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History EDDA

Proposal in 2007 detector
Visit SPIN@COSY run
Three polarimeter runs:

June 2008 — initial tests BIG KARL

o
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September 2008 — trial data GEM, MOMO, o i
June 2009 — final long run : A ‘E
(paper in preparation) B =
Polarization lifetime runs: . 2 '—;J_
January 2011 — initial tests —
———f
Prior work at KVI, Groningen iR '
d=C data, 2004 + 2005
Deuteron

Systematic errors, 2007
beam




EDDA
detector

32 bars measure
azimuthal angle

rngs measure
scattering angle

Operate as stopping
detector for deuterons,
sets beam momentum
to be p =0.97 GeV/c

Thick carbon
target used
for continuous
extraction and
high efficiency




Rings and bars to determine angles.

Azimuthal angles yield two asymmetries:
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Operated with two
. sets of scattering

angle bars to make

two “polarimeters”.
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General Goal:

Sensitivity:

Polarimeter
Requirements:

~ 250 MeV

Polarimeter Operation

Confine charged, polarized particles with a large electric field

Watch for change of polarization direction perpendicular to E
as signature for Electric Dipole Moment (EDM)

Candidates: proton, deuteron, (3He)...can polarize, analyze

For ~107%% e:cm expect 107 rad in ~ 1000 s

High efficiency (useful events / particles lost from beam)
Large analyzing power
Control of systematic errors as beam conditions change



Polarimeter Operation

General Goal: Confine charged, polarized particles with a large electric field
Watch for change of polarization direction perpendicular to E
as signature for Electric Dipole Moment (EDM)
Candidates: proton, deuteron, (3He)...can polarize, analyze

Sensitivity: For ~107%% e:cm expect 107 rad in ~ 1000 s
Polarimeter High efficiency (useful events / particles lost from beam)
Requirements:

Large analyzing power

~ 250 MeV Control of systematic eryors as beam conditions change

Must observe a small change (Ap,) during time of store.

Goal:1%

Extract beam slowly onto thick target at edge of beam.

Scattered flux goes into downstream detectors (forward angle).



Polarimeter Operation

General Goal: Confine charged, polarized particles with a large electric field
Watch for change of polarization direction perpendicular to E
as signature for Electric Dipole Moment (EDM)
Candidates: proton, deuteron, (3He)...can polarize, analyze

Sensitivity: For ~ 1072° e-cm expect 10 % rad in ~ 1000 s
Polarimeter High efficiency (useful events / particles lost from beam)
Requirements: || 5rge analyzing power

~ 250 MeV Control of systematic errors as beam conditions change

Must observe a small change (Ap,) guring time of store.

Goal:1%

Extract beam slowly onto thick targetat edge of beam.

Scattered flux goes into downstream dgtectors (forward angle).

Forward angle elastic scattering (large spin-orbit distortions)
Carbon target
Include low Q-value reactions (similar analyzing power)

Effective
goal: 0.5




Deuteron case

d+C elastic, 270 MeV

desired range

---»{ available at COSY
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D ron
euteron case Proton case

| Similarity to deuteron case
d+C elastic, 270 MeV means results apply to both.
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Near 230 MeV
the forward
Cross section

0

Y. Satou, PL B 549, 307 (2002)

and analyzing
power are
favorable.

available at COSY
! » desired range

i = gA?

L | | We can expect:

S efficiency ~ 1.1 % (over 21)
‘ab angle (deg) analyzing power ~ 0.6

with some selection on elastics



Errors

How to manage systematic errors: (measuring left-right asymmetry)

Usual tricks:

Locate detectors on both sides of the beam (L and R).
Repeat experiment with up and down polarization.
Cancel effects in formula for asymmetry (cross-ratio).
-1 »_L®RE)
r+l1 L(—-)R(+)

But this fails at second order in the errors.



Errors

How to manage systematic errors: (measuring left-right asymmetry)

Usual tricks: Locate detectors on both sides of the beam (L and R).
Repeat experiment with up and down polarization.
Cancel effects in formula for asymmetry (cross-ratio).

-1, _LMHRE)

From experiments PA=g=—" =
with large induced r+1 L(-)R(+)
errors and a model But this fails at second order in the errors.

of those errors:

Using the data itself, . s-1 , LHH)LE) and

devise parameters: s+1 B R(+)R(-) ’ rate

wm

W=L+R

Calibrate polarimeter derivatives and correct (real time):

r-1 o€ s—1 o€
gCR,corr - (i (¢)j A(—j _ (i (\N)j AW
r+1 0¢ woper  \S+1 oW MODEL

Will this work? for both X and 6?



Target solution found at COSY:

expanded vertical phase space

beam core

Electric field plates, - .
apply white noise
"m" maximum
allowed at

COSY

Do enough particles penetrate far enough into the front
face to travel most of the way through the target?

This requires a comparison of the efficiency with model values.



Target solution found at COSY:

expanded vertical phase space

beam core

Yes,

front back
model 5.7 4.7
data 6.8 5.9

x 1074
i ~ 10
" 15 mm " maximum | Values well below ~ 1%

allowed at | because of thin target and
COSY | loss of small angles.

Electric field plates,
apply white noise

Do enough particles penetrate far enough into the front
face to travel most of the way through the target?

This requires a comparison of the efficiency with model values.



Tests made at the KVI (2007) Cross Ratio (18%)

-0.136 T T T | |
-0.137 ¢ —
130 MeV 01381 7
polarized e o
carbon deuterons
ribbon -0.139}- ]
target
Phoswich © %
scintillation 014017 a
detectors
. ! DMl e > %
Best method: “cross ratio”, “square root” method displacement (mm)
3 r-1 L(+)R(—
2 r+1 L(-)R(+) Calculation based on

deuteron elastic
scattering data at
130 MeV and measured

This method fails at second order in errors.

2
slexp) =+ 1 g3u2+282£18ﬁjux+ 1 0° A (1- )_(l%) &2 Ix? beam polarizations.
\ 1-¢? A OX A A OX

\ “true” asymmetry u=pH) - pE), p)<0

observed asymmetry



Experimental approach at COSY:

Work in one plane:
Change beam position (Ax) or angle (AB).
Watch vertical as well as horizontal effects, also tensor.
Change rate during measurement.

Cycle through all “error” points:
Ax=-2,-1,0,1,and 2 mm
AB =-5.0,-25,0,2.5,5.0mrad

Cycle through 5 polarization states: Unp, V+, V-, T+, T-

Record data as a function of time during the store.



Data from the higher-rate initial running

FRONT DETECTORS
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The cross ratio result changes from
early to late in the store !
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Build a model framework of parametrized effects to investigate issues

Include only what you need...

Make a linear fit to
the data from the

stores. Assume the

zero rate point is

independent of rate

and can be used
for the analysis of

geometry effects.

First, separate rate and geometry effects.

FRONT DETECTOR

e o
) i
n =

o
™
=

Cross Ratio (grand average)

0.4 0.6

Instantaneous Rate (arb. units)

Use the slope for
the study of rate
effects.

Each point is a specific observable that depends on polarization and AX or A®.



Geometry model

Parameters we know we need to include:

\/ETZZ
V8 —p; Ty

EDDA Analyzing power: A, and A =

Polarizations: py and p; for the states V+, V-, T+, T-

There is some information available from

the COSY Low Energy Polarimeter.

o o A A A AT

Logarithmic derivatives: ’ , ,
O (o2

ATAT A A
Solid angle ratios: L/R D/U (D+U)/(L+R)

Total so far: 19 parameters



Parameters we found we needed:
Rotation of Down/Up detector (sensitive to vertical polarization): 8,
X —Y and 6, — 8, coupling (makes D/U sensitive to horizontal errors): C,, Cq4

Ratio of position and angle effects (effective distance to the detector):
X/6 =R

Talil fraction: multiple-scattered, spin-independent, lower-momentum flux
that is recorded only by the “right” detector (to inside of ring)

F = fraction Fy, Fg Sensitivities to position and angle shifts

Total parameters: 26

Fitting revealed continuous ambiguity involving L/R and (D+U)/(L+R) solid
angle ratios, the tail fraction, effective detector distance, and all polarizations.

Choice was to freeze L/R solid angle ratio for front rings at one.



Vector Vector

Quality of the fit Analyzing Polarization p,
Power [V-] 0.5370(4)
_L-R Group5 A, =0.349(6) V4] -0.3954(4)
&E=——_ [T+] -0.3399(4)
L+R LEFT-RIGHT ASYMMETRY FRONT [T-] 0.7311(4)
V- V+ T+ T- UNP
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slopes o n A ? _o )
givenby |\ & o slope difference measures
5 A 1 “effective” distance to detector

—=-002562(9) —-=0.00553) — X/6 = 52.4(8) cm



E=—"—"— Group 5
D+U
DOWN-UP ASYMMETRY FRONT
1% V- V+ T+ T- UNP
L e B L L L B L L L L L 1 L L O B W
- 1 Offset gives - -+ —
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Beam X —Y and 64 — 6,
Broken symmetry of ring coupling connects to
detectors creates false horizontal beam motion

rotation in vertical asymmetry
and sensitivity to polarization.

rot = 0.0278(5) rad

X coupling = -0.031(5)
8 coupling = 0.036(2)



Tensor Tensor

D+U-L-R \/ngTzz 1 Analyzing Power Polarization py
£= = =P A Ar=0.0721(2)  [v-] 0.1580(3)
D+U+L+R 8-p,T, 2 Group 5 [V+] -0.0841(3)
[T+] 0.4448(3)
TENSOR ASYMMETRY FRONT [T-] -0.7641(3)
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0.00029(1) 1/rad? tail fraction
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Rate Model:

L
Rate effects require a non-linear response to input rate.
Detector rate L =C (1 + €), C = unpolarized rate
Rate effects can be L=L +hL2...
For a simple asymmetry: g, =¢€[1 +hC(1 —¢?)...] L
rate dependence
For h > 0, there are excess events This represents
(pileup, more events crossing threshold...) our case.

For h <0, there are lost events
(PMT gain sag...)

Higher order effects introduce polarization dependence.

There is some evidence for quadratic X and 8 dependence.
Polarization dependence not needed for cross ratio rate dependence.



Rate dependence results

Group 5
LEFT-RIGHT ASYMMETRY FRONT
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Conclusions
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Conclusions
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Conclusions

Chi square distribution

0.4 r T T
1 | | | | for geometry fit
R
Angle points
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1 Reduced chi square is 1.7
Corrections for A 4 _
and 6 match. 2 7 Reproo_luctlon of data by
One index can be = oml { l model is go_od, there are
used for both. ; no unexplained features.
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3 Tests were made with the beam shifting

by 4 mm during the store.

60

Correction
0.10 A L S |
| V+ polarization case +
0.08 - uncorrected % % .
@ b d T
g 0.06]- 4,4) %’ﬁj& ++ ++ i
o AL
5 ¢¢¢¢¢¢
% .y Q ¢¢¢¢¢:¢&¢ corrected for 7
- _¢¢ % rate and geometry
0.02 \d “ ++ + —
*% ¢ + +
0.00 I - I ! | | |
' / ° ? Time in?ftore (s) ? »

slope: -1.4+£28 x 1076 /s

Corrections work.



Tests were made with high
rate and displaced beam.

Left-Right Asymmetry

-0.4.
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T- polarization,
2 mm displaced

Correction

| ! | ! I
i corrected for
rate and geometry

uncorrected

g b
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corrected for rate
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1 1 I 1
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Tests were made with high
rate and displaced beam.

Corrections work.

Scaling down:

For deuteron EDM ring:
position changes < 10 uym
initial vertical € < 0.01

gives control of systematics

to < 30 ppb, well under
requirement.

Cross ratio:
A/A =0.0055
€=0.01

Ap =0.05

use (A/A)e2Ap

Left-Right Asymmetry

-0.4.

-0.42

-0.43

-0.44

wn

-0.46

-0.47

T- polarization,
2 mm displaced

Correction

| ! | ! I
i corrected for
rate and geometry

uncorrected

g b
¢¢¢¢¢ ¢¢¢?¢¢¢¢¢¢4¢%¢¢§¢ # ﬁi

corrected for rate

e it
\ vos ¢ $ _

t

1 1 I 1
0 10 20 30
Time in store (s)

Since asymmetry depends only on count rates and

calibration coefficients, we get results in real time.




Polarimeter
Summary

It is possible to design a (deuteron) polarimeter with the efficiency
and analyzing powers needed for the EDM ring.
Thick target extraction keeps the efficiency high.

Systematic errors may be corrected (in real time) using information
contained within the left-right data set (assuming up and down polarization).

A prior calibration of the sensitivity of the polarimeter to error
terms involving geometry and rate changes is required.

For the EDM search, a measurement of a small rotation should be
possible with a systematic error after correction of less than one
part per million.



Polarimeter Developments (What’s next?)

Database for d+C and p+C

Detector choice

Polarimeter Monte Carlo

Design, construction, calibration

Alternative: polarized target



Gather data for polarimeter design

Measure cross section

and analyzing power
angular distributions for
deuteron-induced reactions
near 1.0 GeV/c

using the WASA forward
tracking detector.

The EDM polarimeter must
separate elastic scattering
and low Q-value reactions
(useful for polarization
measurement) from breakup
protons (no spin dependence).
WASA detector will Data will go into polarimeter

need new holder Monte Carlo simulation.
for solid fiber targets.




The best option with an existing detector

The COSY project
appears to be WASA.

d+C data

FPC FTHFRH  FRI  FR  FVH
| [ | A

Central Detector e
Vo " \ __-~"" coverage
- to 17°

f
|.1-- Full
azimuth

» beam

Particle
identification
with energy

\ loss

scintillator arrays that
(mostly) stop deuterons

wire chambers
for tracking



Detector systems: alternatives to scintillators

Multi-resistive plate Micro-megas avalanche
chambers(ltaly) B detection system Greece)

pickup electrodes (green)
also shown in photograph

The 20cm x 50cm prototype

Gas electron multiplier
(GEM) system

C

In-beam tests are needed (COSY)
to provide sample data sets.



NEW PROJECT

Polarization Lifetime (Spin Coherence)

A useful EDM signal needs long accumulation times (~15 minutes).
The polarization must stay longitudinal (w/ feedback) and large (unstable).

Various mechanisms spread momentum, gamma, spin tune.

First-order Ap/p remover (on average) by beam bunching.
Second-order terms: (Ap/p)?, 6,2, 6,2

Goal: Show that second-order may be canceled by sextupole fields.
(COSY has 18 sextupole magnets.)

RUN PLAN

Benchmark ring properties for detailed spin tracking studies.
Use RF solenoid at depolarizing resonance to start characterization.

Measure horizontal polarization directly; measure second-order terms.

Using spin-tracking strategy, lengthen polarization lifetime using sextupoles.



Preliminary Results from January, 2011, Run
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Emittance measurements

fixed time
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Data from RF solenoid

Mon Jan 17 18:12:16 2011

Compared to previous What to expect for tune spread and
experiments, we now fixed frequency measurements...
have continuous
polarlmetry I Single runs, D =0,2,5,10,20
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What we got was different... = T“”l

For electron cooling
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If instead you model synchrotron oscillations...

you get this set of curves:

Sample Curves
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Renormalized Polarization

Calculation using 1000 Z(max) Values - Run 95

L

Renormalized Polarization

The main effect comes when particles
away from the bunch center pass the
RF solenoid out of phase, making it
less effective on average.



No clear second-order effects seen so far in data.

Next beam time request due shortly.

Renormalized Polarization

-0.3

transverse polarization magnitude

Horizontal Polarization

0.1

0.2

] ! |
0.3 04
Time (s)

0.5

0.6

0.7

Large horizontal
polarization possible
based on synchrotron
oscillation model. It
IS possible to turn off
RF solenoid at this
peak time.



