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Limitation on the pEDM experiment due to radial magnetic fields

• The total spin precession is given by :

ds

dt
= µ×B + d×E, where |s| = ~/2

⇒ ωv =
2 (µBr + dEr)

~
• Here ωv is the angular precession frequency of the spin out of the plane.

• The precession due to an EDM at the level of 10−29 e·cm given by :

ωEDM
v =

2dE

~
=

2dEc

~c
=

2× 1× 10−31 e ·m× 10.5 MV/m× 0.95× 3× 108 m/s

197 MeV · fm

ωEDM
v = 3 nrad/s

• Precession into vertical also caused by a radial magnetic field Br

• Effect on precession is indistinguishable from an EDM

•What is the maximum Br allowed?

• How will we measure Br?
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Limitation on the pEDM experiment due to radial magnetic fields

• Non-zero Br results in vertical Lorentz force

• Lorentz force in opposite directions for CW and CCW beams

• Compensated by net vertical electric field : Ev = −β ×Br

• Spin precession in vertical due to Br using lab-frame quantities (see Jackson, in cgs) :

ds

dt
=

e

mc
s×

[(
g

2
− 1 +

1

γ

)
Br −

(
g

2
− γ

γ + 1

)
β ×Ev

]
= g

e

2mc

1

γ2
s×Br

=
1

γ2
µ×Br (normal relation modified by focusing E field)

⇒ The EDM precession into the vertical at ωv could be caused by Br of magnitude :

~ωv = 2µBr/γ
2 ⇒

Br =
~ωv

2µ
γ2 =

1.05× 10−34 J · s× 3× 10−9 rad/s× 1.252

2× 1.41× 10−26 J/T
= 2.2× 10−17 T

⇒ Net radial magnetic field of 0.22 pG would causes precession equivalent
to pEDM of dp = 10−29 e·cm
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Radial B field splits CW and CCW beam in vertical direction

• Lorentz force from Br of opposite sign for CW and CCW beams ⇒ they split vertically

• Expanding Br in multipoles, write the equation of motion in vertical y :

d2y

dθ2
+ Q2

yy =
βcR0

Er

∞∑
N=0

BrN cos (Nθ + φN)

• This has solutions :

δy(θ) = ±
∞∑

N=0

βcR0BrN

Er

[
1

Q2
y −N 2

]
cos(Nθ + φN) + y0 cos(Qyθ + φQ),

• Qy is vertical betatron tune, last term is vertical betatron oscillation

• Distortion of equilibrium orbit of opposite sign for the CW and CCW beams

• Only N=0 term, Br0, leads to 〈δyCW − δyCCW 〉 6= 0

•With vertical tune Qy ≈ 0.1, average vertical displacement of each beam :

δy = ±βcR0Br

ErQ2
y

= ±0.6× 3× 108 m/s× 40 m× 2.2× 10−17 T

10.5× 106 V/m× 0.12
= ± 1.5× 10−12 m.

⇒ Net radial magnetic field Br of 2.2× 10−17 T splits the CW and CCW beams
vertically by ≈ 3.0 pm
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Separated counter-circulating beams produce a magnetic dipole

• To detect splitting, consider B fields created by beams

• For displacements from origin by δx and δy, B from single beam :

B(r, φ) =
µ0

4π

2I

r

{[
− sin φ +

(
−δx

r
sin 2φ +

δy

r
cos 2φ

)]
x̂ +[

+ cos φ +

(
−δx

r
cos 2φ +

δy

r
sin 2φ

)]
ŷ

}
• Using 2× 1010 protons/beam (I=2.2 mA), consider B field at r=2 cm away :

B(r = 2 cm, φ) =
4π × 10−7

4π

2× 2.2× 10−3 A

2× 10−2 m
φ̂ ≈ 220 µG

• If counter-circulating beam has same charge within a ppm,
B ≈ 220 pG φ̂ at r=2 cm

• If beams split by ±δy, can detect at φ = {0, π} looking at B · x̂
• To move signal off of DC, modulate the vertical tune at ωm between 20 Hz and 1 kHz

• Set Qy ⇒ Qy × (1−m cos(ωmt)) where modulation depth m ≈ 0.1

⇒ B(r, φ = (0, π), ωm) =
µ0

4π

2I

r

[
δy × 4m cos ωmt

r

]
x̂.
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Magnetic field sensitivity required to measure beam splitting

•Modulating 3 pm splitting of beams leads to peak field of 0.6× 10−3 fT at ωm

• Have roughly 104 stores of 103 seconds to measure this field (for run duration 107 s)

• Need to determine B from beams to 0.6× 10−1 fT per store of 1000 s

• Need sensitivity of ≈ 1.9 fT/
√

Hz at ωm for S/N ≈ 1

⇒ Is equivalent to determining splitting of beams 2δy ≤ 0.3 nm per store

• ILC final focus requires BPMs with nm level resolu-
tion for single shots of 1010 electrons

• Single shot resolution of 16 nm has been demon-
strated with
TM110 dipole-mode RF cavity BPMs
(S. Walston et al., Nucl. Instrum. Methods A 578,
1 (2007))

•We just need to measure relative splittings of beams

• Position and tilt of our BPMs not nearly as critical
as ILC application
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High sensitivity magnetometry of small magnetic fields

• At least two approaches have demonstrated ability to detect such fields

• (i) K SERF magnetometer developed by M. Romalis’ group at Princeton
(J.C. Allred, R.N. Lyman, T.W. Kornack, and M.V. Romalis, Phys. Rev. Lett. 89, 130801 (2002))

• Have demonstrated sensitivity of ≈ 1 fT/
√

Hz at ω ≈ 2π× 50 Hz
(T.W. Kornack, S.J. Smullin, S.-K. Lee, and M.V. Romalis, Appl. Phys. Lett. 90, 223501 (2007))

• (ii) Commercially available low temperature superconductor DC SQUIDs (LTS dc SQUIDs)

• Systems from Tristan Technologies have demonstrated δB ≤ 1 fT/
√

Hz

• http://www.tristantech.com

•Many examples in literature of non-commercial devices with similar sensitivity
(0.7 fT/

√
Hz by W. Vodel and K. Mäkiniemi, Meas. Sci. Technol. 3, 1155 (1992))

• Systems primarly developed for study of heart and brain biomagnetic fields

•Will focus on solution using SQUIDs

• Commercially available

• Implementation and operation might be simpler than SERF magnetometers

⇒ System performance often limited by magnetic field noise - not the magnetometer

⇒ Need to reduce magnetic field noise at ωm below sensitivity of magnetometer
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Block diagram of a SQUID BPM system

(From R.L. Fagaly, Rev. Sci. Instrum. 77, 101101 (2006))

• Position sense coils adjacent to beams, orient to detect x̂ (radial) component of B

• Attach sense coil leads to SQUID input coil

• Connect SQUID output to signal input of lock-in amplifier

•Modulate vertical tune at ωm, connect ωm oscillator to reference input of lock-in

• Output of lock-in amplifier has component of SQUID output at modulation frequency

• Digitize, record, and possibly use for feedback to beams
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Parameters of a SQUID BPM system

•B field sensitivity depends on input current noise of SQUID and coil inductance

• For maximum sensitivity, need to match inductance of sense coil to input coil of SQUID

• For LSQ/20 LTS dc SQUID of Tristan Tech., input coil inductance L ≈ 1.8µH

• A 4 turn coil, 4 cm long × 1.5 cm high (area of 6 cm2) has L ≈ 1.6µH

• LSQ/20 + flux locked loop and iMAG SQUID controller has δInoise ≤ 0.7 pA/
√

Hz

•Magnetic field sensitivity extracted from flux sensitivity :

δΦnoise = NAδBnoise = δInoise × (Linput + Lsense)

δBnoise =
(0.7× 10−12 A/

√
Hz)× (3.54× 10−6 H)

(4 turns)× (6× 10−4 m2/turn)

= 1.0 fT/
√

Hz.

⇒ If ambient field noise at ωm is ≤ 1 fT/
√

Hz, combined noise ≤ 2 fT/
√

Hz
⇒ A single system is sensitive enough to measure Br to the required level

• Of course, would never rely on a single system

• Also want to improve S/N �1
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Parameters of a SQUID BPM system

• There are 6 straight sections, each ≈ 24 cm long, in which SQUID BPMs could be used

• Use 20 SQUIDs in each straight section, 10 sense coils on either side of beam

• Coils would overlap : coil pairs would see the same signal and local magnetic field noise

• However, input current noise of each SQUID is not common

• As long as ambient field noise at or below 1 fT
√

Hz not hurt much by this scheme

• Assume we can achieve 1 fT
√

Hz ambient field noise at ωm

• Each coil pair has sensitivity of ≈ 1.3 fT
√

Hz

• Average of 60 independent pairs has 0.17 fT
√

Hz at ωm

• Recall we want to limit Br ≤ 2.2× 10−17 T, which causes 3 pm splitting of beams

• Splitting of 2δy ≈ 3 pm ⇔ B from beams of 0.6×10−3 fT

• In 1 store, determine B from beams to 5.3×10−3 fT, splitting of beams to 2δy ≈ 27 pm

• In 1 store determine Br to ≈ 22× 10−17 T

• In 100 stores, we should be able to measure Br to required limit

⇒ In 104 stores, should be able to measure Br to required sensitivity with S/N � 5
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Schematic of a SQUID BPM system

• Tristan Technology
LSQ/20 SQUID

• 64 mm long,
12.7 mm diameter

• ≤ 1 fT/
√

Hz

• Beam’s eye view schematic of a SQUID BPM system

• Sense coils, leads, SQUIDs at 4.2K; leads and SQUIDs in superconducting

shields

• Ferrite and µ-metal at room temp.

• More magnetic shielding outside Al vacuum chamber
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Schematic of a SQUID BPM system

• Side view schematic of a SQUID BPM system

• Sense coils, leads, SQUIDs at 4.2K; leads and SQUIDs in superconducting shields

• Ferrite and µ-metal at room temp, more magnetic shielding outside vacuum chamber
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Magnetic shielding

•Would like to achieve 1 fT
√

Hz ambient field noise at ωm

• Sense coils will pick up magnetic noise from :

(i) Sources outside the BPM shields

(ii) Magnetic noise from the shields themselves

(iii) Magnetic noise from beam at ω 6= ωm

• Sense coils leads and SQUIDs have additional superconducting shield

⇒ System noise dominated by noise picked up by sense coils

• 0.75 fT/
√

Hz at ω > 2π× 35 Hz achieved with 3 layers of µ-metal and ferrite shield
(T.W. Kornack, S.J. Smullin, S.-K. Lee, and M.V. Romalis, Appl. Phys. Lett. 90, 223501 (2007))

• Shielded a 10 cm diameter cylindrical volume, residual field < 2 nT

•We will have 3 layers of µ-metal outside of the beam pipe

• In addition : beam pipe will act as eddy current shield, shielding factor
Hint/Hext ≈ 1/(1 + iωτ ) should help above 60 Hz

• Inside beam pipe : additional µ-metal and 1 cm thick MnZn ferrite shield

⇒ Shielding of environment and noise from shields should be comparable to Romalis
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Magnetic Shielding from CMI-Ferrite
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Magnetic shielding

• Our dimensions slightly different

• Along axis of long ferrite, shield noise expected

δBmagn ≈ 0.26µ0

r
√

t

√
4kTµ′′

ωµ′2
, (1)

• Here r and t are inner radius and thickness, loss factor µ′′µ0/µ
′2 = 1.46× 10−6

• Given our finite shield length, expect δBmagn ≤ 3.2 fT/
√

Hz at 1 Hz

⇒For ωm > 10 Hz, expect noise from shields δBmagn < 1 fT/
√

Hz

• Noise from beam will be at 1-70 MHz, depending on bunching

• Frequencies far outside the SQUID flux-locked loop bandwidth of a few kHz

• This noise from beam can perturb operation of SQUID

• Can be shielded using layer of indium-tin-oxide (ITO) on inner surface of
sense-coil cold finger

• Image currents in ITO will reduce signal a bit, but high frequency attenuated significantly
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Magnetic shielding

• Using conductivity σ(ITO) ≈ 104 Ω−1m−1 ITO skin depth δ:

δ = 1/
√

2fµσ

• 2.5 mm of ITO would reduce 70 MHz noise by factor 20. Noise from ITO itself :

δBcurr ≈
1√
8π

µ0

√
kTσt

a

≈ 10 fT/
√

Hz,

• where a = 2 mm is distance from ITO to coils, and noise drops with frequency as 1/f

⇒ For ωm above 20 Hz magnetic noise from ITO would not limit measurement

• If move to long bunch scheme, to shield 1 MHz noise requires few hundred µm of Al

• Conductivity of Al 3500 times that of ITO, δBcurr ≈ 80 fT/
√

Hz at 1 Hz

⇒ For ωm above 150 Hz, magnetic noise from Al would not limit measurement

⇒ For ωm > 150 Hz, expect noise from shields δBmagn < 1 fT/
√

Hz
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Cursory look at Ground Motion

•What about ground motion at ωm?

(i) Beam samples ≈ ±3 cm ×± 1.5 cm ×260 m

• Small motions won’t change 〈Br〉 significantly

(ii) If sense coils move up/down wrt beams at ωm ...

• See part of B ≈ 200 pG φ̂ from δI , that couples in x̂

• Estimate this fraction for 1 nm motion as ≈ 10−9 m/10−2 m

• Could anticipate field of 200 pG ×10−7 ≈ 0.2 fT at ωm

(iii) Local gradients should be less than 2 nT/cm

• For 1 nm motion, see field 2 nT/cm × 1 nm = 0.2 fT

⇒Will need to keep motion at ωm at nm level
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Options to reduce requirements on BPMs

•What other options do we have if 2 fT/
√

Hz at ωm not possible?

• Stochastic cooling may allow Qy to go from 0.1 ⇒ 0.03

• Beam splitting goes up by factor 10, required BPM resolution drops by factor 10

• Increase Qy modulation depth m from 0.1 to 0.15-0.2 : becomes factor 2+ easier

•May just have to run longer to get required limits
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Summary and Conclusions

• Net radial magnetic field of 0.22 pG would causes precession equivalent to pEDM of
dp = 10−29 e·cm

• This field would split the CW and CCW beams by 3 pm

•Magnetic field from beams split in vertical has radial component

• By modulating vertical tune, can look for this field using SQUIDs and lock-in amplifier

• Require sensitivity ≤ 1 fT/
√

Hz at ωm

• A single SQUID magnetometer has this sensitivity

•Magnetic shielding with noise < 1 fT/
√

Hz above 35 Hz has been demonstrated

• Large effort required :

• Design cold finger/cryostat, integrate with other elements of experiment

• Integration of SQUID controller output with lock in, DAQ, many parameters to be
determined

⇒ Demonstrating that this works in storage ring environment will be necessary

⇒ Systematics : thermal, dimensional stability, ground motion, slow changes in B, ...

⇒ Great challenge and a great opportunity
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