the two-body
contributions of the deuteron EDM, which can be calculated in terms ofP- andT-odd meson-nucleon coupling
constants with only small model dependence. The one-body contributions, the EDMs of the proton and the
neutron, are evaluated within the same framework. Although the total theoretical uncertainties are sizable, we
conclude that, compared to the neutron, the deuteron EDM is competitive in terms of sensitivity toCP
violation, and complementary with respect to the microscopic sources ofCP violation that can be probed.
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I. INTRODUCTION

In the field of particle physics an atomic physics quantity
plays a privileged role: the electric dipole moment(EDM),
which violates paritysPd conservation and time reversal(T,
or equivalentlyCP) invariance. The standard model predicts
values for EDMs that are much too small to be detected in
the foreseeable future, and hence a nonzero EDM is an un-
ambiguous signal of a new source ofCP violation [1,2].

Over the years, many experiments have searched with in-
creasing precision for a nonzero EDM. The most sensitive
experiments measure the precession frequency of the spin for
neutral systems, such as the neutron or an atom, in a strong
electric field. The limit on the EDM of the neutron, in par-
ticular, has been improved spectacularly over the years[3].
The most precise value obtained so far isdn=s−1.0±3.6d
310−26 ecm [4]. New experiments using high-density ultra-
cold neutron sources are being set up to target the precision
level of 10−27 to 10−28 ecm at LANL (LANSCE), PSI, ILL,
and Munich(FRM-II).

Limits on the EDMs of charged particles[5], such as the
electron and the proton, have so far been derived from ex-
periments with selected neutral atoms(and molecules). The
best limit for an EDM has been obtained for the199Hg
mercury atom [6], for which dHg=s−1.06±0.49±0.40d
310−28 ecm was measured. In such a closed-shell atom with
paired electron spins, the EDM of the atom arises mainly
from the EDM of unpaired nucleons and fromT-odd inter-
actions within the nucleus. For this type of experiments with
neutral atoms, the EDM signal is severely suppressed due to
the screening of the applied external electric field by the
atomic electrons, a general result known in the literature as
Schiff’s theorem[7–9].

Recently, a new highly sensitive method has been pro-
posed to directly measure the EDMs of charged particles,
such as the muon or ions, in a magnetic storage ring[10,11].
The method evades the suppression of the EDM signal due
to Schiff’s theorem, and works for systems with a small

magnetic anomaly. An experiment using this method has
been proposed to measure the EDM of the deuteron at the
10−27 ecm level [12]. From a theoretical point of view, the
deuteron is especially attractive, because it is the simplest
system in which theP-odd, T-odd sP”T” d nucleon-nucleon
sNNd interaction contributes to the EDM. Moreover, the deu-
teron properties are well understood[13], so reliable and
precise calculations are possible.

It is our goal in this paper to address the nuclear physics
part of the deuteron EDM calculation, and to compare the
result to the EDM of the neutron(and proton) evaluated
within the same framework. The framework is designed so
that our results for the nucleon EDM and theP”T” NN inter-
action would be suitable, when combined with a realistic
strongNN interaction, as a starting point for a microscopic
calculation of the EDM of more complex systems, such as
the mercury atom.

This paper is organized as follows. In Sec. II we construct
the general operator structure of theP- andT-odd NN inter-
action and from it derive the potential in terms of strong and
P”T” meson-nucleon coupling constants. In Sec. III, we use
this P”T” potential in combination with modernNN potential
models to evaluate the two-body(polarization and exchange)
contributions to the deuteron EDM. The one-body contribu-
tions, i.e., the EDMs of the proton and the neutron, are cal-
culated within the same framework. Finally, the results are
discussed and conclusions are drawn in Sec. IV. In the Ap-
pendix we discuss and evaluate the, alsoP- andT-odd, mag-
netic quadrupole moment(MQM) of the deuteron.

II. P- AND T-ODD TWO-NUCLEON INTERACTION

By contracting two Dirac bilinear covariants containing at
most one derivative, theP-odd, T-odd, andC-even (hence
still CPT-even) contactNN interaction can be constructed

from (i) the scalar-pseudoscalar(S-PS) combination, N̄N

3 N̄ig5N, and(ii ) the vector-pseudovector(V-PV) combina-

tion, N̄gmN3 N̄ ]Jmg5N [14]. The tensor-pseudotensor(T-PT)
combination,N̄smnN3 N̄smng5N, also qualifies these sym-
metry considerations, however, it is equivalent to the S-PS
one by a Fierz transformation.
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Using the nonrelativistic(NR) reduction and writing out
the isospin structure explicitly, the most general form of the
low-energy,P- and T-odd sP”T” d, zero-range(ZR) NN inter-
action,HP”T”

sZRd, can be expressed, in configuration space, as

HP”T”
sZRd =

1

2mN
hsc1 + d1ds− + sc2 + d2dt1 · t2s− + sc3 + d3dt+

zs−

+ sc4 + d4dt−
zs+ + sc5 + d5ds3t1

zt2
z

− t1 · t2ds−j · = d s3dsrd, s1d

where s± ;s1±s2 and t± ;t1±t2.
1 Terms involving the

isospin operatorist13t2dz, even though they conserve
charge, are ruled out since they areC-odd. The dimensionful
coupling constantsci anddi si =1, . . . ,5d each correspond to
a unique isospin-spin-spatial operator in the S-PS and V-PV
parts, respectively. These constants are the quantities that
experiments such as nuclear EDM measurements can hope-
fully constrain, and thus predictions from different models of
CP violation could be tested.

At first sight, it seems that the introduction of thedi’s is
redundant because the V-PV form has exactly the same NR
limit as its S-PS counterpart, a point which has been made in
Ref. [14]. Therefore, as long as one works strictly in the
context of contact interactions, e.g., “pionless” effective field
theory, only five coupling constants are needed to fit to ex-
periments. However, there are several reasons to justify this
larger set, especially when one goes beyond the ZR limit
with several energy scales involved.

First, when one tries to connect the experimental con-
straints to underlying theoretical models, it is still necessary
to make the distinction between the S-PS and V-PV sectors.
Because of different nucleon dynamics involved, the separa-
tion and comparison of these two sectors are of interest.

Second, if one wants to keep the pions, as the lightest
mesons, explicitly and model the long-range(LR) interaction
through one-pion exchange(see, e.g., Refs.[16–18]), a scale
separation defined by the pion mass naturally occurs. In this
case, one has in total eight independent coupling constants:
five in the ZR potential which is a result of integrating out all
degrees of freedom except the pions, and threeP”T” pion-
nucleon coupling constants[see below, Eq.(4)] which de-
scribe the LR potential.2 This possible scale difference be-
tween the S-PS and V-PV sectors is not manifest in the ZR
limit.

The third and more practical reason is that we are going to
adopt a “hybrid” approach for theNN dynamics which takes
advantage of existing high-quality strongNN potentials and
use perturbation theory based on operators constructed in the
spirit of effective field theory(EFT). In such a framework, it

is necessary to smear out the contact interactions. The physi-
cal guideline is to take the delta function as a limit of the
mass2-weighted Yukawa function,mx

2Yxsrd=mx
2e−mxr / s4prd,

when the exchanged boson is taken to be extremely massive:

lim
mx→`

mx
2e−mxr

4pr
= lim

mx→`
F.T.F mx

2

q2 + mx
2G = d s3dsrd, s2d

where “F.T.” stands for Fourier transform. As suggested
above, allowing different mass scales for the S-PS and V-PV
sectors then leads to the most generalHP”T” in terms of ten
independent operators.

Although the choices of the mass parameters for the
Yukawa functions are arbitrary in the sense of fitting the
coupling constants, the mass spectrum of low-lying mesons
provides an intuitive choice and suggests a connection be-
tween HP”T” thus constructed and the one-meson exchange
scheme. Besides the one-pion exchangesJP=0−,mp

=140 MeVd often adopted in the literature, the contribution
from h sJP=0−,mh=550 MeVd [19], and fromr and v sJP

=1−,mr,v=770,780 MeVd [20] have also been considered in
various works. We will show that a one-meson exchange
scheme containingp, h, r, andv produces the same general
operator structure as the ZR scheme.(The isoscalar-scalar

meson« or “s,” with a P”T” coupling of typeN̄ig5sN, leads to
the same operator structure as theh meson, and its contribu-

tion would be effectively subsumed in the couplingḠh
s0d.)

The strong andP”T” meson-nucleon interaction Lagrangian
densities,LS andLP”T”, are3

LS= gpNNN̄ig5t · pN + ghNNN̄ig5hN

− grNNN̄Sg m − i
xV

2mN
s mnqnDt · rmN

− gvNNN̄Sgm − i
xS

2mN
s mnqnDvmN s3d

and

LP”T” = N̄„ḡp
s0dt · p + ḡp

s1dp0 + ḡp
s2ds3t zp0 − t · pd…N

+ N̄sḡh
s0dh + ḡh

s1dt zhdN

+ N̄
1

2mN
„ḡr

s0dt · rm + ḡr
s1drm

0

+ ḡr
s2ds3t zrm

0 − t · rmd…s mnqng5N

+ N̄
1

2mN
sḡv

s0dvm + ḡv
s1dt zvmds mnqng5N. s4d

1We note that this most general NR form containing five indepen-
dent isospin-spin operators has already been pointed out in Ref.
[15].

2The threeP”T” pNN couplings were first pointed out by Barton
[16]. However, since the concern then was parity violation, these
couplings were only picked up later when interest in nuclearCP
violation built up.

3The choice of pseudoscalar coupling for the pion field in Eq.(3)
is traditional in the EDM literature. In order to have manifest chiral
symmetry, pseudovector(derivative) coupling is of course pre-
ferred. However, the results for the two-body contributions and for
the leading one-body contribution(the chiral logarithm) would be
equivalent.
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ThegXNN’s are the strongXNN coupling constants for which
we will adopt the valuesgpNN=13.07 [21,22], ghNN=2.24
[23], grNN=2.75[24], andgvNN=8.25.4 The gX

sid’s are theP”T”
ones with the superscripti =0,1,2denoting the correspond-
ing isospin content.5 xV andxS are the ratios of the tensor to
vector coupling constant forr and v, respectively; when
vector-meson dominance(VMD ) [26] is assumed, they are

equal to the electromagnetic counterparts, i.e.,kV=3.70 and
kS=−0.12. The tensor structureN̄smnqng5N in Eq. (4), where
qn=pn−pn8, is equivalent to the PV structureN̄]Jmg5N by a
Gordon decomposition.

Evaluating all one-meson exchange diagrams with one
strong and oneP”T” vertex, the NR potential,HP”T”, is found to
be

HP”T” =
1

2mN
Hs− · = „Ḡh

s0dYhsrd − Ḡv
s0dYvsrd… + t1 · t2s− · = „Ḡp

s0dYpsrd − Ḡr
s0dYrsrd… + t+

zs− · = F1

2
„Ḡp

s1dYpsrd − Ḡh
s1dYhsrd…

−
1

2
„Ḡr

s1dYrsrd + Ḡv
s1dYvsrd…G + t−

zs+ · = F1

2
„Ḡp

s1dYpsrd + Ḡh
s1dYhsrd… −

1

2
„− Ḡr

s1dYrsrd + Ḡv
s1dYvsrd…G

+ s3t1
zt2

z − t1 · t2ds− · = „Ḡp
s2dYpsrd − Ḡr

s2dYrsrd…J , s5d

where ḠX
sid is defined as the product of a strong coupling

constantgXNN and its associatedP”T” one ḡX
sid;6 for instance,

Ḡp
s0d=gpNNḡp

s0d.
One sees that the general operator structure in Eq.(1),

based only on symmetry considerations, is fully reproduced
by the one-meson exchange scheme containing the lowest-
lying pseudoscalar and vector mesons in both isovector(p
and r) and isoscalar(h and v) sectors. The ten coupling
constants in Eq.(1) find their counterparts in the tenP”T”
meson-nucleon coupling constants. Equation(5) has the ad-
vantage that it not only has the most general operator struc-
ture, but it also provides a link to the meson-exchange pic-
ture which provides some insight. We finally note that one-
kaon exchange does not contribute to the strangeness-
conservingNN interaction.

III. DEUTERON EDM

Because theP”T” interaction induces a smallP-wave ad-
mixture to the deuteron wave function, it leads to a nonvan-
ishing matrix element of the charge dipole operator. In addi-
tion, since the proton and the neutron also have an EDM, a
disentanglement of one- and two-body contributions,

dD = dD
s1d + dD

s2d, s6d

is necessary to make contact to the underlyingP”T” physics. In
the following, we shall use theP”T” NN interactionHP”T” con-
structed in the previous section to calculatedD

s2d. We will use
the same meson-exchange picture as a guideline to give an
estimate ofdD

s1d. The final result fordD can then be expressed
in terms of theP”T” meson-nucleon coupling constants. EDMs
are expressed in units ofe fm for the remainder of the paper.

A. Two-body contributions

For the two-body part, the dominant contribution comes
from the polarization effect. In leading order in the perturba-
tion, it is the matrix element of the charge dipole operator
evaluated between the unperturbed deuteron stateuDl
(mainly 3S1-wave with some 6%3D1-wave) and the admixed

P-wave componentuD̃l, viz.

dD
spold =Î1

6
kDit−

zeriD̃l, s7d

wherer =r1−r2 and “i” denotes the reduced matrix element.
Because the charge dipole operator conserves the total spin,

uD̃l has to be the3P1 state. The isospin and spin selection
rules then dictate that only the operatort−

zs+ in HP”T” can
induce such an admixture to the deuteron.

In order to examine the model dependence of the matrix
element, the numerical calculation is performed with three
high-quality local potential models: Argonnev18 sAv18d [27],

4We use the prediction[25] gvNN
2 =9grNN

2 to infer gvNN from
grNN

2 /4p=0.6 given in Ref.[24].
5We use the Bjorken-Drell metric and special attention should be

paid to the definition ofg5= s 0 I
I 0

d and any coupling constant associ-
ated with it. Relative to the Pauli metric a sign difference due tog5

should be kept in mind.
6In Ref. [19], the P”T” hNN interaction only contains an isoscalar

part, so it does not contribute to the isovectorHP”T” . However, this
isovector piece, which gives a different linear combination from the
pion contribution, is needed in order to render thet+

zs− andt−
zs+

operators independent.
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and the Nijmegen models Reid93 and Nijm II[28]. The re-
sults

dD
spold = 1.433 10−2Ḡp

s1d + 1.593 10−3Ḡh
s1d + 6.253 10−4Ḡr

s1d

− 5.963 10−4Ḡv
s1d, s8ad

=1.453 10−2Ḡp
s1d + 1.683 10−3Ḡh

s1d + 6.833 10−4Ḡr
s1d

− 6.533 10−4Ḡv
s1d, s8bd

=1.473 10−2Ḡp
s1d + 1.723 10−3Ḡh

s1d + 7.503 10−4Ḡr
s1d

− 7.193 10−4Ḡv
s1d, s8cd

for Av18, Reid93, and Nijm II, respectively, show a relatively
model-independent pattern. Judging from the coefficients for
the different mesons, pion exchange dominates the result.
The much smaller sensitivity ofdD

s2d.dD
spold to heavy-meson

exchanges guarantees that pion-exchange is a good approxi-
mation here(this may not be true fordD

s1d, a point we address
below).

The slight difference in the results for these models can be
attributed to their softness at the intermediate range where
the deuteron wave function(which agrees well for these po-
tential models) has most of the overlap with the Yukawa
functions. Figure 1 compares the effective potentialVeffsrd
=Vssrd+LsL+1d / smNr2d of these models in the3P1 channel
sL=1d, which determines the radial behavior of theP”T” ad-
mixture in the inhomogeneous Schrödinger equation

sT + Veff
s3P1dduD̃l = HP”T” uDl. s9d

Among these three models, Nijm II is the softest one within
the range of about 0.3–1.0 fm, so it gives the largest result,
while Av18, the hardest one, gives the smallest result. As the
heavy-meson exchange is very sensitive to the wave function
at short range, its model dependence is more apparent com-
pared to the pion-exchange case. Our result for the coeffi-

cient ofḠp
s1d is consistent with two earlier predictions: 0.010–

0.026 obtained by Avishai[29], who used strong potential

models from before the 1970s, and 0.019 obtained by
Khriplovich and Korkin [30], who assumed the zero-range
approximation for the deuteron and a free3P1 wave function.
Their number can be considered as an upper bound.

The meson-exchange effects, in the form of two-body ex-
change charges, give contributions of the form

dD
sexd =Î1

6
SkDiE d3xrs2dsxdxiD̃l

+ kDiE d3xr̃ s2dsxdxiDlD , s10d

where the first term corresponds to adding the normal(P-
and T-even) exchange charger s2d to Eq. (7), and theP”T”
exchanger̃ s2d, induced byHP”T”, is included via the second
term. Compared with the one-body charge, which isOs1d,
rs2d can be ignored since it gives a correction ofOs1/mNd3

(see, e.g., Ref.[31]). On the other hand, sincer̃s2d can be as
large asOs1/mN

2d, and its contribution is evaluated within
unperturbed deuteron wave functions, its significance should
be investigated.

As indicated by the dominance of pion exchange observed
above, and also in view of the suppression of heavy-meson
exchange currents found in the study of the(P-odd,T-even)
deuteron anapole moment[32], the consideration of the pion
sector is sufficient for the two-body exchange effects. At-
taching a photon to every possible line in the one-pion ex-
change diagram which leads toHP”T”

spd, the exchange charge
can then toOs1/mN

2d be identified, in configuration space, as

r̃pair
spdsx;r1,r2d =

e

4mN
2 „s1 + kSdfḠp

s0dt1 · t2 + Ḡp
s1dt1

z

+ Ḡp
s2ds3t1

zt2
z − t1 · t2dg + s1 + kVdsḠp

s0dt2
z

+ Ḡp
s1d + 2Ḡp

s2dt2
zd…s1 · =xd

s3dsx − r1dYpsrd

+ s1 ↔ 2d, s11d

r̃mesonic
spd sx;r1,r2d = −

e

4mN
2 ist1 3 t2dzsḠp

s0d − Ḡp
s2dd

3ss1 · =1 + s2 · =2d

3f¹1
2 − ¹2

2,Ypsrx1dYpsrx2dg, s12d

where the pair term refers to the diagram in which the photon
couples to an intermediate nucleon-antinucleon pair and the
mesonic term refers to the diagram in which the photon
couples to the meson in flight;r = ur1−r2u, rx1s2d= ux−r1s2du.
Numerically, the contribution of these diagrams to the deu-
teron EDM is found to be

dD
sexd . 9.403 10−4Ḡp

s1d − 5.283 10−4Ḡp
s0d. s13d

Compared withdD
spold, this constitutes only a few-percent cor-

rection.
Combining the results fordD

spold anddD
sexd, we obtain for the

two-body contribution to the deuteron EDM, in terms ofP”T”
couplings,

FIG. 1. The comparison of three different effective strong po-
tentials in the3P1 channel.
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dD
s2d = dD

spold + dD
sexd . 0.20ḡp

s1d + Osḡp
s0d,ḡh,r,v

s1d d, s14d

with an error estimated as less than 5%.
Besides the usual exchange effects in which one of the

meson-nucleon couplings isP- and T-odd, another class of
diagrams involving aP”T” photon coupling to the exchanged
mesons can also contribute. Since pseudoscalar mesons can-
not have such aP”T” coupling to photons, the candidates in
our current framework areP”T” rpg, vpg, andrrg vertices.
Assuming theseP”T” couplings are of the same order of mag-
nitude, one can expect a smaller contribution from therrg
vertex, because ther meson is much more massive and has a
smaller strong coupling to nucleons than the pion. Therefore,
in order to estimate the size of this type of contribution we
evaluate the diagrams based onP”T” rpg and vpg vertices
shown in Fig. 2.

Expressing theP”T” rpg andvpg Lagrangian densities as

LP”T”
srpgd =

eḡrpg

2mr

Fabra · ]bp, s15d

LP”T”
svpgd =

eḡvpg

2mv

Fabva]bp0, s16d

where two newP”T” coupling constantsḡrpg and ḡvpg are
introduced, the associated exchange charges are, in configu-
ration space,

r̃mesonic
srpg8d sx;r1,r2d =

egrNNgpNNḡrpg

4mrmN
t1 · t2s= · =2d

3ss2 · =2dYrsrx1dYpsrx2d + s1 ↔ 2d,

s17d

r̃mesonic
svpg8dsx;r1,r2d =

egvNNgpNNḡvpg

4mvmN
s= · =2d

3ss2 · =2dYvsrx1dYpsrx2d + s1 ↔ 2d.

s18d

The numerical calculation, using the Av18 potential, gives an
EDM contribution of about 2.3310−3sḡrpg− ḡvpgd. Since the
coefficient is two orders of magnitude smaller than the lead-
ing coefficient ofḡp

s1d in Eq. (14), we shall ignore these me-
sonicP”T” effects for the rest of this work.

B. One-body contributions

The total one-body contribution to the deuteron EDM is
simply the sum of the proton and neutron EDMs, i.e.,

dD
s1d = dp + dn. s19d

Our goal in this section is to evaluatedp anddn in a manner
consistent with the framework used for theP”T” NN interac-
tion.

The nucleon EDM has a wide variety of sources such as

the QCDū term, quark EDMs and chromo-EDMs(CEDMs),
Weinberg three-gluon operator, and four-quark contact inter-
actions, therefore, its evaluation requires good knowledge of
nonperturbative dynamics of confined quarks, which is still
not available. A commonly used method of estimate is to
evaluate the hadronic loop diagrams, in which meson and
baryon degrees of freedom are used to describe the dynam-
ics, and the dependence on theP”T” mechanisms at the quark-
gluon level is subsumed in theP”T” meson-nucleon coupling
constants. This approach has been applied extensively to the
neutron EDM in various contexts(see, for example, Refs.
[33–41]). Here we apply it to both the proton and the neutron
EDM, with the inclusion of vector mesons.

The loop diagrams containing a virtual pseudoscalar me-
son are classified as in Fig. 3(a) and Fig. 3(b), where the
photon couples to the charged pseudoscalar meson in the
former and to the intermediate nucleon in the latter case.
Defining the hadronic loop contribution to the nucleon EDM
as

FIG. 2. The two-body contribution todD arising from the first-
orderP”T” r- andv-pg couplings.

FIG. 3. Hadronic loop dia-
grams which contribute to the
nucleon EDM.
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dN
shadd ;

e

4p2mN
SdS

1

2
+ dV

t z

2
D , s20d

the results for the corresponding diagrams are7

dS
sad = 0, s21d

dV
sad = − 2sḠp

s0d − Ḡp
s2ddI0

spd, s22d

dS
sbd = s3Ḡp

s0d + Ḡp
s1ddI1

spd − s3kSḠp
s0d + kVḠp

s1ddI2
spd

+ sḠh
s0d + Ḡh

s1ddI1
shd − skSḠh

s0d + kVḠh
s1ddI2

shd, s23d

dV
sbd = s− Ḡp

s0d + Ḡp
s1d + 4Ḡp

s2ddI1
spd − s− kVḠp

s0d + kSḠp
s1d

+ 4kVḠp
s2ddI2

spd + sḠh
s0d + Ḡh

s1ddI1
shd

− skVḠh
s0d + kSḠh

s1ddI2
shd. s24d

The three distinct loop integrals involving ani-type pseudo-
scalar meson,I0

sid, I1
sid, and I2

sid, correspond to the cases
where the photon couples to the pseudoscalar meson, the
nucleon Dirac, and the nucleon Pauli form factor, respec-
tively. They are evaluated as

I0
sid = − 1 − s1 − xi

2dln xi + xi
2s3 − xi

2dFsxi
2d

——→
xi,,1

− ln xi − 1 +
3p

4
xi + xi

2 ln xi + Osxi
2d,

s25d

I1
sid =

1

2
−

1

2
xi

2 ln xi − xi
2S1 −

1

2
xi

2DFsxi
2d

——→
xi,,1

1

2
−

p

4
xi −

1

2
xi

2 ln xi + Osxi
2d, s26d

I2
sid =

11

16
+

3

8
xi

2 −
1

16
xi

2s1 + 3xi
2dln xi

− xi
2S1 +

5

8
xi

2 +
3

8
xi

2DFsxi
2d

——→
xi,,1

11

16
−

p

4
xi −

1

8
xi

2 ln xi + Osxi
2d, s27d

Fssd =
1

Î4s+ s2Stan−1F 2 − s
Î4s+ s2G + tan−1F s

Î4s+ s2GD ,

s28d

wherexi =mi /mN. Since both meson and nucleon form fac-
tors were taken to be constant off the mass shell, and since
form factors fall off as the square of the four-momentum
transfer increases, these results should be viewed as an upper
bound[35].

From Eqs.(25)–(27), one observes that onlyI0
spd has a

nonanalytic term, i.e., lnxp, in the chiral limit,mp→0. The
mathematical reason is that Fig. 3(a) contains more pion
propagators than Fig. 3(b), which is responsible for the in-
frared divergence in the soft-pion limit[34]. Therefore, the
contribution to the nucleon EDM involving chiral logarithms
is purely isovector,

dN
spd = −

et z

4p 2mN
sḠp

s0d − Ḡp
s2ddlnSmN

mp
D . s29d

This implies that the deuteron EDM receives no one-body
contribution from loop diagrams involvingp andh mesons
in the chiral limit. Furthermore, when the neutron EDM is
considered, the constant terms inI0 andI1 exactly cancel, as
has been pointed out in Ref.[38]. However, this is not true
for the proton.

Because chiral symmetry is explicitly broken by the pion
mass, it is interesting to compare the chiral logarithm with
other, analytic, terms when realistic parameters are used. For
example, takingxp=140/940 in Eq.(25), one getsI0

spd

.1.19, which is about 40% smaller than −lnsmp /mNd

.1.90. This sizable difference typically sets the scale for the
theoretical uncertainty. The same conclusion can be drawn
from the work by Barton and White[33] who, motivated by
the success of sideways dispersion relations for the nucleon
Pauli form factors[42], applied the same technique with the
same parameters to the neutron EDM problem. This analysis,
involving mainly the threshold pion-photoproduction ampli-
tude, is actually similar to the evaluation of type(a) loop
diagram with soft pions, and in fact produces the same chiral
logarithm. Compared with the leading term which gavedn

.0.8310−11 e fm (a value, in our notation,ḡp
s0d− ḡp

s2d=1.2
310−10 was used as input), their full analysis predicteddn
.0.5310−11 e fm, which is also some 40% smaller. While
this may be just an accident, it does signal a potentially large
theoretical uncertainty for the nucleon EDM.

In order to estimate the relevance of the vector-meson
degrees of freedom to the nucleon EDM, we consider the
diagrams illustrated in Fig. 3(c). These contributions can be
roughly estimated by the assumption of VMD, which leads
to a dispersion-theory analysis of ther0 and v poles in the
timelike region. The deuteron is only sensitive to the iso-
scalar sector, for which, in the case of the nucleon Pauli form
factor, the naive VMD model works rather well. The vector-
meson contributions to the isovector nucleon EDM should,
however, also be added as a correction to the leading result
from the pion-loop calculation, which is equivalent to includ-
ing the 2p continuum in the dispersion-theory analysis.

The required vector-meson-photon conversion mechanism
is introduced by the Lagrangian density

LVMD =
e

2fr

FmnFmn
srd +

e

2fv

FmnFmn
svd, s30d

where theFmn’s denote the field tensors for the photon and
the r0 and v mesons; the constantsfr=5.00 andfv=17.05
are determined from the decay widthsGr,v→e+e−

=6.85,0.60 MeV[43] by Gx→e+e−=4pa2mN/ s3fx
2d. Then the

7Kaon loops can also contribute[35–38,41], and be easily added
to our results.
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vector-meson contributions to the nucleon EDM are evalu-
ated as

dS
scd =

4p 2

frgrNN
Ḡr

s1d +
4p 2

fvgvNN
Ḡv

s0d, s31d

dV
scd =

4p 2

frgrNN
sḠr

s0d + 2Ḡr
2d +

4p 2

fvgvNN
Ḡv

s1d. s32d

Keeping in mind the caveat of a possibly large theoretical
error, we nevertheless take a more adventurous point of view
and include also the analytic terms inI0 and I1, i.e., I0

spd

.1.19,I1
spd.0.41, andI1

shd.0.28, but we neglect the part
from the nucleon Pauli form factor, so we setI2

spd=I2
shd=0.

Collecting the results from Eqs.(20)–(24), (31) and(32), the
total one-body contribution to the deuteron EDM is evalu-
ated as

dD
s1d = 2.183 10−3s3Ḡp

s0d + Ḡp
s1dd + 1.493 10−3sḠh

s0d + Ḡh
s1dd

+ 1.533 10−2Ḡr
s1d + 1.493 10−3Ḡv

s0d. s33d

In terms of theP”T” meson-nucleon coupling constants, the
result is

dD
s1d = 0.03ḡp

s1d + 0.09ḡp
s0d + 0.04ḡr

s1d + 0.01ḡv
s0d + Osḡh

s0,1dd.

s34d

IV. DISCUSSION

Combining Eqs.(14) and(34), we arrive at our final esti-
mate for the deuteron EDM:

dD = s0.20 + 0.03dḡp
s1d + 0.09ḡp

s0d + 0.04ḡr
s1d + 0.01ḡv

s0d,

s35d

while our results at the same time imply the following pre-
dictions for the proton and neutron EDMs:

dp = − 0.08sḡp
s0d − ḡp

s2dd + 0.03sḡp
s0d + ḡp

s1d + 2ḡp
s2dd

+ 3 3 10−3sḡh
s0d + ḡh

s1dd + 0.02sḡr
s0d + ḡr

s1d + 2ḡr
s2dd

+ 6 3 10−3sḡv
s0d + ḡv

s1dd, s36d

dn = 0.14sḡp
s0d − ḡp

s2dd − 0.02sḡr
s0d − ḡr

s1d + 2ḡr
s2dd

+ 6 3 10−3sḡv
s0d − ḡv

s1dd. s37d

The leading contribution todD, 0.20ḡp
s1d, due to theP”T”

NN interaction, including the exchange charges and calcu-
lated by using state-of-the-art wave functions, is 25% smaller
than the result assuming the zero-range approximation[30]
which was adopted for an analysis onCP violation models in
Ref. [44]. The remaining contributions come from the proton
and neutron EDMs. These terms have a sizable theoretical
uncertainty, which could be as large as 40%.

The nonvanishing dependence onḡp
s0d, which arises from

including analytic terms in the hadronic loop calculations,

sets the stage for the QCDū term to play a role in the
deuteron. Using the prediction by Crewtheret al. [34] that

ḡp
s0d.0.027ū, one gets adD,2310−3ū dependence onū,

which is about three times larger than the QCD sum-rule
calculation [44,45]. The dependence on the vector-meson
couplings, though suppressed at the two-body level, enter the
final result through the nucleon EDM where it could be siz-
able. An important issue in this respect is the size of theP”T”
r, v (andh for that matter) coupling constants compared to
those of the pion. An argument by Gudkovet al. suggested
that these vector-meson coupling constants are less signifi-
cant [19], while a recent work by Pospelov based on QCD
sum rules gave the “best” values forḡr,v of the same order of
magnitude asḡp [46]; and these two works surprisingly have
opposite predictions about the relative importance of
ḡp± / ḡp0. Furthermore, work on theP-odd,T-evenNN inter-
action implied vector couplings at least equally important
and preferably larger than their pseudoscalar counterparts
(see, e.g., Refs.[47–49]). Therefore, until consensus is
reached, these vector-meson contributions should still be
kept for maintaining a greater generality.

In order to connect expression Eq.(35) for the deuteron
EDM to the underlyingCP violation, theP”T” meson-nucleon
coupling constants have to be expressed in terms of param-

eters at particle-physics level, such as the QCDū term, quark
EDMs and CEDMs, etc. These quantities have a plethora of
predictions from extensions of the standard model. Because
all the EDM measurements to date only resulted in upper
bounds, it is a popular practice to use these experimental
limits to derive the corresponding bounds for one particular
source ofCP violation while turning other possibilities off in
an ad hocfashion. Even though this simplification is legiti-
mate to some extent, one might obtain an overconstraint
by excluding possible cancellations between various
CP-violation sources.

The deuteron and neutron results illustrate how limits on
their EDMs could be used to provide tight constraints on a
specific model ofCP violation, such as the one in Ref.[46].
For supersymmetric models in which the Pecci-Quinn sym-

metry is evoked to remove the QCDū term, the quark
CEDMs are the dominant contributors to theP”T” meson-
nucleon coupling constants, compared to the three-gluon and
four-quark operators. Therefore, all theḡ’s can be expressed
in terms of thedq

c’s. Using the “best” values recommended in
Ref. [46]: ḡp

s1d.20d−
c, ḡp

s0d.4d+
c, ḡr

s0d.13.3d+
c, ḡr

s1d.8.6d−
c,

ḡv
s0d.−8.6d+

c, ḡv
s1d.−13.3d−

c, where d±
c =du

c±dd
c,8 the

deuteron and neutron EDMs can be completely expressed in
terms of the CEDMs of the up and down quarks, viz.

dD = − 4.67dd
c + 5.22du

c, s38d

dn = − 0.01dd
c + 0.49du

c. s39d

Thus these two EDM measurements probe different linear
combinations ofdd

c and du
c in this case. Moreover, the deu-

teron could be significantly more sensitive than the neutron.

8In Ref. [46], theP”T” vector-meson-nucleon couplings are defined
to have the same dimension as the EDM. The conversion to our
definition is a factor of 2mn [50].
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This example is clearly oversimplified, however, judging
from the general expressions Eqs.(35) and(37), one expects
that, barring unnatural and accidental cancellations, the deu-
teron is competitive to the neutron in sensitivity toCP vio-
lation. Furthermore, the deuteron EDM involves differentP”T”
coupling constants, and hence in general will be complemen-
tary with respect to the information aboutCP violation that
can be probed with the neutron.

In conclusion, it should be realized that the theoretical
uncertainties, especially in the results fordp and dn and
hence in the one-body contribution todD, are significant. The
calculation of an atomic or nuclear EDM involves a broad
range of physics, including the problematic strong interac-
tion at the nuclear and subnuclear scale. In this respect, it is
relevant that efforts have been renewed recently to attack the
neutron EDM in lattice QCD[51]. In general, improved
treatments of the hadronic physics, which can bridge the
phenomenology of the neutron EDM andP”T” nuclear forces
with the underlying particle physics, are of central interest.
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APPENDIX: DEUTERON MQM

Besides the EDM, theP”T” NN interaction can also induce
P- andT-odd electromagnetic moments of higher multipolar-
ity, that is, C3, C5, andM2, M4, etc. For a spin-1 object
such as the deuteron, a nonzeroM2 magnetic quadrupole
moment(MQM) is therefore another signature ofCP viola-
tion. Approximating the nuclear electromagnetic current as
purely one-body, i.e., ignoring the meson-exchange currents,

the MQM operator can be expressed, in a Cartesian basis, as

Mmn=
e

2mN
hmf3rmsn + 3rnsm − 2s · rdmng

+ 2qsrmLn + rnLmdj, sA1d

where m, q, and L denote the nucleon magnetic moment,
charge(in units ofe), and orbital angular momentum, respec-
tively [30]. The deuteron MQM, defined by

MD = 2kD,Jz = 1uo
i=1

2

MzzsiduD̃,Jz = 1l, sA2d

can then be evaluated once the1P1 and3P1 parity admixtures
have been calculated. AssumingP”T” one-pion exchange only,
and using the Av18 strong potential gives the numerical re-
sult

MD = 0.051mSḡp
s0d + s0.031mV + 0.003dḡp

s1d, sA3d

in units of e fm2. The model-dependence is at the 1% level,
similar to the EDM calculation.

Although the isoscalar spin current leads to a rather large
matrix element(in the zero-range approximation of Ref.
[30], it is three times the isovector one), the isoscalar mag-
netic moment renders the resultingḡp

s0d coefficient, 0.04,
smaller than theḡp

s1d coefficient, 0.15, which is dominated by
the isovector spin current from the large isovector magnetic
moment. The orbital motion adds only a small correction to
the ḡp

s1d term through the deuteronD-wave component.
While a sensitive experiment to measureMD appears as

least as formidable as fordD, it might be contemplated with
deuterium atoms, because the MQM, unlike the EDM, is not
screened by the electron. An interesting theoretical point is
that, since the nucleon itself has no quadrupole moment, the
deuteron MQM is a rather clean probe of theP”T” NN inter-
action, and in particular ofḡp

s1d.
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