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Techniques  for measu remen t  of spin- i  and  spin-I analyzing ten- 
sors with a view to the control or el iminat ion of first-order 
systematic  errors which may  arise f rom misa l ignments  of var ious  
types are discussed. The concept  of a "p rope r  flip" and a 

" n o n p r o p e r  fl ip" is in t roduced for both spin .,1 and  spin 1. 
Several me thods  for measu remen t  of spin-l  analyzing tensors  are 
described and  their relative meri ts  are evaluated.  

1. Introduction 

Polarization analyzing tensors in nuclear physics 
may always be measured by means of ratios of one type 
or another. For this reason, it is intrinsically easier to 
obtain accurate absolute information about these 
quantities than is the case for differential cross sec- 
tions. Typical ratios in this context might be " lef t -  
right asymmetries," or polarized-beam to unpolarized- 
beam yield ratios. 

Many of the observables give rise to an azimuthal 
angular variation in the analyzing reaction cross 
section; for measurements of these "false asymme- 
tries," which can arise from imperfect apparatus 
construction or alignment, are a major source of error. 
Other observables can only be determined from ratios 
of yields obtained with different values of the beam 
polarization. The spin-I longitudinal second-rank 
analyzing power, A=, is of this character. The precision 
with which observables of  this type can be measured 
depends not only on apparatus alignment, but also 
on the accuracy of beam intensity monitoring, target 
thickness control, etc. 

In the present paper we will restrict ourselves to 
cases where the incident polarized beam is produced 
by an ion source; that is, we assume that the beam 
polarization possesses a symmetry axis. The absolute 
magnitude of the spin polarization will be regarded as 
known. The nominal direction of the spin polarization 
will be assumed to be under the experimenter's control, 
but the possibility of  small deviations from the desired 
direction will be allowed for. 

Previous papers which discuss experimental problems 
of the type which form our subject have been cited in an 
annotated bibliography by Waymire and Jarmiet);  see 
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especially the paper by HannaZ). Also, an elementary 
treatment of  this subject is being prepared as an 
informal report in which double scattering techniques 
are included3). 

2. Coordinate system and specification of beam 
polarization 

In accordance with the usual conventions, we assume 
a Cartesian coordinate system with z along the incident 
beam momentum, kin, Y along k~n x kou, where kout 
is the scattered particle momentum, and x such as to 
define a right-handed coordinate system. Unit vectors 
along the x, y and z coordinate axes are represented by 
l, n and k, respectively. The unit vector pointing along 
the spin quantization axis is denoted by s; its direction 
is defined in terms of the angles fl, ~b as shown in fig. 1. 
That is,/~ measures the angle between the quantization 
axis and the beam direction, so that c o s / / =  k.s, while 
~b measures the angle between the projection of s in the 

PROJECTION OF / /  - - ~ -  ,A ,A , 
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S IN xy PLANE / /  / | / - _  m 

. / /  I 
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/ /  ~ I 
I / ,  I 
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Fig. 1. Definition of the spin angles  fl, ~b. The  scattering is in the 
x, z plane. 
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x, y plane and the y axis. The sense of ¢ is important 
and is positive as illustrated in fig. I. 

We also use a Cartesian description of the beam 
polarization. The first- and second-rank polarizations 
relative to the quantization axis, s, are referred to as 
Pz and Pzz, respectively. The vector polarization, Pz, 
has a range of possible values between +1 and - 1  
for either a spin-½ or a spin-I beam, while the tensor 
polarization, Pzz, may vary between + 1 and - 2 for a 
spin-1 beam and is, of course, zero for a spin-½ beam. 

With these definitions, the momentum vector of the 
scattered particle always lies in the x, z half-plane with 
positive x. Throughout  this paper, we will let the 
direction of the transverse component  of the beam 
quantization axis S.L [ = S-- (S" k) k] define the direction 
we call " u p . "  I f  the y axis is along s±(¢ = 0), the 
scattering is to the left (according to an observer who 
is looking along the beam direction and who is 
"al igned" with the direction s±). For right, up, and 
down scattering we have ¢ - - 1 8 0  ° , ¢ =270  ° and 
¢ = 90 °, respectively (see fig. 1). 

3. Measurement of spin-½ analyzing power 
3.1.  GEOMETRIC MEAN CONCEPT 

For our spin-½ discussion, we will deal exclusively 
with a symmetric two-detector analyzer system such 
as is shown schematically in fig. 2. The cross section 
for a polarized spin-½ beam may be written 

I(0,¢) = Io(0 ) [ l  + pyAy(O)], (1) 

where lo(0) is the cross section for scattering an 
unpolarized beam into the scattering angle 0, Av(0) is 
the "analyzing power"  or "efficiency tensor" (of rank 
one) of  the reaction, and py is the y component  of the 
beam polarization. In terms of the magnitude of the 
beam polarization, p, and the normal unit vector, n, 

Pv = p ' n  = p sin/3 cos¢  = p± c o s ¢ ,  (2) 
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where p .  is the component  of beam polarization perpen- 
dicular to its direction of motion. For the remainder 
of our spin-½ discussion, we will assume fl ~ 90 °, so 
that p± differs from p at most by a second-order term. 
Since only first-order errors are of  present concern, 
this difference will be neglected and we set p± - p. 

The actual number of counts recorded in a detector, 
N(O, ¢), may be written, for solid target geometry, 
as follows: 

N(O, ¢) = nNAA~2EI(O, ¢).  (3) 

Here n is the number of particles incident on the target, 
NA is the number of target nuclei per square centi- 
meter, AQ is the solid angle subtended by the detector, 
and E is the efficiency for detection. For gas target 
geometry, the corresponding (first-order) expression 
is*) 

N(O, ¢) = nNv Goo EI(O, ¢) ,  (4) 

where n and E are as in eq. (3), Nv is the number of 
target nuclei per cubic centimeter, and GOD is a purely 
geometric factor. For vertical front slits, and in terms 
of the notation of fig. 3, 

Goo-  2bia , (5) 
rh sin 0 

where a is the area of the rear aperture. ( a =  2b2/for 
the rectangular aperture shown.) As will be shown, 
solid and gas target geometry lead to somewhat 
different "false asymmetry" problems. 

We will use the symbol Q to denote either Goo or AQ 
and N to denote either NA or Nv, and, for the moment,  
we will assume a perfectly aligned analyzer. However, 
we allow the solid angle factor which corresponds to 
detector 1 (~t)  and its efficiency (El) to be different 
from the corresponding quantities for detector 2 
(Q2 and E2) .  The efficiency differences could come 

REAR LEFT 

FRONT SLITS 2bI~~I~'~~CTOR 

SPIN " U P " ~  I I  I F  ~ - ~  

Fig. 2. Idealized symmetr ic  two-detector a r r angemen t  for spin-~ 
analyzing power measurements .  Fig. 3. Gas  target geometry.  
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about, for example, if dissimilar detectors are used or 
if there are slight differences in the pulse height require- 
ments which are set for the two detection channels. 
Defining N, (0, C#J) and N,(t), 4) as the value of N(B,4) 
for detectors 1 and 2, respectively, we have 

N,(U,O) = L, = /rNLj), E, I,(G) [I +pA,(U)], 

(6) 
N,(O,?T) = R, = nNQ,E,Z,(@ [I -p/4,(8)]. 

If we now “flip” the polarization, i.e., let p + -p, 

N,(O,n) = R, = n’N’U, E, Z,(Q) [l-&(Q)], 

(7) 
N,(fl,O) = L, = n’N’Q,E,f,(O) [I +pA,(O)], 

where the primes are used to indicate that the integrated 
charge and the effective target thickness may not be 
the same for the two runs. If we form the geometric 
means 

(8) 
R = $R, R2) = [ nn’NN’U, 0, E, E$ I,(1 -pA,J, 

and solve for pA, we find the left-right asymmetry, E, 
to be 

L-R 
E = - = p/4,(0), 

L+R 

which is independent of relative detector efficiencies 
and solid angles, of relative integrated charge, and of 
target thickness variations. Those quantities common 
to the two channels, i.e., n and N, are averaged over 
the data accumulation period so that time fluctuations 
in the beam current or target density are of no conse- 
quence. On the other hand, those quantities which are 
different in the two channels, E and Q, must not vary 
with time. Dead time in the counting equipment may 
be either common to the two channels or not, depen- 
ding on the equipment used. If it is not common, a 
correction is required. 

If we define the geometric mean of the number of 
particles detected by detector 1 (2) in the two intervals 
as N, (N,), we have 

N, = J(L, R,) = {NN’nn’ [I - (PFI,)~]}~ -(?, E, I,, 

(10) 
N, c \l’(L,R2) = (NN’ nn’ [l - (pAJ2]}’ 9, E, I,, . 

The ratio of these is 

_! - ul El . N 

N2 Q2 E, 
(11) 

That is, monitoring this ratio provides a check on the 
performance of the apparatus; it is just the quantity 
which is required to be constant in time if the asym- 
metry determination is to be accurate. 

For the present case of perfect alignment, instead of 
reversing the beam polarization (that is, letting 
p--+ -p), it is equivalent to “flip” the analyzer, i.e., 
to rotate the analyzer 180” around the beam direction 
so that detector I occupies the exact position of detector 
2 and vice versa. When misalignments are considered, 
one can distinguish two ways which such a physical 
rotation could be carried out; this is considered in 
detail in sec. 3.3. 

3.2. STATISTICAL ERROR AND FIGURE OF MERIT 

FOR A POLARIZED SPIN-; BEAM 

The statistical error associated with a measurement 
of the asymmetry E is given by 

AE = & v~[(I-~)2(AL)2 +(l+~)‘(dR)~]. (12) 

If AL = ,/‘L and AR = t”R, as for a single counting 
interval, the expression of eq. (12) reduces to 

de = (13) 

For the geometric mean L = v!(Ll L2), the error is 
given by 

AL=+LJ(t+;). 

and for the geometric mean R = ,/(R, R2), the error 
is given by 

AR=:R&+;). 
Thus, the more general error expression of eq. (12) is 
required if geometric means are to be used. 

We define a figure of merit to be inversely propor- 
tional to the counting time, t, required to measure A, 
to a given statistical accuracy AA,. Since, for E z 0, 

l ’ cc--- 1 
AA,+- 

P &+ K) p,/(W’ 
(14) 

where i is the beam current and t is the measurement 
time, we see that p2i is the relevant figure of merit. 
Notice that, because the factor v!( 1 -E’) is neglected, 
this figure markedly underestimates the advantage of 
a large beam polarization for cases where A, is also 
large. 
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3.3. EFFECT OF MISALIGNMENT ON SPIN--$ ANALYZING 

POWER MEASUREMENTS 

3.3.1. General 
We may distinguish three distinct types of geomet- 

rical errors. They are: 
a) False asymmetries. We reserve this term to mean 

that asymmetry which would still be observed in the 
apparatus if the beam polarization were to vanish. This 
type of error can be eliminated exactly by a “proper 
flip” (see sec. 3.3.2). 

b) Polarization-dependent misalignment effects. This 
term refers to errors which enter because of geometrical 
imperfections but which are absent for an unpolarized 
beam. These effects are of second order for our spin-+ 
discussion and can be reduced to second order in the 
spin-l case by proper technique. 

c) Errors induced by spin angle uncertainty. For 
spin-3 measurements, where p = 90” is invariably 
chosen, this effect is of second order. However, for 
certain of the spin-l methods to be described, such 
effects can be of first order. Some of the methods we 
will discuss eliminate these errors and some do not. 

Suppose the beam is displaced an amount x0 and 
rotated an amount k, with respect to the symmetry 
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Fig. 4. Misalignment in solid target geometry. 

COLLIMATORS 
LEFT DETECTOR 

~~~~~ 

BEAM /‘ \ 

RIGHT DETECTOR 

Fig. 5. Misalignment in gas target geometry. 
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axis of the detector system. This is shown for solid and 
gas target geometry, respectively, in figs. 4 and 5. It is 
clear that these displacements result in (1) a change in 
the effective scattering angle for each detector, and (2) 
a change in the effective distance between the inter- 
action volume and each detector. To first order, we 
find, for the left detector, 

Ar = - x0 sin0, 

solid target geometry, (I 5) 

A0 = - 2 cos@-k,, 

and 

Ar=-5, 
sin’0 

gas target geometry. (16) 
A0 = -k,, 

All four of these quantities reverse in sign for the right 
detector. (Additional but nonreversing first-order terms 
can arise in the solid target case if the target is displaced 
along the beam direction; see sec. 3.4.) 

These results can now be used to calculate the false 
asymmetries that would arise from beam misalignment 
by two different “flip” methods. In one type of flip, 
which we will designate as a “proper” flip, we assume 
that the polarization of the beam is reversed, or, what 
amounts to the same thing, that the analyzer is rotated 
through 180” in such a way that the beam direction and 
position are held invariant with respect to each of the 
detectors. Experimentally, such a flip can be conve- 
niently carried out either by reversing the guide fields 

Entrance slits 

4 

Beam 
\\\ 

Collimator 
assembly 

Fig. 6. Schematic diagram of a rotatable “cube” scattering 
chamber. Note that the entrance and exit slits rotate with the 

chamber. 
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in a polarized ion source or by actual rotation of an 
apparatus about the beam direction, as indicated in 
fig. 6. The important  feature for the mechanical 
rotation method is that slits at the entrance and exit 
of the apparatus rotate with it, and that the experimen- 
ter requires the proportion of the beam current inter- 
cepted by each slit to be the same before and after the 
rotation. The particular apparatus shown, which has 
detectors in the left, right, up, and down positions, 
is also useful for spin-I measurements (see sec. 4). The 
up-down detectors play no important role for spin-½ 
experiments. Notice that the mechanical precision with 
which the rotation is accomplished is not important 
provided the above mentioned slit current condition is 
maintained. 

In the "nonprope r "  type of flip, which we describe 
in detail in sec. 3.3.3, the analyzer is rotated about its 
own axis while the beam is allowed to remain fixed in 
space. As will be seen, the proper flip method results 
in the exact elimination of false asymmetry effects, 
whereas the nonproper flip results in first-order false 
asymmetry effects and should therefore be avoided. 

3.3.2. Proper flips 

I f  detector 1 is at the left and detector 2 is at the right, 
the yields may be written 

L I - NI(O+AOI,O) 

= nN Et  O~(Ar~, AOOIo(O+AO0 [1 +pAy(O+AO0],  

R z -- N2(O+A02 ' ~) 

= nNE2~Q2(Ar2, A02) lo(O+AO2) [1 - p A y ( O + A 0 2 ) ] ,  

(17) 

where AO~, AO2, Ar~ and Ar 2 denote total error quan- 
tities. If  a proper flip is executed, yields in detectors 1 
and 2 become 

R ~  - N1(O+A01, ~) 

=n'U'E~-Ol(Arl ,  AO,) lo(O+ AOa) [1 -pAy(O+AO, ) ] ,  

L 2 ~ N2(O+A02, O) 

=n'  N' E2-f22(Ar2 ,A02) to(O + AO2) [1 + pAy(O + A02)] . 

(18) 

The crux of the present assumption is that the errors in 
r, 0 are correlated with the physical detectors, and not 
with their position in space. Forming the appropriate 
geometric means, we have 

L = x//(Ll L2) = {nn'NN'EIE2~21(Ar1,  A01) x 

× .Q2(Ar2, A02)10(01 +AO 0 x 

x I0(02+A02) [1 +pAy(O+AO0] x 

x [I + pAy(O+aO2)]} ~, 

R =- x / (R1R2)  = {nn'NN'E1Ez.O1(Ar l ,  AOj) x 

X ~22(Ar2, AO2) Io(Oi +A01) x 

x Io(02+A02)[1-pA.v(O+AO0] x 

x [1 - pAy(O+A02)]}'.  (19) 

I f  we assume for the moment that Ay is independent of  
scattering angle in the range 0 +  AO t to 0+  AO> we have 

L - R  
= pay = - - ;  (20) 

L + R  

i.e., there is exact cancellation of false asymmetry 
effects. Since the form of f2 was not specified in the 
argument, it applies to both solid and to gas target 
geometries. Since AO 1, AO2, Arl and dr 2 were each 
arbitrary, one does not even require symmetry in the 
analyzer. If  Ay(O) depends on 0, the determination of 
the effective scattering angle [=O+½(dOt+AO2) ] 
becomes an important experimental task. Note that 
AO 2 ~ -AO~ for the first-order errors of  eqs. (15) and 
(16). A discussion of the removal of first-order errors 
in the angle determination is presented in sec. 3.4. 

3.3.3. Nonproper flips 

We now turn to the nonproper flip where we inter- 
change the detectors while the beam remains fixed in 
space. We assume, therefore, that the errors AO and Ar 
are associated with the left and right positions rather 
than with the detector number as above. For this 
calculation we further assume that AO and Ar for the 
right detector are equal in magnitude but opposite in 
sign to the corresponding quantities for the left detector 
[as is true in the first-order expressions of eqs. 05)  
and (16)]. We have, for the first orientation of the 
detectors, 

L1 -~ Nt(O+AOL, O) = nNElg21(Ar, AO) × 

x Io(O+AO) [1 + pAy(O+AO)], 

R 2 =- Nz(O+AOR, 7r) = nNEz£2z ( -Ar ,  -AO) x 

x lo(O-AO ) [1-pAy(O--AO)] .  (21) 
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For the second (flipped) orientation, we have 

R l =- N I ( O + A O  R, 70 = n ' N ' E l ~ Q l ( - A r ,  - A O )  x 

x l o ( O - A O )  [ l - p A y ( 0 - A 0 ) ] ,  

L2 - N2 (O+AOL,  O) = n ' N ' E 2 . Q a ( A r ,  AO) x 

x lo (O+AO) [l + p A y ( O + A O ) ] .  (22) 

The geometric means then take the form 

L = K.QLIo(O+AO ) [1 + p A y ( O + d O ) ] ,  

R = K. t2RIo(O-AO ) [1-PA.v(O-AO)] ,  (23) 

where 

/ , 
K = ~, (nn N N '  E l E2)  , ~*'~L = N// [~I  (Ar, z]0).Q 2 (Ar, AO)] 

and 

Y2 R = x/[O l ( - Ar, - AO) ~22 ( - Ar, - AO)]. 

At this point, it is necessary to consider gas target 
and solid target geometry separately. For solid target 
geometry, we expand the solid angle factors to first 
order: 

D L oz 1 - 2 A r / R ,  

D R oz 1 + 2 A r / R .  (24) 

The cross section may also be expanded 

X(O+,JO) = lotO) [1 + G A O ] ,  (25) 

where G is the logarithmic derivative of Io: 

1 81o 
G = - -  - - .  (26) 

Io 80 

First let us assume that the analyzing power, Ay(O), 
vanishes. The resulting value of e, which is what we 
define as the false asymmetry and will denote by #,  is 

c' = GAO - 2 A r / R ,  (solid target geometry), (27) 

where G is expressed in rad -~. Inserting eq. (15), 
this becomes 

~' = (2 sin 0 - G cos 0) (xo/R)  - Gkx ,  

(solid target geometry). (28) 

For gas target geometry, the corresponding expres- 
sions are 

~' = GAO - A r / R ,  (29) 

and 

e' = cos 0 (xo /R)  + (cot 0 - G) k~. (30) 

There are three comments we wish to make about 
these results: 

a) One should always use a proper flip if possible. 
(If  the polarized beam arises from a nuclear reaction, 
for example, it may not be possible.) Even when a 
proper flip is attempted, however, there may be some 
(hopefully small) component of nonproper flip. If 
Xo, x~ and kx, k'x represent the spatial and angular 
displacements in the two configurations, the quantities 
Xo - x ~  and k x - k '  x are the relevant ones for application 
of eq. (28) or (30), and will define the lower limit of 
error from false asymmetries. 

b) Gas target geometry is considerably less sensitive 
to spatial displacement, but more sensitive to angular 
displacement, than is solid target geometry. Since 
angular errors are much easier to control than spatial 
displacements, gas geometry usually possesses a 
considerable practical advantage. 

c) If  the analyzing power, Ay(O), is nonzero, the 
observed asymmetry takes the form 

pay  + e' 
e = ~ pay  + e'(1 -p2AZy) .  (31) 

1 + e ' p A y  

Thus, for large values of pay ,  the effect of false asym- 
metries is greatly reduced. For example, if pay  = 0.9 
and # =  0.05, the observed asymmetry, e, is ~ 0.91. 
That is, in this particular example, a false asymmetry 
of 0.05 leads to an error of only 0.01. 

3.4.  DETERMINATION OF THE SCATTERING ANGLE 

Before a measured analyzing power can be regarded 
as free of first-order errors, the angle at which the 
measurement is made must be known to a suitable 
accuracy. 

We consider first the gas target case. As previously 
noted, the use of a symmetric left-right detector 
system cancels the first-order angle errors associated 
with the misalignment parameters kx and Xo. Two 
errors could remain, however. They are (1) an error in 
the "ze ro ' '  angle setting of each detector, and (2) an 
error arising from the failure of the plane defined by 
the telescope slit system to intersect the axis about 
which the telescope is rotated when changes in 0 are 
made. If the left and right detectors are interchanged, 
both of these possible effects are removed. Thus, a 
suitable experimental procedure would be to measure 
the asymmetry with the #1 (left) and # 2  (right) 
detectors, set in their "no rma l "  positions, i.e., at 0~ 
and -02 ,  respectively, followed by a measurement 
with their roles interchanged; i.e., with # 1 set at -01  
and with # 2  set at 02. The average of the asymmetries 
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so obtained would be free of first-order errors and 
would correspond to the angle ½(0~ + 02). The indicated 
angles 0~ and 02 would, of course, normally be chosen 
to be the same. 

In the solid target case, there are again two errors 
not automatically removed by a symmetric detector 
system. The first is, as in the gas target case, a possible 
error in the "ze ro"  angle, and this can be handled as 
before. The second arises from the difficulty of placing 
the point at which the beam intersects the target foil 
exactly at the axis of  rotation of the detector arms. 
The displacement in the x direction is removed by the 
symmetric system, but the z displacement is not. To 
remove this effect, one may make still another asym- 
metry measurement with the target foil rotated through 
the angle ~z-2 8,,~g, where 8t~g is the angle of inclination 
of the target foil (see fig. 7). This procedure changes the 
sign of the z displacement, and results in a mean angle 
of 0~ for the # I detector and a mean angle of  02 for 
the # 2 detector. Thus, the mean asymmetry determined 
by these two measurements corresponds to a scattering 
angle of½(8~ + 82). Notice that the axis about  which the 
target is rotated is assumed to coincide with the axis 
about which the detectors are rotated. If this is not the 
case, a "permanen t"  z displacement error in the angle 
will be present. This could, of  course, be calibrated and 
the angle readings appropriately corrected. 

4. Measurement of spin-1 analyzing powers 

4.1. OBSERVABLE ASYMMETRIES AND RATIOS 

In the coordinate system of fig. l, the most general 
form for the cross section induced by spin-l particles 
may be written 

1(8,4)) = lo(83 [1 + ~pyay(o)  + ]p.~:a~,=(8) + 

1 " + ½pxxAxx(8) + ~p,,xAxy(8) + ½p:zA=(8)] .  

(32) 

The small p ' s  represent the polarization of the incident 
beam and the A's represent the analyzing power of  the 
reaction. In general, an incident beam may have vector 
polarization components p.,  py and p~, but because of 
parity conservation, the reaction is sensitive only to 
the component  normal to the scattering plane. Simi- 
larly, although an incident beam may contain all six 
tensor polarization components Pxy, Pyz, Px=, Pxx, Pyy and 
p:=, the reaction is sensitive, again because of parity, 
only to those indicated in eq. (32). The quantities 
defined are normalized so that the vector quantities 
(p,,, py, p= and Ax) may vary between + 1 and - 1, the 
tensor quantities (p~y, py=, Px= and A~:) may vary 

TARGET ROTATED 
THROUGH "rr --20TARG 

TARGET IN LEFT DETECTOR (# I ) 
INITIAL 
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0 -- AO~ ~ \ ~ . , ' ~  

, , ' / ~ . .  / "'COLLIMATOR 
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DISPLACED INCIDENT t'l ~ ( * 0 ,  +Z~0 
; BEAM, U ' ~ ' ' i  1-' - - -~  ' 
~o - - - / F ~ % ~  . . . . . . . . .  Ax,s 

OTARG / n ^ ~ x \  
O 2 - &0, "-C.., " " ~ x  ,COLLIMATOR 

RIGHT DETECTOR (#2)  

Fig. 7. Diagram showing the two posit ions of the target foil 
which can be used to el iminate the first-order error in the scat- 
tering angle which arises f rom an uncer ta inty  in the foil position. 

between + ~  and - ~ ,  and the tensor quantities (Px~,, 
pyy, p==, Axx, Ayy and A=_. may vary between + 1 and - 2. 

The second-rank beam polarization components, 
Px,,, Pyy and p==, satisfy the identity 

Pxx + Pyy + P,: = 0, (33) 

and similarly, the second-rank analyzing tensors, 
Axe,(8), Ayy(O) and A==(O), satisfy 

A,,,,(8) + Ayy(8) + A=:(8) = 0. (34) 

Thus, only four of  the five analyzing tensors which 
appear in eq. (32) are independent. These identities 
allow us to write the last three terms in the cross section 
expression in several equivalent forms, 

1 ~pxxAxx + ~pyyAyy + ~p==A= = ~(Pu--Pmm) X 

x (Au-Am,,) + l p,, A,,, (35) 

where l, m, n are x, y, z in any order. This relation allows 
us to write, for example, 

I = Io(1 + ~pxAy + ' (36) py~, A yy) 

for the cross section if the beam polarization symmetry 
axis is along the y axis (so that Pxx = P= = - kpyy). 

For a polarized beam produced by an ion source, 
in the coordinate system of fig. 1, the polarization 
components are 

Px = -- Pz sinfl sin 4), 

Py = Pz sinfl cos4), 

P= = pzcosf l ,  

pxx - 3pzz sin2 fl cos4) sin4), 
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Py~ = ~Pzz sin fl cos fl cos (]5, 

Px~ = - ~2 Pzz s in / /cosf l  sin~b, 

P ~  = ½Pzz (3 sin 2 fl sin 2 4 ) -  1), 

Pyy = ½Pzz (3 sin2fi cos 2 q~- 1), 

P~ = ½Pzz (3 cos 2 f l - 1 ) ,  (37) 

and the often used difference, ~(P~x-Pyy), is given by 

½(Px~-Pyy) = - ¼Pzz sin2 fi cos 24). (38) 

Inserting eq. (37) into eq. (32), the cross section for 
scattering in the directions left, right, up and down 
(~b = 0 °, 180 °, 270 °, 90 °) can be written 

/L  = Io[1  + ~Pz sinflAy + ½Pzz x 

x (sin2flAyy + cos 2 flA~z)], 

IR = Io[1 -- ~Pz sinflAy + }Pzz  x 

x (sin 2 fiAyy + COS 2 f lA=)],  

Iu = l o [ l  + Pzz sinfl cos f lA~ + ½Pzz x 

x (sin 2 flAxx + cos f lA=)],  

ID = I o [  1 -- Pzz sinfl cos flA~,~ + ½Pzz x 

x (s in2flA~ + cos2flA=)-]. (39) 

Assuming for a moment  that detector geometries and 
efficiencies are identical, and denoting the counts 
observed in the various detectors by L, R, U and D, 
we can define five useful asymmetries: 

L - -  R ~ Pz sin flAy 

L + R  l + ½pzz[sin 2fiAyy + cos 2 f l A ~ ] '  

We emphasize that  " u p "  is defined to be the direction 
pointing along the transverse component  of  the unit 
vector which described the direction of  the beam 
polarization, s, and may or may not have anything to 
do with real space. 

F rom eq. (40) one sees that the quantities Ay, A ~  
and Ax~-Ayy  each give rise to characteristic asymme- 
tries. To obtain A=, a yield ratio with two different 
values o f  Pzz is required, since the A= term has no 
azimuthal dependence. More generally, we may 
consider the lef t+  right yield, the u p +  down yield, or 
the total yield in all four detectors: 

T 1 =- ½ ( L + R )  

= nN DEI  o [1 + lpzz ( s in2  flAyy + COS 2 f l A z z ) ]  , 

T: = ½ ( U + D )  

= nN f2El o [1 + ½pzz(sin z flA~,:,, + COS 2 f iA::)] ,  

T a ~- ¼ ( L + R + U + D )  

1 I = nN.QEIo[I  + ~pzz(~(3 cos2fl - I ) A = ) ] .  (41) 

All o f  these expressions are of  the same form: 

T = nN£2EIo(1 + ½PzzB). (42) 

If  the yields T, T'  are observed for the beam polar- 
ization Pzz, P~z, respectively, assuming the factor nN 
to be the same for the two cases, we find 

2 ( T - T ' )  
B - (43) 

Pzz T ' -  Pzz T"  

These expressions are useful mainly for fi = 0 °, where 
T~, T2 and T 3 each leads to B = A = ,  or for fl = 90 ° , 
where T 1 leads to B~ = Ayy, T 2 leads to B 2 = A ~  and 
T 3 leads to B 3 = --½A=. 

U - D Pzz sin fl cos f lA~  
~2 = - -  .~ 

U + D  I + ½pzz[sin2flAx~, + cos2flAzz] ' 

2 ( L - R )  

L + R + U + D  

~ Pz sin flAy 

1 +¼pzz(3COS 2 f l -  1 ) A = '  

2(U - D) Pzz sin fl cos flAxz 

L + R + U + D  1 +~pzz(3COS f l - 1 ) A ~ z  

13 5 
( L + R ) - ( U + D )  

L + R + U + D  

- ¼Pzz sin2 f l (Axx -Ayy )  
= 

l + ¼Pzz(3 cos2fl - 1)A~_." 

(40) 

4 . 2 .  STATISTICAL ERROR AND FIGURE OF MERIT FOR 

A POLARIZED SPIN-1 BEAM 

In table l, column 2, we give the statistical error 
expressions associated with each of  the asymmetries 
el-e5 and the ratios BI-B3, in terms of  the errors AL, 
AR, A U  and AD, respectively, in L, R, U, D. In the 
special case AL = ~/L, A U =  x/U, etc., the expressions 
listed in column 3 are obtained. (For the geometric 
means of  later interest, the more general error expres- 
sions must  be used.) 

A figure of  merit, p2i ,  for a polarized spin-½ beam 
was discussed in sec. 3.2. We now wish to define three 
analogous quantities for a spin-1 beamS). Since the 
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observable quantities are, except in special cases, not 
related linearly to the beam polarization and efficiency 
tensors, the situation is somewhat  more complicated 
than in the spin-½ case. 

First consider B1, BE and B 3. Using B3 as a typical 
one of  these, for small analyzing tensors and no 
background,  we find from table 1 

1 
A B 3 ~ . (44) 

¢ / 
( PZZ -- PZZ) %/ T3 

The figure of  merit relevant for measuring B 3 is thus 
given by (dpzz)2i, where i is the beam current and 
where APzz is the change in Pzz obtainable between 
the two modes o f  operation for the ion source. The 
same figure of  merit applies to B~ and B 2. 

Returning to the asymmetries el through g3, we see 
that if the denominator  factor has already been deter- 
mined, the figure of  merit becomes p2zi for eL and 83, 
and 2 • p z z  1 for e2, e4 and es. 

In summary,  spin-1 beams may be described in terms 
of  three figures of  merit: p~i for Ay measurements,  
p2zzi for (Axx-Ary) and Ax~ measurements, and 
(Apzz)2i for Axx, Ayy and A.~ measurements o f  the ratio 
type. 

4.3. SOME PRACTICAL SPIN-1 MEASUREMENT SYSTEMS 

Before discussing the geometrical errors associated 
with spin-1 analyzing tensor determinations, we discuss 
four measurement  schemes which have been used at 
LASL.  It  is the au thors '  belief that  presentation o f  these 
particular examples, restricted as they are to a par- 
ticular experimental configuration, will nevertheless 
serve to illuminate all of  the important  principles in a 
clearer way than would a more general treatment. A 
characteristic of  spin-1 experiments is that  there are a 
very large number  of  measurement  schemes possible. 
We will make a few comments  on the way that  the 
various schemes might  be modified to be useful under 
other experimental conditions. 

The L A S L  polarized source produces " p u r e "  spin 
states mixed with an unpolarized background beam. 
The polarized part  of  the beam has the following vector 
and tensor polarizations for the usual operating con- 
ditions6): 

State selected : Pz: Pzz: 

ml = 1, 1, 1, 
"ml  = 0",  0.012, -1 .966 ,  
"ml = - 1 " ,  -0 .984 ,  0.952. 

The quotat ion marks denote that  the states, except for 
ml = 1, are not  quite pure, as is indicated by the values 

of  Pz and Pzz*. The quoted admixtures are character- 
istic of  a metastable deuterium atom when it is ionized 
in a 60 G field. 

The fraction of  the beam which is polarized is repre- 
sented by pQ. Po is usually obtained by the "quench  
ra t io"  method7). For  example, for mr = 1 selection, the 
vector and tensor polarizations would be given by 
Pz = Pzz --- PQ, and for ml = 0 selection b y p z  = 0.012pQ 
and Pzz --- - 1.966 pQ. We refer loosely to such beams 
as ml = I and ml = 0 beams, respectively. 

On the LASL source-accelerator system, the spin 
quantization axis can be oriented in any direction. 
However, we most  frequently place the quantization 
axis in the horizontal plane because o f  the greater ease 
of  setting arbitrary fl angles; fl -- 0 °, 45 °, 54.7 ° and 90 ° 
will be of  interest in the methods to be discussed. For 
fl = 90 °, we sometimes align the quantization axis in a 
vertical direction. In any event, as mentioned earlier, 
in the discussion to follow the half-plane containing 
the spin quantization axis will be referred to as " u p " ,  
regardless of  its actual orientation in real space. 

In the following, it will be assumed that  detector 
efficiency and solid angle factors have been removed 
by an appropriate  proper flip and geometric mean 
calculation. For  schemes which simultaneously involve 
detectors in all four half-planes, we define a flip to be a 
series of  four counting periods during which each of  
the detectors 1-4 occupies each of  the positions left, 
right, up and down, with the beam held in rigid 
alignment with respect to each of  the four physical 
detector systems. This operation is not readily accom- 
plished at the source by polarized ion source systems 
because of  the different treatment of  the horizontal and 
vertical spin components  by a typical accelerator and 
beam transport  system. Thus, we are thinking specifi- 
cally of  physical rotation o f  a four-detector analyzer 
with entrance and exit collimators rigidly attached to 
the analyzer. We define the foul geometric means 

L = [Nt(O, O) N2(O, O) N3(O, 0) N, (0 ,  0 ) ] ' ,  

R = [N,(O, n) N2(O , n) N3(O , 7r) N#(O, n)] +, 

U = IN, (0, ~2n) N2 (0, 3n) N3(O, ~rc) N,,(O, ~-n)] * , 

O = [N1(O, ½n) N2(O, ½n) N3(O , ½7Q N4(O , I / Q ]  k . 

(45) 

For  the moment  we assume perfect beam and spin 
alignment. Misalignment effects will be considered in 
sec. 4.4. 

* The mi = 1 state with the ion source fields reversed is often used 
instead of the mz= -1  state. For this choice, pz=  -1  and 
P Z Z  = 1. 
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We may also form the geometric mean of  the counts 
observed by a given detector in each of  its four  posi- 
tions. For  example, for detector 1, 

N, = [ N , ( 0 , 0 )  N,(0 ,  7r) N , ( O , ~ )  N,(0,  ½7r)] ~ 

= k i d  t E t , (46) 

where k is a constant. Thus, the quantities NI, N z, N 3 

and N~ are proport ional  to the respective detector 
efficiency and solid angle factors. Moni tor ing these 
quantities provides a check on the overall performance 
of  the apparatus;  these are exactly the quantities which 
must be constant  in time if the asymmetry determina- 
tion is to be accurate. 

4.3.1. Rapid method 

In this methodS), the spin angle fl = 54.7 ° is chosen 
for the measurement of  Ay, A~ and ½(A~x-Ay~). From 
eq. (40), we obtain 

/53 ~--- [ 2 ( L -  R)]/T = \/~Pz = Ay, 

~4 [2(U - D ) I / T  1 /-- = = 3\. 2 Pzz A~:, 

es = [ ( L + R ) -  (U + D)]/T = - ~ pzz(A~x-  Ayy), 

(47) 

where L, R, U and D are the geometric means o f  
eq. (45). Thus, Ay, A~ and ( A ~ -  Ayy) are determined 
in a current-integrator free manner. An m~ = 1 beam 
is used. There is a first-order dependence o f  the results 
on the actual spin angles fl and q5 in this method. The 
most  severe limitation arises from the "cross ta lk"  
between the L - R  and U - D  asymmetries if the q5 angles 
deviate from the ideal 0 °, 90 °, 180 ° and 270 ° values. 
Because o f  the numerical factors ,,,"2 a vs ½x/2, a large Ay 
can contaminate  the A~  measurement 27/4 times more 
severely than a large A~ can contaminate the Ay 
measurement. If  a beam with pure tensor polarization 
is used, such as an m t = 0 beam, the A~: measurement 
is greatly improved but, o f  course, no Ay measurement 
is simultaneously obtained, and the method begins to 
lose the " r a p i d "  character. 

To obtain Az~, the spin angle fl = 0 ° and an m~ = 1 to 
mt = 0 ratio is used. The expressions for B~, Bz or B 3 of  
table I each yield A=. In this case, the measurement  
depends on the relative current integration, dead time 
correction, and the like, and the beam polarization in 
each of  the two states must be separately known. As 
will be discussed in sec. 4.4, a symmetric pair of  
detectors together with a twofold flip is the minimum 

configuration which eliminates first-order geometrical 
errors for A= by this method. 

4.3.2. Ratio method 
Except for the A~ tensor, this method avoids the 

requirement of  an accurate knowledge of  the spin angle, 
fl, but all variables are dependent on current integra- 
tion, dead time factors, etc. To measure Ay, Ayy and 
A~, a spin angle of  90 °, a twofold flip for m~ = 1, and 
a twofold flip for mt = 0  is used. Ayy and A~  are 
calculated from the ratios B~ and B 2, respectively 
(see table 1). These may be rewritten for the special 
m t=  l , m  t=Ocase:  

A~.~ = 2[(U~I~+D~1~) - (Uio~+O~o)) ] 

pc ) [1 .966(U~+Dl~  )) + (U~o,+ D¢o~)] ' 

2 [(L~I)+ R,I)) - (Lion+ R~o,) ] 
Ayy = , (48) 

Pc) [I.966(L~ ~ ~ + R~,) + (L~o~ + R~o,)] 

where the subscripts indicate whether the yield corre- 
sponds to the substate m~ = 1 or  mt = 0. 

To obtain Ay, we note from eq. (1) of  table 1 that, 
for f l = 9 0  ° and for the m t = l  run of  the above se- 
quence, 

L~I _ R , ~  3 ~(1 ~ ' z  lAy ~2p°Ay (49) 
, ( 1 )  L~I)+R~I~ 1 +-~pzz Ayy 1 +~pQAyy 

If  one substitutes the expression for A~y of  eq. (48) into 
eq. (49) and solves for Ay, one obtains 

A~. = 2.966(L~l)-R~10 . (50) 

Po[I .966(L~ + R ~ )  + (L~o~+ R~ol)] 

This quanti ty also depends on relative current inte- 
gration, but not as strongly as do Ayy and A~. 

The remaining tensor, A~z, is most economically 
obtained with f i = 4 5  °, m t = 0 ,  and a twofold flip, 
using the up-down detectors only. Then 

j ~o)A _ 0 . 9 8 3 P o A ~  U(o) - D(o) 7 ezz "-'xz 
f .  2 - ~ -  . ~ _  = , 

Uto)+D, oj I - l~°)Ayv4 ezz 1 +0.492pQAyy 

(5t) 

since o Pzz --- - 1.966 Po" If  Aye, is known from previous 
measurement,  this determines A~. 

Notice that in this method the left-right and up-down 
planes are not inter-related. Thus, quantities like 
L + R +  U+ D cannot  be considered. On the other hand, 
this method can be used with a two-detector  system, 
provided that either the scattering chamber  or the spin 
direction can be rotated 90 ° around the beam direction. 
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4.3.3. Monitor  f r ee  me thod  

A four-detector method which is independent of  
beam monitor ing for all four analyzing powers can be 
constructed. This method is essentially a combinat ion 
of  the two methods given above. First the quantities 
½ ( A x e - A t .  0 and Ax~ are determined from appropriate  
asymmetries with fl = 54.7 °, as in sect. 4.3.1. m~ = 0 is 
preferred for greater accuracy on both quantities. 
Turning to the fl = 90 ° part  of  the method of  sec. 4.3.2, 
but  assuming the (unknown) ratio of  charge for the 
m~ = t and m~ = 0 runs to be given by k, we can write 

2 [ k ( U ~ ) + D ~ ) )  - (U(o) + D~o))] 

A x~ = P o [ l ' 9 6 6  k ( U ~ )  + D~t)) + (U~o)+D~o))], 

myy 
2 [ k ( L ~ ) + R ( 1 ) )  - (L~o)+ Rio)) ] 

p Q [ I . 9 6 6 k ( L ( ~ ) + R ~ ) )  + (Lto)+ R(o)) ] ' 

= 2 " 9 6 6 k ( L ~ ) - R ( 1 ) )  . (52) 

Ay p Q [ I . 9 6 6 k ( L ( ~ ) + R ~ l ) )  + (Lw)+ R(o)) ] 

I f  one half  the difference of  the first and second of  
eq. (52) is set equal to the value of  ½(A~x-Ay~)  deter- 
mined f rom the third ofeq.  (47), the resulting expression 
can be solved for k. The value of  k thus determined can 
then be used to calculate A~, A~  and A ~  from eq. (52). 
In this method all four tensors depend in first order on 
the accuracy with which the spin angle, fl, is known 
for the/3 = 54.7 ° part  o f  the procedure. However,  for 
fl = 54.7 °, the sum of  the geometric mean yields in the 
left, right, up and down detectors is independent of  
polarization. That  is 

L + R + U + D = Io [1 + ¼ Pzz (3 cos2 f l _  1) Az:] --* Io .  

(53) 

Thus, an ml = 1 to m~ = 0 ratio of  this quanti ty is a 
sensitive measurement  o f  fl, provided A~  is suitably 
large. This permits the spin angle to be set to perhaps 
+¼° accuracy. However,  since the spin angle is affected 
slightly by all beam transport  elementsg), this should be 
checked frequently until such a time as adequate 
stability is demonstrated.  

4.3.4. Three spin state me thod  (no rotation o f  the appa- 
ratus) 

In this method,  counts are observed in each of  the 
detectors with three different beam polarizations, e.g., 
for an m~ = l, mx=  0, and m~ = - 1 beam. First fi = 90 ° 
is used to ascertain At, Art and A~x as follows. The yields 
in the left detector are 

L(1) 

L(o) 

L(-2~ 

1 n ( l ) A  "1 = nO)N( I ) f2LELIo[1  + ~P~zl)A.v + 7vzz ~ryJ,  

= n~°~N~°)~2LELlo[l + ~p~z°)Ay + ½ -~°)a q fiZZ myyJ 

= n ( - 1 ) N ~ - l ) f 2 L E L l o [ l  + z , < - l )  2 vz  Ay + 

1 ~ - l ) A y y ]  (54) + y Pzz 

in an obvious notation. The ratios l(a ) and 1(_ ~) can be 
defined 

1(1) _ L(~) n~°)N (°) 
Lto ) n(~)N (~) 

3 ,.,(1) Ay + I . ( l ) a  I + 2 v z  ~ P z z  :ayy 
3 _CO) n(0) A ' 1 + ~ p z  A y + ½ v z z : , v y  

] ( - i )  
n(°)X (°~ _ 1 + { p~- x)Ay+lp(z-z l )  Avy 

L~o, r t ( - l ) N t - l )  I±3"(°)A~PZ ~-y--~vzz~ t " (° )Ayy 

(55) 

whence detector efficiency factors are cancelled. Eq. (55) 
can be solved for ~-Ay, ~Ay,..1 . 

c ~ b 2 - c 2 b l  , al C2--  C l a  2 

~Ay  = a t b 2 - b l a 2  ½A~,y = a t b 2 - b i a 2  

(56) 
where 

a 1 = p(z°)l~o-p(z o --, pQ(0.0121(t)--l) ,  

a 2 = p(z °) 1(_ 1)-- P(z- t) --, pQ(0.012 I t_ 1) +0.984) ,  

b l = p~z°z) l~ ~ ) - p~zlz ) ~ - -pQ( l . 9661( j )+ l ) ,  

,(o)t , (-~) _ po(1.966 i(_ ~) + 0.952) ' 62 = Yzz  " ( -1 ) - -p z z  -* 

cl = / O ) - 1 ,  c 2 = I~_1) -1 .  (57) 

The expressions to the right of  the arrows correspond to 
the values o f p z  a n d p z z  for the mr = 1,0 and - 1 states. 
I f  this specialization is not made, however, the expres- 
sions are applicable for an arbitrary set o f  three 
(adequately separated) polarization values. An  unpolar-  
izated beam could, for instance, be used in place of  the 
ml = 0 beam, albeit with a considerable loss o f  sensi- 
tivity to Ayy. 

Analogous  quantities are then calculated f rom the 
right detector yields, and the mean values of  the two 
determinations of  }Ay and 1 ~Ayy are taken as the final 
result. As will be shown in sec. 4.4.4, the mean values 
so obtained are independent of  all first-order alignment 
errors. 

To determine Axxby this method, a calculation exactly 
like the above one for Ayy is made, except one uses the 
up and down detectors rather than the left and right 
detectors. In this case the coefficient o f  Pz is of  no 
interest and is not calculated. 
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TABLE 2 

C o m p a r i s o n  of four  m e t h o d s  for  the  m e a s u r e m e n t  of sp in - I  
a n a l y z i n g  tensors .  

M e t h o d  T e n s o r  
F i r s t  D e p e n d e n c e  R e q u i r e d  ,~- of 

o r d e r  on  cu r r en t  i n t e r c a l i b r a t e d  
spin i n t eg ra t i on  p o l a r i z a t i o n  

e r ro r s  s ta tes  

R a p i d  A u yes no 1 
m e t h o d  Azz yes no 1 

(Axx -  Auu) yes no  1 
Azz no yes  2 

R a t i o  A u no yes  2 
m e t h o d  Ax:r no yes  2 

Auu no yes  2 
Aecz yes yes 1 

M o n i t o r  Ay yes  no  2 
free Az~ yes  no  2 
m e t h o d  Auu yes no  2 

(Azx - Ayu) yes no  2 
Axz yes no  2 

Three  sp in  A u n o  yes 3 
s t a t e  Axx n o  yes 3 
m e t h o d  Ay u no yes  3 

Axz no yes  3 

To determine Ax=, the u p - d o w n  detectors with 
fl = 45 ° are used. In this case, for  the up detector,  

1 . ( 1 )  _ _  1 , a ( 1 ) d  "1 U(l) = n ( l ) N ( l ) I 2 u E u l o [ l  + ~ e z z  Ax= ~ ' z z , , y y j ,  

1 . ( 0 )  A i ~(0)  A n U(o) = n ( ° ) N ( ° ) f 2 u E u l o [  1 + zyzz  == - ~/ 'zz e, yyj, 

i . ( - 1 )  A U(_~) = n(-1)N ( - 1 ) [ 2 u E u l o [ l  + zt~zz ~x= -- 

-- ¼ P(zz "Ayy]. (58) 

The down detector result is similar except the sign of  
the Ax= term is reversed, and Ax= is taken as the mean of  
the up and down determinations.  This determinat ion of  
Ax= is free of  first-order spin angle errors. A second 
determinat ion of  A>,y is obtained as a byproduct ,  
a l though this part icular  determinat ion depends in 
first order  on knowledge of  the spin angle, /~. The 
relative merits of  the four  methods  presented are 
summarized  in table 2. 

4.4. EFFECT OF MISALIGNMENT ON SPIN-1 A N A L Y Z I N G  

POWER MEASUREMENTS 

4.4.1. Expression f o r  the cross section in invariant f o r m  
To discuss misal ignment  effects on the observable 

asymmetries ,  it is convenient  to rewrite eq. (32) in terms 

of  the unit vectors k (the beam direction), n (the 
normal  to the scattering plane), / ( =  n × k), and s (the 
beam quant izat ion axis). /~ is defined as the angle 
between the beam direction and the quantizat ion axis, 
so that  

cos/~ = s" k ,  sin/~ = Is x kl ,  (59) 

while q5 is defined as the angle between the unit vector  
s x  k / I s×k[  and !, so that  

cos (9 = (s × k" l)/Is x k l ,  

sin (9 = (s  x k" n) / l s  x k l .  

F r o m  these equat ions we can write 

sin/~cos(9 = s x k . l =- s . n , 

(60) 

(61) 

s in f l s in (9  = s x k . n  = - s ' l .  

Insert ing eq. (61) into eq. (32), the cross section expres- 
sion becomes 

I (0 , (9)  = Io(0)  {1 + 3 p z A y ( s . n  ) + p z z A x = ( s . l )  × 

1 x (s" k) + ~ P z z ( A x x - A y y )  [(s"/)2 _ 

_ 1 A [ 3 ( s - k )  2 -  1]} .  (62) (s- n) 2] + ~Pzz  :: 

First-order expressions for the unit vectors n and ! 
may  be readily calculated. For this purpose we use a 
fixed coordinate  system such that  the centers o f  the 
four  detectors lie in the coordinate  planes, and with the 
x ' ,  y ' ,  z '  axes as shown in fig. 8 (where only the left 
detector is shown). Tha t  is, we use a coordinate  system 
such that  the left detector is in the x ' ,  z '  plane. The 
vector  R describing the detector positions for the left, 
right, up and down detectors, respectively, has the 
components  (R sin 0, 0, R cos 0), ( - R sin 0, 0, R cos 0), 
(0, R sin 0, R cos 0) and (0, - R sin 0, R cos 0), where 

LEFT DETECTOR COORDINATES 
, / V ( x o '  YO' ZO ) 

y AXIS / ~ i 
I / " - -  / r = R + Ar-~~ 
I / R 
T //] /  x ' A X I S ~  ~R 

FoILTARGET, ~ ,'I / ~ 6 '  + ~0 
J J  ,A 

z' AXIS 

Fig.  8. De f in i t i ons  of the a p p r o p r i a t e  vec tors  for  an a n a l y s i s  of 
g e o m e t r i c a l  e r ro r s  in sp in - I  a n a l y z i n g  t enso r  m e a s u r e m e n t s .  
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0 is the scattering angle. The source point is assumed 
to be at the position r o [coordinates (Xo, Yo, Zo)], and 
the beam direction, k [coordinates (kx, ky, k~)], is 
approximately along the z' axis. The z'  axis is taken as 
a natural axis, such as a rotation axis of the apparatus. 
Note that we assume at present that the planes contain- 
ing the left-right and up-down detectors are perpen- 
dicular. Allowance for this type of apparatus defect will 
be made in sec. 4.4.4 where an overall uncertainty in 
the spin direction is considered. 

The unit vectors n and l are calculated for each 
position from the expressions 

where 

effects. In addition to the spatial misalignment included 
in eq. (67), we will later consider the effect of an overall 
uncertainty in the spin direction which is not cancelled 
by any flip procedure. 

One obtains 

4.4.2. Proper f l ips  
Beam misalignments in both the x, z and the y, z 

planes may give rise to false asymmetries unless a 
proper flip sequence is used to eliminate them. To first 
order, the error caused by displacements in the vertical 
and horizontal planes are independent, and we may 
generalize eq. (15) for solid target geometry: 

n = k × r / l k x r l ,  l = n x k ,  (63) Ar~ = - x o s i n 0 ,  Ary = - y o s i n 0 ,  

r = R + A r -  R - r  o. 

AO~ = Xo c o s 0 - k ~ ,  AO r = _ Yo c o s 0 - k y ,  
R R 

(64) (68) 

n = a r x ' + y ' - k y z ' ,  l = x ' - ~ y y ' - k x z '  , (left), 

n = c t r x ' - y ' + k y z '  , ! = - x ' - ~ r y ' + k x z ' , ( r i g h t ) ,  

n = - x ' - a x y ' + k ~ z ' ,  l = - C t x X ' + y ' - k y z ' , ( u p ) ,  

n = x ' - a ~ y ' - k ~ z ' ,  l =  - a x x ' - y ' + k r z ' , ( d o w n ) ,  

(65) 

where 

c~ = k x C O t O + x o ,  ~y = k r c o t O + y  o. (66) 

Assuming for the moment  the detectors are identical, 
the error expressions for various sums and differences 
are 

A ½ ( L -  R)  -- - ~ Pz Ay Sz ky + Pzz A:,~ (s x s~ - s~ k:,), 

A½(L + R)  = -- p z z A ~ s r s ~ k  r + ½ p z z ( A ~ - A r y  ) x 

x srs~k r + ZzpzzA=srs~ky  , 

A ½ ( U - D )  = ~ p z A y ( s ~ k x - s x )  + p z z A x z ( s  2 - s  2) ky,  

3 1 A½ (U + D) = - 7 Pz At sr k~ - 2 Pzz ( A ~ -  Ayr) x 

3 . (67) x srszky + ~ .pzzA~zsrszky  

The nominal spin direction defines the y ' ,  z '  plane in the 
present convention, so Sx is a first-order error quantity. 
Problems of the elimination of detector geometry 
effects and false asymmetries will be dealt with in the 
following section, as will methods for the elimination 
of the above polarization-dependent misalignment 

and eq. (16) for gas target geometry: 

drx  = Xo d r  r = _ Yo 
sin 0 '  sin 0 '  

AOx = - kx ,  AO r = - k r. (69) 

For a proper fourfold flip, the false asymmetry 
effects and detector geometry and efficiency effects are 
cancelled exactly. I f  a two-detector system is used, a 
proper flip is defined exactly as in our discussion of 
spin-½ analyzing power measurements. 

The first-order polarization-correlated effects of 
eq. (67) are also cancelled by a proper flip. To see this 
cancellation, consider the geometric mean for the left 
detector: 

L = ( L  1 L 2 L 3 L 4 )  ¼ , (70) 

where 

LI  = na Na E1 £2x (Ar l  , AO0 IL (O + AO1) × 

× [1 + pzAI~(kx,  ky,  7x,  ay) + 

+ pzzALzz(k~,  ky,  c~, ay)], 

L 2 = n b N b E 2 O 2 ( A r 2 ,  dO2) IL(O+A02)  × 

× [1 + pzAzL(-k~, k~, - ~ ,  ~ )  + 

L 
+ p z z A z z ( - k y ,  k:,, - ~ r ,  a:,)], 

L 3 = n C N e E 3 Q 3 ( d r 3 ,  A03) IL (O+A03)  × 

× [1 + pzZlzL(--kx, - k ~ ,  - ~ ,  - ~ )  + 

+ Pzz  A~zz ( -  k x ,  - k , ,  - ~ ,  - ~ , ) ] ,  
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L 4 = n d N a E ,  O , ( A r 4 ,  a04) IL(O+A04) × 

L x [1 + p z A z ( k y ,  - k ~ ,  o~ r, - ~ , )  + 

L + p z z A z z ( k y ,  - k:,, o:y, - c~)], (71) 

with IL(0) the cross section for  scattering a polarized 
beam into the left detector with no misal ignment  
present: 

3 IL(0)  = Io(0 ) [-1 + 7 p z A r s r  + pzzAx=srs  ~ - 

1 2 1 2 -- - ~ p z z ( A ~ - A y y )  sy + ~pzz  A~,(3s= - 1)]. 

(72) 

Eq. (72) is merely a res ta tement  of  eq. (62) for  the left 
detector,  i.e., for  n along the y '  axis. The error quan-  
tities of  eq. (71) are obta ined f rom eq. (67) by appro-  
pr iate  sums and differences: 

A ½ ( L + R )  + A ½ ( L - R )  = pz AL + pz zALz ,  

A ½ ( L + R )  - A ½ f L - R )  - pz AR + pzzAzRz, 

A { ( U + D )  + A ½ ( U - D )  p z A ~ +  A t; =~ P Z Z  Z Z  , 

A ½ ( U + D ) -  A ½ ( U - D )  - pzA~  + pzzA°zz • (73) 

L1, L2, L 3 and L 4 represent  the yields obta ined in the 
left detector with the detector a r ray  rotated abou t  the 
beam through 0 °, 90 °, 180 ° and 270 °, respectively; the 
subscript  denotes the detector which is in the left 
posit ion when the appara tus  is in the part icular  
configuration,  i f  the misal ignment  parameters  are 
(k~, ky, ~ ,  %) in the initial configuration,  for a proper  
rotat ion,  the parameters  become ( - k y ,  k~, - % ,  ~ ) ,  
( - kx, - k r - ~ ,  - c~y) and (ky, - k~, %, - ~ )  for  the 
remaining three configurations.  Hence, all terms linear 
in these parameters  are cancelled in first order  by either 
a twofold or fourfold proper  flip. (Here we need not  
distinguish between an ari thmetic and geometr ic  mean  
since they are identical for the first-order error  terms 
considered here.) 

4.4.3. Nonproper flips 
We now consider the effect of  a nonprope r  flip. In 

this case the beam is fixed in space, so that  a given set 
o f  misal ignment  parameters  AO, Ar is associated with 
a posit ion in space (e.g., " lef t" ) ,  ra ther  than  with a 
part icular  physical detector. For  a four-detector  
system, the appropr ia te  geometr ic  mean  for the left 
detector  is 

k 
L = K x/I--QI(AOL, ArL) [22(AOL, Are) × 

x {23(AOL, Are) Q,(AOL, Are)] I (0  L, 0).  (74) 

For  the right, up and down detectors, eq. (74) holds if 
all subscripts L are replaced by R, U, or D, respectively. 
K ~ is the factor  (nanbnCndNaNbNCNdE1 E2 E3 E,)  +in an 
obvious  extension of the nota t ion  used in sec. 3. 

As for  the spin-½ case, it is necessary to consider the 
gas and solid target geometry  separately. For  solid 
targets, we may  put  

~'~L 0(7. (R + Arx) 2 ~ R--- 5 1 - x , 

' 

~QR ~ ( R _ A r x ) 2  :~ - ~  1 + 

"Qu ~ (R + Ary)2 "~ - ~  1 - 

OO OC ( R - A r y )  2 ~ - ~  1 + 

Also, the cross sections may  

I(0L) = Io(O) (1 

/(OR) = I0(0) (1 

I(0U) = I0(0) (1 

I (00)  = I0(0)  (l 

be expanded:  

+ GaOx), 

- G a O x ) ,  

+ GA 0r), 

- G A O  3 . 

(75) 

(76) 

Insert ing eq. (68) into the definitions of  the asymmetr ies  
e l -e  5, we find for  the first-order false asymmetr ies  
e l-es ,  for solid target  geometry,  

e'l = e3 = (2 sin 0 o -  G cos 0o) X o -  Gkx,  

z ! 
ez = e, = (2 sin 0o - G cos 0o) Yo - Gky, 

e~ = 0. (77) 

In the case of  gas target  geometry  an analogous  
calculation making  use of  eq. (69) gives 

r p XO 
E1 = ~3 = - -  @ k x  c o t  0 0  - -  Gk~, 

sin 0 o 

, , YO e2 = e4 = - - + k y c o t 0 o - G k y ,  
sin 0o 

e~ = 0.  (78) 

I f  the incident beam is now allowed to be polarized, 
the effect o f  the false asymmetr ies  on the observed 
a symmet ry  parameters  is as follows. Let e l -e  5 be the 
asymmetr ies  which would have been observed in the 
absence of  misalignments,  and e°bsl _e2obs those actually 
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observed. For  e t and/;2,  the spin-½ result holds 

o b s  / ; l  -t- gg'l 
C1 - -  

1 + / ; l e ' l  ' 

t 
,ob~ ez +/;z (79) 

/ ;2 - -  
1 +/ ;2 / ;2  

I f  a four-detector  system is used to determine /;3, /;4 
and as, the situation is more  complicated.  We can write 

/ 
L oc K ( I  +/;s) ~1 + 

oc K(1 +/;5)(1 - - -  R 

oc K ( l - - / ; 5 ) ( 1  + U 

oc K ( 1 - / ; s ) ( l  - D 

f rom which we readily find 

/33 ) (1+/;;), 
1+/;5 

/;4 ) (1+~;), 
| - - / ; 5  

/;* ) (1-~;), 
1 - - / ;  5 

obs  
~3  -~- 

[g3/(  1 +/35) + /33] (1 -t-/;5) 
l ! t 

I "t- 2 ( g 3 / ; 3  -}- /;4. /34) 

ou~ [~/(1-/3~)+/32] (1-/3~) 
1 ! ! 1 + g(/;3/;3"[-/;4/34) 

(8o) 

1 t ! 
o b s  ~5 -[- ~ ( E 3 / 3 3 - - / ~ 4 ~ 4 )  e5 = (81) t 1 + 1 " t _[_ ~ 4  e 4 )  ( ~ 3  8 3  

I t  is no tewor thy  that  even though e 5 is free of  first-order 
errors  in the case of  an unpolar ized beam,  such is not 
the case for a polarized beam.  In this discussion of  
nonproper  flips, we have ignored the polarizat ion 
dependent  errors of  eq. (67) as these are generally 
much  smaller than the false asymmet ry  errors which are 
present  in this method.  (We continue to restrict the 
te rm false a symmet ry  to describe only those asymme-  
tries still present  in the case of  an unpolarized incident 
beam.)  

4.4.4. Residual errors in spin-l asymmetry measurements 
Although the proper  flip sequence eliminates all 

first-order effects associated with an imperfect  appara-  
tus*, there can still arise first-order errors f rom a lack 
of  knowledge of  the absolute direction of  the spin 

* z displacement effects on the effective scattering angle are 
assumed to be removed by the methods discussed in sec. 3.4. 

quantizat ion axis in space. For  this discussion, let 

f l - f o  = Aft, ¢-4)0  = A(o, (82) 

where fo  and q5 o are the intended spin angles, and 
where fl and q~ are the actual angles occurring at the 
target. To  first order in Aft and A 4~, the error in various 
sums and difference of  interest are 

A½(L-R) 

A½(U-O) 

A½(L+R) 

A½(U + O) 

= Io[~ cosflpzAyAfl - ½sin2flpzzA=AqS], 

= lo[cOs2flpzzA=A fl + ~ sinfipzAyAq~], 

= I0[½ sinZflPzz(Ayy-A=~) Aft], 

= I o [  4 s in2 f lp z z (A~-A=)  Aft]. (83) 

For  the fl = 54.7 ° por t ion  of  the rapid method (sec. 
4.3. l), one sees that  a first-order Aft error  arises in each 
of  the required quantities. The A q5 dependence is 
especially serious for A= measurements ,  unless a beam 
wi thpz  = 0 is used, as previously noted. For  the fl = 90 ° 
part  o f  the methods  described in sacs. 4.3.2 and 4.3.3, 
one sees that  Ay, Ayy and Axx can be determined with no 
first-order dependence on Aft, Aga. In the method of  
sec. 4.3.2, where if fl = 45 ° and Pz = 0 is used for the 
A= determinat ion,  there remains a first-order error  in 
Aft because of  the denomina to r  te rm ½ ( U +  D). For  the 
method of  4.3.3, a further  first-order Aft error arises 
since fl = 54.7 °. The method of  sec. 4.3.4 is free of  
first-order spin angle effects for all four tensors, as will 
be elucidated in sac. 4.4.5. 

I f  the lef t-r ight  and u p - d o w n  planes are not perpen- 
dicular, this can be accounted for by different values of  
A q5 in the first and second expressions of  eq. (83). Thus 
this type of  appara tus  defect is of  impor tance  only for 
Ay and Ax= determinat ions by methods which depend 
on Aq5 in first order. Of  the methods described in 
sacs. 4.3.1, 4.3.2, 4.3.3, and 4.3.4, only that  described in 
sec. 4.3.1 is of  this character.  

As in the spin-½ case, even when a proper  flip is made,  
a small componen t  of  nonproper  flip may be present. 
Thus,  the limit of  error f rom this cause will depend on 
kx-kx , ,  @-ky , ,  Xo-X'  o and Yo-Y'o, where the pr imed 
quantities represent  the paramete r  values for the 
" 180 ° f l ipped" measurement .  

4.4.5. Errors in ratio measurements 
Ratio  measurements  are, of  course, wholly depen- 

dent upon current  integration or some other moni tor ing 
technique. Our  chief concern here is with their depen- 
dence on misal ignment  effects. We continue to insist 
on methods  which cancel detector efficiencies, solid 
angles, and false asymmet ry  effects exactly. 
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In general, a ratio computed  with a single detector 
will lead to a result containing first-order misalignment 
errors. To see this, we may combine the various error 
quantities derived in the previous sections to write the 
yields for left, right, up and down detectors, for a given 
beam charge (n), target thickness factor (N) and vector 
and tensor polarizations (Pz, Pzz), as follows: 

L l = nN£2iElll(Ol) [1 + pz(az+bz) + 

+ pzz(azz + bzz)] ,  

R2 = nN~r22E2Io(O2) [1 + p z ( a z - b z )  + 

+ pzz (azz -  bzz)] , 

U 3 ~ -  nNf.23E3Io(03) [1 + pz(cz+dz) + 

+ pzz(Czz + dzz)], 

D 4 = nNC~24E,,lo(04) ~1 + pz (c z -dz )  + 

+ pzz(Czz-,tzz)]. (84) 

The efficiency (E), solid angle factor  (Q) and scattering 
angle (0) are assumed to be different for the four 
detectors;  in the initial configuration of  a flip sequence, 
the detectors numbered 1, 2, 3 and 4 are assumed to be 
in the left, right, up and down positions, respectively. 
The quantities az, bz, azz,  bzz, etc., may be written as 
follows: 

a Z ~ O~ 

b z = ~- sinflAy + ~ cos f lAyAf i -  ~ cosflAyky, 

azz = ½(sin2flAry + cos2flA~) + 

+ ½ sin2fl(Ayy-A=) Aft + 

+ ½ sin 2 f l [ - A ~ : % .  + ½(Ax~-Ayy) ky+a2Az~ky], 

bzz = - ½ sin2flAx~A(a-Ax~ cos2flkx, 

Cz = - 3 sinflArct~, 

d z = ~ sin/3AyAd? + )cos/3Ayk~,, 

Czz -- ½(sin 2flAxx + cos 2flA~) + 

+ ½ sin2fl(Ax:,-A~) Aft + 

+ ½ s in2 f l { -½(Axx-Ay , )  ky + ) A = k , ] ,  

dzz = ½ sin 2/3Ax~ + cos 2flAx=Aft - cos 2flA~ky.  

TABLE 3 

A s y m m e t r y  p a r a m e t e r s .  

/~ = 0 ° fl = 45 /~ = 90 ° 

az  0 a 0 

b z  z 2 A y ( A f l - k y  ) a ~ A y  

a z z  ~ A zz a ~ A yy 

b z z  - A z z k z  a - Azzka, 

3 
cz  0 ~ / 2  A u ~ z  -- ~ A y ~ .  

3 
d z  zz A y k x  2,k/2 A y ( , l d J + k x )  3 Au/Ifb 

cZZ ½Azz - ¼  A y y +  ½ ( A x x - A z z )  A f l  ~Axx  
¼ ( A x x -  Ayy )  k y  4 Azzky  

dzz Ax~(Afl-ku) '.,.Ax~ -Axz(Afl-ku) 

a These  q u a n t i t i e s  m a y  be eas i ly  ca l cu l a t ed  f r o m  eq. (85) bu t  
are  no t  of in te res t  for  any  of the  m e t h o d s  d i scussed .  

The zeroth-order  terms in eq. (85) come from eq. (39), 
and are underlined twice. The first-order errors which 
come from an overall spin misalignment come from 
eq. (83) and are underlined once. The remaining first- 
order errors involve c~ x, %, k x and ky; these are taken 
from eq. (67) with the substitution sz = cos fl, sy = sin/3. 
Terms involving sx f rom eq. (67) have been dropped 
since these terms represent the same error as do the A q$ 
terms, az is carried for the sake o f  symmetry.  

One sees f rom the structure of  eq. (84) that for a 
single detector there are, in general, four unknown 
quantities of  interest; either az, bz, azz  and bzz or Cz, 
d z, Czz and dzz. Even in the special cases o f  interest, 
fl = 0 ° and fl = 90 °, at least three o f  these quantities 
is present for every case (see table 3). 

We first consider fl = 0 ° from which we can deter- 
mine A=  by these methods. We use the left and right 
detector expressions, al though for fl = 0 ° the up and 
down detectors lead to identical results. (In the fl = 0 ° 
error expressions of  table 3, there is an apparent  
difference between the left-right and the up -down  
expressions because of  our  assumption that  the spin 
lies in the y ' ,  z '  plane.) Detector  efficiencies may be 
eliminated by a 180 ° proper flip; this also removes in 
first order those misalignment terms proport ional  to 
~x, %, kx and k r Considering that a z = 0, we have for 
the geometric means 

L = x/(n"nbNaN b) K[I  + pzbz + pzz(azz-bzz)]  , 

R = \ / (n"nbNaN b) K [ I  -- pzbz + pzz(azz-bzz)]  , 

(85) (86) 
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where 
K = x/[~2a -(22 E~ E2 I(Oa) I (02)] ,  (87) 

so that  the quanti ty ½(L+R) is independent o f  bz and 

bzz: 

T1 - ½(L + R) = x/(na nbNaN b) K( l  + p'zza'zz). (88) 

This quanti ty can then be measured with a different 
value o f  beam polarization Pz, Pzz:  

T'I = ½(E +R') = x/(nCnaNCN a) K ( I  + P z z a z z ) ,  (89) 

f rom which we obtain 

T , -  T'I 
azz = ½Azz = , (90) 

Pzz T'I - P~z 7"1 

provided that  x/ (na nb Na N b) = x/ (nC nd NC Nd). 
Next  consider the determination of  Ayy and Ay. In 

this case we use fl --- 90 °, and reference to table 3 shows 
that  eq. (86) remains valid, and that azz  ( =  ½Ay r) may 
be determined with no first-order errors. The difference 
½ (L - R) becomes 

½ ( L - R )  = x/(nan~'NaN b) K ( p z b z - p z z b z z ) .  (91) 

Reference to table 3 shows that  bzz is zero if a proper  
flip is executed, so that  the quanti ty 

Pz bz ~ Pz Ay = (92) 
1 + Pzz azz 1 + ½ Pzz Ayy 

is also determined with no first-order error (and no 
dependence on current integration). Combina t ion  o f  
this result with the result for azz  obtained by eq. (90) 
results in an expression for bz ( =  2aAr) which is free of  
first-order errors but  which now depends on current 
integration. 

Finally, consider the determination of  Axx. Again we 
use fl = 90°; in this case we have for the appropriate  
geometric means 

U = x/(n~nbNaN b) K']-I  + pz(cz+dz) + 

+ pzz(Czz + dzz)-I, 

D = ~ / ( n a ~ N " N  ~) K'l-I + pz(cz-dz)  + 

+ Pzz (Czz-- dzz)], (93) 

where 
K' = x/[£23£24E3E4Io(03)Io(04)], (94) 

so that  the quanti ty ½(U+D) is 

T2 =- I (U  +D) = x/(nanbNaNb) K'(  1 + PzCz + 

+ Pzz Czz). (95) 

Reference to table 2 shows that  Cz = 0 for a proper  flip, 
so that the ratio method of  eq. (90) may be applied to 
obtain a result for Czz ( =  ½Axe) free of  first-order errors. 

The method of  sec. 4.3.4 may be examined in the 
light of  eqs. (81) and (82). One sees that  in this method 
the left detector ratios determine a z + bz and azz + bzz, 
the right detector ratios determine a z - b z  and 
a z z - b z z ,  etc. Thus, there are always enough equa- 
tions, provided left- l ight or up -down  pairs o f  detectors 
are used, to determine each of  the quantities az, bz, 
azz  and bzz or c z, dz, Czz and dzz. Analyzing powers 
free o f  first-order errors are available in each case. That  
is, for Ay, Ayy, one sees that for fl = 90 °, b z and azz 
each contain no error terms. For  Axe, again with 
fi = 90 °, Czz contains no error terms. For  Axe, with 
fl = 45 °, dzz contains no error terms. Thus this method 
can determine all four analyzing tensors with no first- 
order dependence on spin angle, as asserted in sec. 
4.3.4. 

5. Summary 

In this paper  we have sought to generalize the tradi- 
tional concepts used in spin-½ analyzing power exper- 
iments to spin-1 experiments in the most  direct way 
possible. In the spin-½ case, we spoke of  proper flips 
where we meant  that  either the spin was reversed, or 
that  the apparatus was rotated in such a way that  an 
observer fastened to the apparatus would think that  
the spin was reversed. We showed that  all first-order 
geometrical effects could then be removed. 

In the spin-1 case, we found ourselves emphasizing 
the physical rotat ion of  the apparatus since (1) rever- 
sing the quantization axis only reverses the vector par t  
o f  the spin, so that  such a reversal is not  identical to an 
apparatus rotation, and (2) in some cases we wished to 
effectively rotate the spin 90 ° about  the beam direction, 
which is difficult to do precisely in any system known 
to the authors. The choice of  three spin states such as 
m I = l ,  m I = 0 and mt= - I was shown to be analogous 
to the reversal of  spin at the source in the spin-½ case. 

In the spin-½ case, it was shown that  it is possible to 
measure the analyzing power in a way simultaneously 
independent o f  first-order spin alignment errors and 
current integration, whereas in the spin-1 case it was 
found that  both o f  these experimental features could 
not  be simultaneously obtained. 
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