EDM2001,BNL 05/14/01

MUON g-2 IN SUGRA MODELS

R. Arnowitt B. Dutta B. Hu Y. Santoso

Ref: hep-ph/0102344 Texas A&M University

1. INTRODUCTION

Over the past 25 years the muon's anomalous magnetic moment

$$a_{\mu}\equiv rac{1}{2}(g_{\mu}-2)$$

has been measured with increasing accuracy. With the latest BNL data, one has the average

$$a_{\mu}^{EXP} = 116\,592\,023(151) \times 10^{-11}$$

[Czarnecki, Marciano]

One of the motivations of the BNL experiment was to test the Standard Model, and particularly the electroweak contribution:

$$a_{\mu}^{EW} = 152(4) \times 10^{-11}$$

and current data is at the edge of doing this.

However, there already appears to be a possible 2.6σ deviation from the expected Standard Model result

 $a_{\mu}^{EXP} - a_{\mu}^{SM} = 43(16) \times 10^{-10}$

[Brown etal, hep-ex/0102017]

A recent re-evaluation of the hadronic contribution to a_{μ}^{SM} by Narison gave a similar result $a_{\mu}^{EXP} - a_{\mu}^{SM} = 38(17) \times 10^{-10}$ [hep - ph/0103199]

(See also Marciano, Roberts, hep-ph/0105056)

These results suggest the presence of new physics. There are many possibilities. Supersymmetry offers a natural explanation for a deviation of a_{μ}^{EXP} from a_{μ}^{SM} , and we consider that here.

2. SUPERSYMMETRY

In supersymmetry there are the following particles which contribute to a_{μ} : $\tilde{\chi}_{i}^{\pm}$, i = 1, 2, chargino; $\tilde{\chi}_{k}^{0}$, k = 1...4, neutralinos $\tilde{\mu}_{i}$; i=1,2, smuons $\tilde{\nu}$; sneutrino and they contribute to a_{μ} from the diagrams

along with the Standard model diagrams

Global Supersymmetry

The initial calculations are done within the framework of global supersymmetry, 1980-1982 [Fayet, Grifols, Mendez, Ellis, Hagelin, Nanopoulos, Barbieri, Maianai].

However there exists a theorem that says for unbroken global supersymmetry

 $a_{\mu} = 0$ [Ferrara, Remiddi, 1974]

One needs broken supersymmetrey to get a non-zero result, and a phenomenologically satisfactory way of breaking global supersymmetry did not exist. Supergravity(SUGRA) Models

In local supersymmetry (supergravity) spontaneous breaking of SUSY occurs naturally and the first calculation of a_{μ}^{SUGRA} using SUGRA GUT models done were:

Kosower, Kraus, Sakai [1983]

Yuan, Arnowitt, Chamseddine, Nath [1984] (first complete calculation)

Here SUSY breaking triggers electroweak breaking so that

 $M_{\text{SUSY}} \simeq M_{\text{Electroweak}} \simeq <H > (246 \text{GeV})$

This sets scale of SUSY masses to be

 $\simeq 100 GeV - 1 TeV$

and determines scale of a_{μ}^{SUGRA} .

This mass scale is supported by the following:

(i) LEP data is consistent with grand unification at $M_G \simeq 2 \times 10^{16}$ GeV if SUSY masses lie $\simeq 100$ GeV-1 TeV [1990].

(ii) SUGRA models with R-parity invariance have dark matter candidate, the lightest neutralino, $\tilde{\chi}_1^0$, with astronomically observed amount of relic density when SUSY masses $\simeq 100$ GeV-1 TeV [1983]. We have considered a_{μ}^{SUGRA} for following SUGRA GUT models with R-parity invariance:

(i) Models with universal soft breaking at M_G (mSUGRA).

(ii) Models with non-universal soft breaking scalar masses at M_G in Higgs and 3rd generation squarks and sleptons.

(iii) Models with CP violating phases in soft breaking parameters at M_G -relate a_μ to electric dipole moments (EDMs).

Consider in this talk (i) and (ii) and (iii) will be discussed in Bhaskar Dutta's talk.

SUGRA models apply to wide range of phenomena; accelerator physics, dark matter (cosmology), a_{μ} . Information in one area influences predictions in another, and one needs to fit all data simultaneously to get the predictions of a model.

We use following constraints:

(i) Accelerator bounds: $m_h > 114$ GeV (LEP bound) $m_h > 120$ GeV

 $b
ightarrow s\gamma$ bounds: $1.8 imes 10^{-4} < BR(b
ightarrow s\gamma) < 4.5 imes 10^{-4}$

Tevatron and LEP SUSY mass bounds

(ii) Relic density bounds:

 $0.025 \leq \Omega_{ ilde{\chi}_1^0} h^2 \leq 0.25$

(iii) $a_{\mu}^{\sf SUGRA} \ 2\sigma$ bounds of BNL experiment: $11 imes 10^{-10} \le a_{\mu}^{\sf SUGRA} \le 75 imes 10^{-10}$

3. TECHNICAL DETAILS

In order to get accurate results, need to include a number of corrections:

(i) Relic density calculations coannihilation $\tilde{\tau}_1 - \tilde{\chi}_1^0$ effects large tan β [Arnowitt, Dutta, Santoso, hep-ph/0102181, Ellis etal hep-ph/0102098]

(ii) Large tan β NLO corrections to $b \rightarrow s\gamma$ decay [Degrassi etal., Carena etal.]

(iii) Loop corrections to m_b , m_{τ} (important for large tan β)

(iv) Two loop and pole mass corrections to m_h

Note: there still exists theoretical uncertainty in $m_h \simeq 3$ GeV and so assume here conservatively that theory overestimates

Do not assume Yukawa unification or proton decay as these depend on unknown physics beyond M_G .

4. mSUGRA MODEL

mSUGRA model depends on 4 parameters and 1 sign:

 m_0 : Scalar soft breaking mass at M_G

 $m_{1/2}$: Gaugino mass at $M_G~(m_{{ ilde\chi}^0_1}\simeq 0.4m_{1/2};$ $m_{{ ilde\chi}^\pm_1}\simeq 0.8m_{1/2})$

 A_0 : cubic soft breaking mass at M_G

 an_{eta} : < H_2 > / < H_1 > at the electroweak scale

 $\frac{|\mu|}{\mu}$: sign of Higgs mixing parameter ($W^{(2)} = \mu H_1 H_2$)

Parameter range: m_0 , $m_{1/2} \leq 1$ TeV ($M_{\widetilde{g}} \leq 2.5$ TeV) $2 \leq \tan \beta \leq 40$ $|A_0| \leq 4m_{1/2}$

We consider now the consequences of this model [Arnowitt, Dutta, Hu, Santoso, hep-ph/0102344, see also Ellis, Nanopoulos, Olive, hep-ph/0102331]. It is well known that a_{μ}^{SUGRA} increases with tan β [Kosower etal. 1983] and we will see that the data favors large tan β . For large tan β the chargino diagrams dominate, and for $M_W^2/\mu^2 << 1$ one finds

$$a_{\mu}^{\tilde{\chi}^{\pm}} \simeq \frac{\alpha}{4\pi} \frac{tan\beta}{sin^{2}\theta_{W}} \frac{m_{\mu}^{2}}{\tilde{m}_{2}\mu} [\frac{\mu^{2}}{\mu^{2} - \tilde{m}_{2}^{2}} F_{1} - \frac{\tilde{m}_{2}^{2}}{\mu^{2} - \tilde{m}_{2}^{2}} F_{2}]$$

where $F_i = F(m_{\tilde{\nu}}^2/m_{\tilde{\chi}_i^2})$ are positive form factors from loop integrals and $\tilde{m}_2 \simeq 0.8 m_{1/2}$.

Note for characteristic parameters, $m_{1/2} = 480$ GeV, $\mu = 690$ GeV, tan $\beta = 25$:

$$\frac{\alpha}{4\pi} \frac{\tan\beta}{\sin^2\theta_W} \frac{m_{\mu}^2}{\tilde{m}_2\mu} = 27 \times 10^{-10}$$

in the experimental region of BNL data.

[The neutralino diagram is small due to special cancellations (next page).]

Neutralino contribution for large ${\rm tan}\beta,$ small M_W^2/μ^2

$$\begin{split} a_{\mu}^{\tilde{\chi}^{0}} &\simeq \frac{\alpha}{4\pi} \frac{tan\beta}{cos^{2}\theta_{W}} \frac{m_{\mu}^{2}}{\tilde{m}_{2}\mu} [(\frac{\mu^{2}}{m_{\tilde{\mu}_{L}}^{2} - m_{\tilde{\mu}_{R}}^{2}} - \frac{\mu^{2}}{\mu^{2} - \tilde{m}_{1}^{2}})G_{11}] \\ &- (\frac{\mu^{2}}{m_{\tilde{\mu}_{L}}^{2} - m_{\tilde{\mu}_{R}}^{2}} - \frac{1}{2}\frac{\mu^{2}}{\mu^{2} - \tilde{m}_{1}^{2}})G_{21} \\ &- \frac{1}{2}\frac{\tilde{m}_{1}}{\tilde{m}_{2}}\frac{1}{\tan\theta_{W}^{2}}\frac{\mu^{2}}{\mu^{2} - \tilde{m}_{2}^{2}}G_{22} + \\ &\frac{1}{4}\frac{\tilde{m}_{1}}{\mu}\frac{1}{\tan\theta_{W}^{2}}\frac{\mu^{2}}{\mu^{2} - \tilde{m}_{2}^{2}}(1 + \frac{\tilde{m}_{2}}{\mu})G_{23} \\ \end{split}$$
where $c_{W}^{2} = cos^{2}\theta_{W}, \tilde{m}_{1} \simeq 0.4m_{1/2} \text{ and } G_{kj} = G(m_{\chi_{j}^{2}}/\tilde{\mu}_{k}^{2}) > 0. \end{split}$

For $m_{1/2} = 480$ GeV, $\mu = 690$ GeV, $\tan \beta = 25$:

$$\frac{\alpha}{4\pi} \frac{\tan\beta}{\cos^2\theta_W} \frac{m_\mu^2}{\tilde{m}_1\mu} = 16 \times 10^{-10}$$

but the 2nd term cancels \sim 75% of the first term and the last two terms are small.

We have that the sign of a_{μ} is the sign of μ [Lopez, Nanopoulos, Wang(1994); Chattopadhyay, Nath(1996)] and since experiment indicates a positive anomaly:

$\mu > 0$

(i) Good news for dark matter detection for if $\mu < 0$, cancellations can occur reducing cross section to $\sigma_{\tilde{\chi}_1^0 - p} < 10^{-12}$ pb which would be unaccessible to all future planned detctions. [Fig. $\mu < 0$]

(ii) Good news for theory for if a_{μ} had implied $\mu < 0$, the $b \rightarrow s\gamma$ constraint would have eliminated almost all the parameter space.

 $\sigma_{\tilde{\chi}_1^0-p}$ for mSUGRA for $\mu < 0$, $A_0 = 1500$ GeV, for $\tan\beta = 6$ (short dash), $\tan\beta = 8$ (dotted), $\tan\beta = 10$ (solid), $\tan\beta = 20$ (dotdash), $\tan\beta = 25$ (dashed). Note that the $\tan\beta = 6$ curve terminates at low $m_{1/2}$ due to the Higgs mass constraint, and the other curves terminate at low $m_{1/2}$ due to the $b \to s\gamma$ constraint.

Now accelerator constraints on m_h and $b \rightarrow s\gamma$ imply most of parameter space is in coannihilation region. Here m_0 is essentially determined by $m_{1/2}$ (for fixed A_0 , tan β) and is an increasing function of $m_{1/2}$. [Fig. $m_0 - m_{1/2}$ corridors]

Further, $a_{\mu}^{\rm SUGRA}$ decreases as $m_{1/2},\ m_0$ increase.

Hence:

(i) Lower bound on $a_{\mu}^{\rm SUGRA}$ determines upper bound on $m_{1/2}.$

Corridors in the $m_0 - m_{1/2}$ plane allowed by the relic density constraint for $\tan \beta = 40$, $m_h > 111$ GeV, $\mu > 0$ for $A_0 = 0, -2m_{1/2}, 4m_{1/2}$ from bottom to top. The curves terminate at low $m_{1/2}$ due to the $b \rightarrow s\gamma$ constraint except for the $A_0 = 4m_{1/2}$ which terminates due to the m_h constraint. The short lines through the allowed corridors represent the high $m_{1/2}$ termination due to the lower bound on a_{μ} .

(ii) But also, m_h increases as $m_{1/2}$ and $\tan \beta$ increase, and since a_{μ} lower bound fixes an upper bound on $m_{1/2}$, a lower bound on m_h implies a lower bound on $\tan \beta$.

At 95% C.L. find

 $m_h > 114$ GeV:

 $\tan \beta > 7$; $A_0 = 0$ $\tan \beta > 5$; $A_0 = -4m_{1/2}$

 $m_h > 120$ GeV:

 $\tan \beta > 15; A_0 = 0$ $\tan \beta > 10; A_0 = -4m_{1/2}$

Thus the combined constraints of

 m_h , $a_\mu^{\sf SUGRA}$, $b \to s\gamma$, relic density

have begun to strongly limit the parameter space and thus sharpen predictions:

(1)
$$a_{\mu}^{{
m SUGRA}}$$

Fig. $a_{\mu}^{{
m SUGRA}}-m_{1/2}$

One sees that mSUGRA can not accommodate large values of a_{μ}^{SUGRA} and if the final data gives an anomaly greater then $\simeq 50 \times 10^{-10}$, this would indicate breakdown of mSUGRA (posssible non-universal terms)

mSUGRA contribution to a_{μ} as a function of $m_{1/2}$ for $A_0 = 0$, $\mu > 0$, for tan $\beta = 10$, 30 and 40 (bottom to top) and $m_h > 111$ GeV.

(2) Accelerator Physics

The restricted parameter space allows sharpening of predictions of SUSY mass spectrum at accelerators. Consider

 $a_{\mu}^{\mathsf{SUGRA}} > 21 \times 10^{-10}; \ 90\% C.L.$

For $A_0 = 0$ we have $\tan \beta > 10$ and $m_{1/2} = (290 - 550)$ GeV; $m_0 = (70 - 300)$ GeV for $\tan \beta < 40$.

[Table-SUSY masses; 90% C.L.]

Accelerator reaches:

Tevatron RUN II: h (if $m_h \leq 130 GeV$) No trilepton signal. NLC (500 GeV): h, $\tilde{\tau}_1$ and \tilde{e}_1 (partial coverage) LHC: All SUSY particles. Table 1. Allowed ranges for SUSY masses in GeV for mSUGRA assuming 90% C. L. for a_{μ} for $A_0 = 0$. The lower value of $m_{\tilde{t}_1}$ can be reduced to 240 GeV by changing A_0 to $-4m_{1/2}$. The other masses are not sensitive to A_0 .

$ ilde{\chi}_1^0$	$ ilde{\chi}_1^\pm$	$ ilde{g}$	$ ilde{ au}_1$
(123-237)	(230-451)	(740-1350)	(134-264)

$ ilde{e}_1$	${ ilde u}_1$	${ ilde t}_1$
(145-366)	(660-1220)	(500-940)

(3) Darkmatter $(\tilde{\chi}_1^0)$ Detection

Governed by $\sigma_{\tilde{\chi}_1^0-p}$ which decreases with increasing m_o , $m_{1/2}$. Since $a_{\mu}^{\rm SUGRA}$ minimum has reduced upper bounds on $m_{1/2}$, this raises bounds on $\sigma_{\tilde{\chi}_1^0-p}$.

[Fig.
$$\sigma_{\tilde{\chi}_1^0-p}$$
, $\tan\beta = 40$, $\mu > 0$]
 $\sigma_{\tilde{\chi}_1^0-p} > 6 \times 10^{-10}$ pb; $\tan\beta = 40$

Reducing tan β should make $\sigma_{\tilde{\chi}_1^0-p}$ smaller, However the a_μ bound then eliminates more of high m_0 , $m_{1/2}$ compensating

[Fig.
$$\sigma_{\tilde{\chi}_1^0-p}$$
, $\tan\beta = 10$, $\mu > 0$]
 $\sigma_{\tilde{\chi}_1^0-p} > 4 \times 10^{-10}$ pb; $\tan\beta = 10$

Almost all of mSUGRA parameter space should now be accessible to future dark matter detectors.

 $\sigma_{\tilde{\chi}^0_1-p}$ as a function of the neutralino mass $m_{\tilde{\chi}^0_1}$ for tan $\beta=40,~\mu>0$ for $A_0=-2m_{1/2}, 4m_{1/2}, 0$ from bottom to top. The curves terminate at small $m_{\tilde{\chi}^0_1}$ due to the $b\to s\gamma$ constraint for $A_0=0$ and $-2m_{1/2}$ and due to the Higgs mass bound $(m_h>111~{\rm GeV})$ for $A_0=4m_{1/2}$. The curves terminate at large $m_{\tilde{\chi}^0_1}$ due to the lower bound on a_μ .

 $\sigma_{\tilde{\chi}_1^0-p}$ as a function of $m_{\tilde{\chi}_1^0}$ for $\tan\beta = 10$, $\mu > 0$, $m_h > 111$ GeV for $A_0 = 0$ (upper curve), $A_0 = -4m_{1/2}$ (lower curve). The termination at low $m_{\tilde{\chi}_1^0}$ is due to the m_h bound for $A_0 = 0$, and the $b \to s\gamma$ bound for $A_0 = -4m_{1/2}$. The termination at high $m_{\tilde{\chi}_1^0}$ is due to the lower bound on a_{μ} .

5. NON-UNIVERSAL MODELS

Parameterize non-universal Higgs and 3rd generation soft breaking masses:

$$\begin{split} m_{H_1}^2 &= m_0^2(1+\delta_1); \quad m_{H_2}^2 = m_0^2(1+\delta_2); \\ m_{q_L}^2 &= m_0^2(1+\delta_3); \quad m_{t_R}^2 = m_0^2(1+\delta_4); \\ m_{\tau_R}^2 &= m_0^2(1+\delta_5); \\ m_{b_R}^2 &= m_0^2(1+\delta_6); \quad m_{l_L}^2 = m_0^2(1+\delta_7). \end{split}$$
 with

$$-1 < \delta_i < +1$$

 μ^2 governs much of the physics ($t \equiv \tan \beta$):

$$\mu^{2} = \frac{t^{2}}{t^{2} - 1} \left[\left(\frac{1 - 3D_{0}}{2} + \frac{1}{t^{2}} \right) + \frac{1 - D_{0}}{2} \left(\delta_{3} + \delta_{4} \right) - \frac{1 + D_{0}}{2} \delta_{2} + \frac{\delta_{1}}{t^{2}} \right] m_{0}^{2} + \frac{1 + \delta_{4}}{2} m_{0}^{2} + \frac{\delta_{4}}{t^{2}} m_{0}^{2} + \frac{\delta_{$$

universal parts + loop corrections.

where D_0 is small i.e. $D_0 \simeq 0.25$. Universal m_0 part not large, and so μ^2 can be raised or lowered by δ_i corrections.

Most interesting new effects occur if μ^2 is low-ered for then

(i) Open new $\tilde{\chi}_1^0$ annihilation channel through s-channel Z^0 -pole.

(ii) Lowering
$$\mu^2$$
 increases $\sigma_{\tilde{\chi}^0_1-p}$

(1) $\delta_2=1$; all other $\delta_i=0$ [Fig: Allowed $m_0 - m_{1/2}$ region for $\delta_2 = 1$] [Fig: $\sigma_{\tilde{\chi}_1^0-p}$ for $\delta_2=1$] We see Z-channel gives large $\sigma_{\tilde{\chi}_1^0-p}$, testable for CDMS in Soudan mine.

(2)
$$\delta_{10}(=\delta_3=\delta_4=\delta_5)=-0.7$$

The $\tilde{\tau}_1 - \tilde{\chi}_1^0$ corridor moved up in m_0 [Fig. allowed $\sigma_{\tilde{\chi}_1^0 - p}$ for $\delta_{10} = -0.7$] Again Z-channel gives rise to large cross sections.

Effect of a nonuniversal Higgs soft breaking mass enhancing the Z^0 s-channel pole contribution in the early universe annihilation, for the case of $\delta_2 = 1$, $\tan \beta = 40$, $A_0 = m_{1/2}$, $\mu > 0$. The lower band is the usual $\tilde{\tau}_1$ coannihilation region. The upper band is an additional region satisfying the relic density constraint arising from increased annihilation via the Z^0 pole due to the decrease in μ^2 increasing the higgsino content of the neutralino.

 $\sigma_{\tilde{\chi}_1^0-p}$ as a function of $m_{1/2}$ $(m_{\tilde{\chi}_1^0} \cong 0.4m_{1/2})$ for tan $\beta = 40$, $\mu > 0$, $m_h > 111$ GeV, $A_0 = m_{1/2}$ for $\delta_2 = 1$. The lower curve is for the $\tilde{\tau}_1 - \tilde{\chi}_1^0$ co-annihilation channel, and the dashed band is for the Z s-channel annihilation allowed by non-universal soft breaking. The curves terminate at low $m_{1/2}$ due to the $b \to s\gamma$ constraint. The vertical lines show the termination at high $m_{1/2}$ due to the lower bound on a_{μ} .

Allowed regions in the $m_0 - m_{1/2}$ plane for the case tan $\beta = 40$, $A_0 = m_{1/2}$, $\mu > 0$. The bottom curve is the mSUGRA $\tilde{\tau}_1$ coannihilation band of (shown for reference). The middle band is the actual $\tilde{\tau}_1$ coannihilation band when $\delta_{10} = -0.7$. The top band is an additional allowed region due to the enhancement of the Z^0 s-channel annihilation arising from the nonuniversality lowering the value of μ^2 and hence raising the higgsino content of the neutralino. For $m_{1/2} \stackrel{<}{\sim} 500$ GeV, the two bands overlap.

 $\sigma_{\tilde{\chi}_1^0-p}$ as a function of $m_{1/2}$ for $\delta_{10} = -0.7$ for tan $\beta = 40$, $\mu > 0$, $A_0 = m_{1/2}$ and $m_h > 111$ GeV. The lower curve is for the bottom of the $\tilde{\tau}_1 - \tilde{\chi}_1^0$ co-annihilation corridor, and the upper curve is for the top of the Z channel band. The termination at low $m_{1/2}$ is due to the $b \rightarrow s\gamma$ constraint, and the vertical lines are the upper bound on $m_{1/2}$ due to the lower bound of a_{μ} .

6. CONCLUSIONS

We have examined the 2.6 σ deviation of a_{μ} from the Standard Model within the framework of SUGRA model with R-parity invariance.

The combined experimental constraints from a_{μ} , m_h , $b \rightarrow s\gamma$, and darkmatter $(\tilde{\chi}_1^0)$ relic density interact strongly and allow one to greatly sharpen theoretical predictions.

For mSUGRA: (i) Lower bound of a_{μ} implies $m_{1/2} < 550(790)$ at 90%(95%) C.L.; tan $\beta < 40$

(ii) $m_h > 114$ GeV: $\tan \beta > 7(5)$ for $A_0 = 0(-4m_{1/2})$ $m_h > 120$ GeV: $\tan \beta > 15(10)$ for $A_0 = 0(-4m_{1/2})$ (iii) Accelerator reach (90% C.L.) : Tevatron RUN II: h (for $m_h < 130$ GeV) NLC (500 GeV): $\tilde{\tau}_1$, h, \tilde{e}_1 (part of parameter space) LHC: All SUSY particles.

(iv) Future planned dark matter detectors should be able to sample almost all of SUSY parameter space.

(v) mSUGRA implies $a_{\mu}^{\text{SUGRA}} \leq 50 \times 10^{-10}$; for tan $\beta \leq 40$.

Non-universal SUGRA models allow new regions of parameter space (early universe annihilation of $\tilde{\chi}_1^0$ through s-channel Z-poles) leading to $\sigma_{\tilde{\chi}_1^0-p}$ accessible to current darkmatter detectors.

Further BNL a_{μ} data should reduce current errors, allowing more precise predictions of SUGRA model.