EDM2001,BNL 05/14/01

ELECTRIC DIPOLE MOMENTS FROM SOFT SUSY PHASES And The MUON g - 2

R. ArnowittB. DuttaY. Santoso

Texas A&M University

- Supersymmetry models contain new sources of CP violation phases.
- These phases can contribute to the electric dipole moments of electron, neutron etc. We have strict experimental limits on electron and neutron EDMs: $|d_e| < 4.3 \times 10^{-27}$ ecm and $|d_n| < 6.3 \times 10^{-26}$ ecm. [The SM contribution is very small.]
- Phase of O(1) size can predict large EDM, which can be larger than the experimental limits.

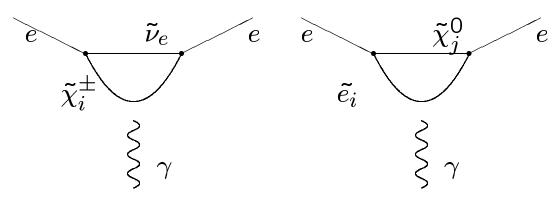
Conventionally,

- The phases are assumed to be small $O(10^{-2} 10^{-3})$.
- The masses are very heavy (several TeV).

Recent proposal:

The EDM constraint can be satisfied by tuning the cancellation among different Feynman diagrams which contribute to the calculation of EDM [Ibrahim, Nath '98, Falk, Olive '98, Brhlik, Good, Kane '99]. For example,

Electron EDM:



- These diagrams can cancel each other and satisfy the EDM constraint.
- We can have large SUSY phases in the theory even in the regions of smaller sparticle masses.

In this talk:

- I will discuss the cancellation mechanism for EDM in the mSUGRA model with a generalized phase structure. I will show that the cancellation is fine tuned at the GUT scale for certain regions of parameter space.
- I will discuss the fine tuning problem in the parameter space allowed by the following constraints:

(i) The recent result of $a_{\mu} (\equiv (g-2)/2)$ of muon: This has restricted the SUSY parameter space. The calculation of a_{μ}^{mSUGRA} and EDM involve the same set of diagrams. The former however is related to the real part.

(ii) Cosmological constraint : The SUSY model, I dicuss, conserves R parity and thus the lightest supersymmetric particle can be a candidate for cold dark matter. The parameter space is restricted by the relic density constraint .

(iii)Recent accelerator and rare decay bounds: The latest bound on Higgs mass and the CLEO bound on $b \rightarrow s\gamma$ put important constraint in the model space.

Model Parameters:

- Supergravity GUT models with universal soft breaking of supersymmetry, mSUGRA, depend upon five parameters at the GUT scale:
- $m_{1/2}$ (the universal gaugino mass),
- A_0 (the cubic soft breaking mass),
- B_0 (the quadratic soft breaking mass),
- μ_0 (the Higgs mixing parameter) and
- m_0 (the universal squark and slepton mass).
- Electroweak symmetry is broken radiatively.
- Magnitudes of μ and B are determined from the electroweak symmetry breaking conditions.

We assume a general phase structure at the GUT scale i.e.

- \tilde{m}_1 , \tilde{m}_2 , \tilde{m}_3 , A_0 , B_0 and μ are complex at the GUT scale.
- Among these phases, we rotate away one of the gaugino phases.
- Finally, we have the following phases at the GUT scale:
- $|\tilde{m}_1|e^{i\phi_1}$, $|\tilde{m}_3|e^{i\phi_3}$, $|A_0|e^{i\phi_{0A}}$, $|B_0|e^{i\theta_{0B}}$, $|\mu_0|e^{i\theta_{\mu}}$.

• The RGEs relate these GUT scale parameters to the weak scale values.

For example:

$$\tilde{m}_i = \frac{\alpha_i}{\alpha_G} \tilde{m}_{1/2}$$

In the low and intermediate $tan\beta$ region, we can solve the RGEs to obtain:

$$A_t(t) = D_0 A_0 + \sum \Phi_i |m_{1/2i}| e^{i\phi_i}$$

the Φ_i are real and O(1), $D_0 \simeq 0.25$,

$$B = B_0 - \frac{1}{2}(1 - D_0)A_0 - \sum \Phi'_i |m_{1/2i}| e^{i\phi_i}$$

[Accomando, Arnowitt, Dutta'99]

• Superpartner masses: The chargino and the neutralino mass matrices are:

$$M_{\chi^{\pm}} = \begin{pmatrix} \tilde{m}_2 & \sqrt{2}M_W sin\beta \\ \sqrt{2}M_W cos\beta & |\mu|e^{i\theta} \end{pmatrix}$$

$$M_{\chi^0} = \begin{pmatrix} |\tilde{m}_1|e^{i\phi_1} & 0 & a & b\\ 0 & \tilde{m}_2 & c & d\\ a & c & 0 & -|\mu|e^{i\theta}\\ b & d & -|\mu|e^{i\theta} & 0 \end{pmatrix}$$

where $a = -M_Z sin\theta_W cos\beta$, $b = M_Z sin\theta_W sin\beta$,

 $c = -cot\theta_W a$, $d = -cot\theta_W b$, $tan\beta = v_2/v_1$ $(v_{1,2} = |\langle H_{1,2} \rangle|)$ and θ_W is the weak mixing angle.

• The phase θ is given by

$$\theta = \epsilon_1 + \epsilon_2 + \theta_\mu$$

where at the electroweak scale, $< H_{1,2} > = v_{1,2}e^{i\epsilon_{1,2}}$, and $\mu = |\mu|e^{i\theta_{\mu}}$.

• $\tan \beta$ is a free parameter.

• The slepton mass matrix can be written as

$$\tilde{m}_l^2 = \begin{pmatrix} m_{l_{LL}}^2 & m_{l_{LR}}^2 \\ m_{l_{RL}}^2 & m_{l_{RR}}^2 \end{pmatrix}$$
$$m_{l_{LR}}^2 = m_l (A_l e^{-i\phi_{A_l}} - |\mu| e^{i\theta} \tan \beta)$$

where m_l is the lepton mass.

 $m_{l_{LL}}^2 = m_L^2 + m_l^2 - 1/2(2\cos^2\theta_W - 1)M_Z^2\cos 2\beta$ $m_{l_{RR}}^2 = m_R^2 + m_l^2 - \sin^2\theta_W M_Z^2\cos 2\beta$

Electroweak symmetry breaking and relation among phases:

• The condition for electroweak symmetry breaking is obtained by minimizing the effective potential V_{eff} with respect to v_1 , ϵ_1 , v_2 and ϵ_2 . The Higgs sector of V_{eff} is

 $V_{eff} = m_1^2 v_1^2 + m_2^2 v_2^2 - 2|B\mu| \cos(\theta + \theta_B) v_1 v_2$

$$+\frac{g_2^2}{8}(v_1^2+v_2^2)^2+\frac{g_1^2}{8}(v_2^2-v_1^2)^2+V_1$$

where V_1 is the one loop contribution, $m_i^2=\mu^2+m_{H_i}^2$ and $m_{H_{1,2}}^2$ are the $H_{1,2}$ running masses.

We now minimize V_{eff} in order to determine the Higgs VEVs i.e. $v_1, v_2, \epsilon_1, \epsilon_2$.

In the tree approximation, the extrema equations
all (a) = 0 wield 2 Bulgin(0 + 0) = 0

 $\partial V_{eff} / \partial \epsilon_i = 0$ yield $2|B\mu|sin(\theta + \theta_B) = 0$. Hence the minimum of V_{eff} requires

 $\theta = -\theta_B$

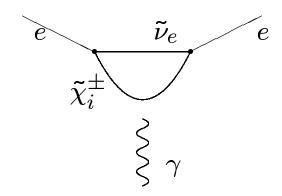
At the one loop level, one gets a correction of the form

 $\theta = -\theta_B + f_1(-\theta_B + \phi_{A_q}, -\theta_B + \phi_{A_l})$ where f_1 is the one loop correction with θ approximated by its tree value [Demir'99, Pilaftsis, Wagner'99].

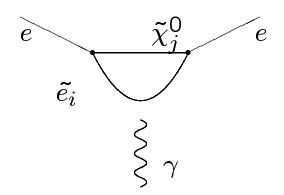
• This correction can become significant for large $tan\beta$.

In our analysis we use $\theta = \theta_{\mu}$.

EDM calculation:



 $\propto \sin \theta_{\mu}$

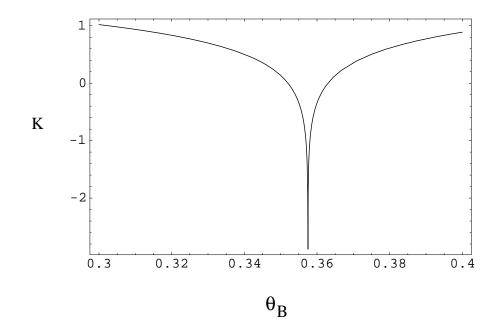


 $\propto \sin(\theta_{\mu} + \phi_{1})$ $\propto \sin(\phi_{A} + \phi_{1})$ $\propto \sin(\theta_{\mu} + \phi_{A})$

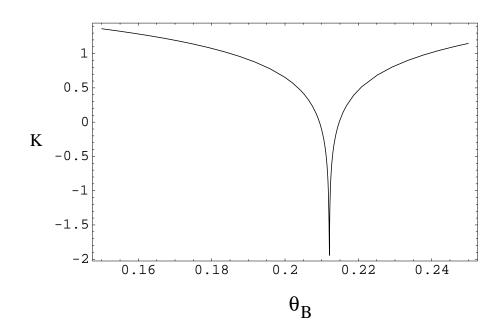
- The above diagrams cancel with each other and hence large phases can be allowed.
- The condition we get (assuming $\phi_A = 0$): $d_{\tilde{\chi}_1^0} \sin(\theta_\mu + \phi_1) + d_{\tilde{\chi}_1^0 + \tilde{\chi}_1^\pm} \sin(\theta_\mu) = 0$ $\Rightarrow \tan \theta_B = \frac{\epsilon \sin \phi_1}{1 + \epsilon \cos \phi_1}$

where $\epsilon = \frac{d_{\tilde{\chi}_1^0}}{d_{\tilde{\chi}_1^0 + \tilde{\chi}_1^{\pm}}}$. $d_{\tilde{\chi}_1^0 + \tilde{\chi}_1^{\pm}}$ contains diagrams involving chargino and neutralino and $d_{\tilde{\chi}_1^0}$ contains diagrams involving neutralino only. Typically $\epsilon \simeq 0.3$.

• This is the situation where we have exact cancellation and electron EDM is 0. But the experimental upper bound generates a spread of θ_B which depends on the experimental bound on EDM.



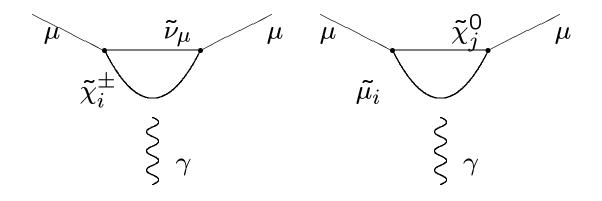
 $K = log_{10} \mid \frac{d_e}{(d_e)_{exp}} \mid vs \ \theta_B$ for $tan \beta = 15$, $m_0 = 100 \text{ GeV}, \ m_{1/2} = 400 \text{ GeV}, \ \phi_1 = 0.9$ and $A_0 = 0$.



 $K = log_{10} \mid \frac{d_e}{(d_e)_{exp}} \mid vs \ \theta_B$ for $tan \beta = 40$, $m_0 = 210 \text{ GeV}, \ m_{1/2} = 400 \text{ GeV}, \ \phi_1 = 0.9$ and $A_0 = 0$.

• The magnitude of m_0 being different compared to $\tan \beta = 15$ case is because of dark matter constraint.

Calculation of a_{μ} :



- The real part of the diagrams contribute in this case.
- BNL 821 experiment gives a 2.6σ deviation from standard model[Brown, hep-ex/0102017]

$$a_{\mu}^{EXP} - a_{\mu}^{SM} =$$
 43(16) × 10⁻¹⁰

- This deviation can be explained in the framework of SUGRA GUT model. [Kosower, Krauss, Sakai'83, Yuan, Arnowitt, Chamseddine, Nath '84]
- In mSUGRA model, the dominant contribution is given by:

$$\frac{a_{\mu}}{4\pi} \simeq \frac{\alpha}{4\pi} \frac{\tan\beta}{\sin^2\theta_W} \frac{m_{\mu}^2}{|\tilde{m}_2||\mu|} A[\cos\theta_{\mu} + \epsilon\cos(\theta_{\mu} + \phi_1)]$$

A is expressed in terms of the ratio of masses and is O(1).

• Using $\tan \theta_B = \frac{\epsilon \sin \phi_1}{1 + \epsilon \cos \phi_1}$ (where EDM is 0), we find

$$\begin{split} a_{\mu} &\simeq \frac{\alpha}{4\pi \sin^2 \theta_W} \frac{\tan \beta}{|\tilde{m}_2||\mu|} A \sqrt{(1 + 2\epsilon \cos \phi_1 + \epsilon^2)} \\ \text{for } \phi_1 &= 0, \text{ we have } a_{\mu} \propto (1 + \epsilon), \\ \text{for } \phi_1 &= \pi, \text{ we have } a_{\mu} \propto (1 - \epsilon). \end{split}$$

Calculational details:

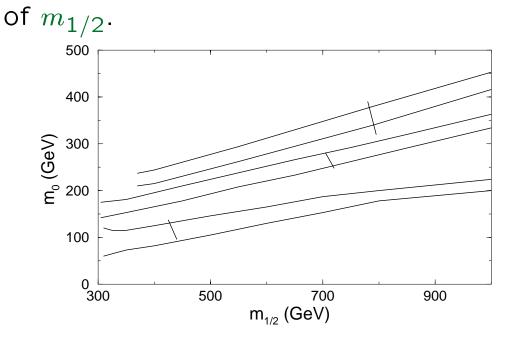
- We use the Higgs mass constraint : $m_h > 111$ GeV. This bound puts constraint on $m_{1/2}$ e.g. for tan $\beta = 10$, $m_{1/2} > 300$ GeV.
- We use the $b \rightarrow s\gamma$ constraint. We use NLO contributions to SUSY and charged Higgs diagrams[Degrassi etal.'00, Ciuchini etal.'00]
- We use SUSY one loop correction to bmass. This correction is important for large tanβ. [Rattazzi, Sarid' 94; Carena, Wagner, Pokorski'94].
 We do not demand b - τ unification
- In our calculation $m_{\tilde{\chi}^0_1}$ is the lightest SUSY particle. We use the dark matter constraint in the parameter space, i.e. $0.02 < \Omega_{\tilde{\chi}^0_1} h^2 < 0.25$

Dark matter constraint (in detail)

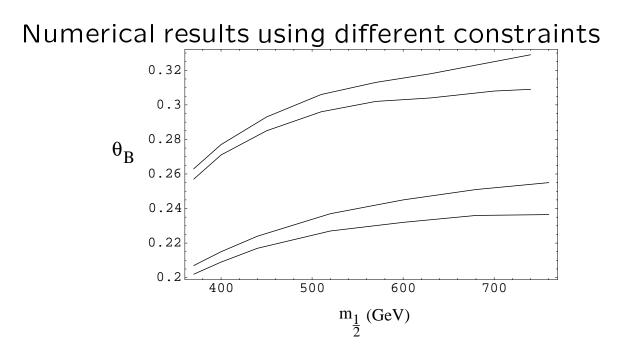
•
$$\Omega_{\chi^0_1} h^2 \propto rac{1}{<\sigma v>}$$

- As m_0 and $m_{1/2}$ increase σ decreases and $\Omega_{\chi^0_1}h^2$ increases. The new LEP limit on the Higgs mass and the $b\to s\gamma$ constraint require larger values of $m_{1/2}$.
- However, it is possible to decrease $\Omega_{\chi_1^0}h^2$ by choosing the mass of one of the scalar particles to be close to the neutralino and thereby giving rise to coannihilation in the early universe.
- In mSUGRA model the lighter stau mass comes close to the neutralino mass naturally. When this happens we find the relic density in the desired range. [Arnowitt, Dutta, Santoso'01; Falk, Ellis, Olive, Srednicki'01]

• In the coannihilation corridors m_0 gets fixed within a narrow window for a given value

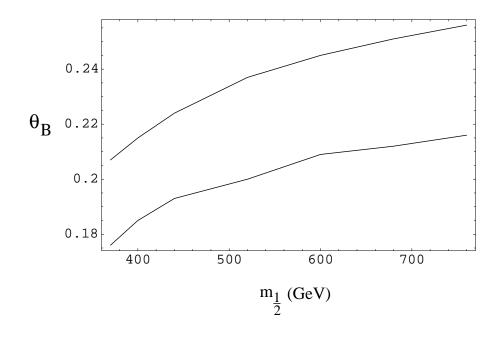


Corridors in the $m_0 - m_{1/2}$ plane allowed by the relic density constraint for $\tan \beta = 10$, 30 and 40 (from bottom to top), $m_h > 111$ GeV, $\mu > 0$ for $A_0 = 0$. The slanted lines indicate the bound from a_{μ} .

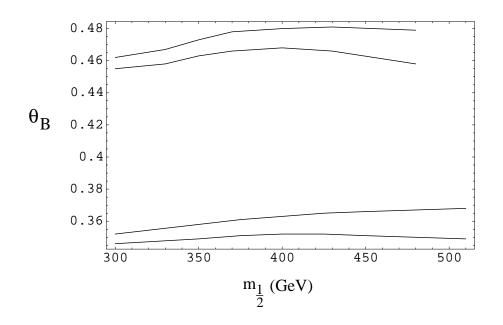


 θ_B vs $m_{1/2}$ for tan $\beta = 40$ and $A_0 = 0$. The upper region is for $\phi_1 = 1.2$ and the lower region is for $\phi_1 = 0.9$. The corridors appear due to the EDM constraint.

- Since we are in the coannihilation region, roughly $m_{\tilde{\tau}_1} m_{\tilde{\chi}_1^0} \leq 25$ GeV. We choose m_0 for a fixed $m_{\tilde{\tau}_1} m_{\tilde{\chi}_1^0}$ value.
- The regions terminate at low $m_{1/2}$ is due to $b \rightarrow s\gamma$ bound and the termination at high $m_{1/2}$ is due to the lower bound on a_{μ} .

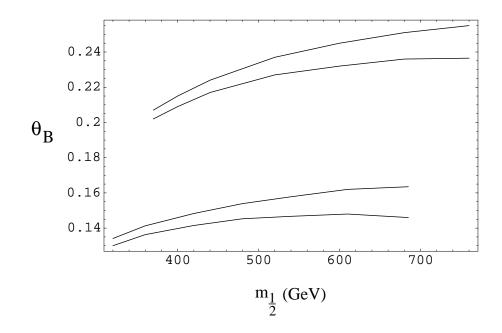


 θ_B vs $m_{1/2}$ for $\tan \beta = 40$, $A_0 = 0$ and $\phi_1 = 0.9$. The maximum and the minimum values of phases correspond to the entire range of $\Omega_{\tilde{\chi}_1^0} h^2$ i.e. 0.02 - 0.25.



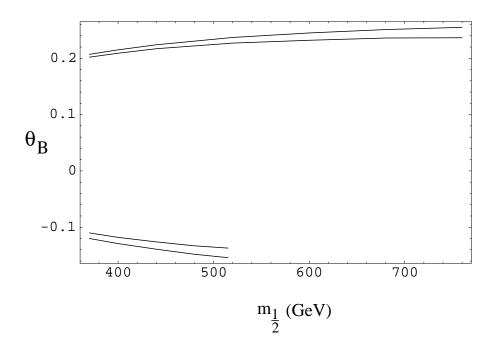
 θ_B vs $m_{1/2}$ for tan $\beta = 15$ and $A_0 = 0$. The upper region is for $\phi_1 = 1.2$ and the lower region is for $\phi_1 = 0.9$.

- The regions terminate at low $m_{1/2}$ is due to the Higgs mass constraint.
- θ_B is larger in this case compared to the tan $\beta = 40$ case.



 θ_B vs $m_{1/2}$ for tan $\beta = 40$. The upper region is for $A_0 = 0$ and the lower region is for $A_0 = 2m_{1/2}$ and $\phi_{0A} = 0.5$.

• $A_0 = 2m_{1/2}$ region requires larger m_0 to satisfy the dark matter constraint.



 θ_B vs $m_{1/2}$ for tan $\beta = 40$ and $A_0 = 0$. The upper region is for $\phi_1 = 0.9$ and the lower region is for $\phi_1 = 3.4$.

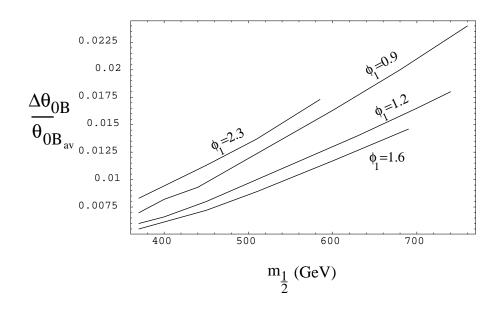
Fine tuning of phases at the GUT scale:

- $\frac{\Delta \theta_{\mu}}{\theta_{\mu_{av}}} > 1\%$ for most of the parameter space. [where $\Delta \theta_{\mu}$ is the regions allowed in the pervious figures by EDM]
- However, $\frac{\Delta \theta_{0B}}{\theta_{0Bav}} < 1\%$ for larger values of ϕ_1 and lower values of $m_{1/2}$.

 $\Delta \theta_{0B}$ is the allowed range of θ_{0B} at the GUT scale and is smaller compared to the $\Delta \theta_B$.

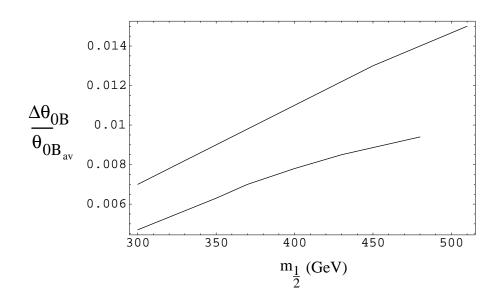
This is because $\Delta \theta_{0B} \simeq \frac{|B|}{|B_0|} \Delta \theta_B$ and $|B_0| > |B|$.

• $\frac{\Delta \theta_{\phi_1}}{\phi_{1av}} > 1\%$ for most of the parameter space.



 $\frac{\Delta \theta_{0B}}{\theta_{0Bav}}$ vs $m_{1/2}$ for tan $\beta = 40$, $A_0 = 0$.

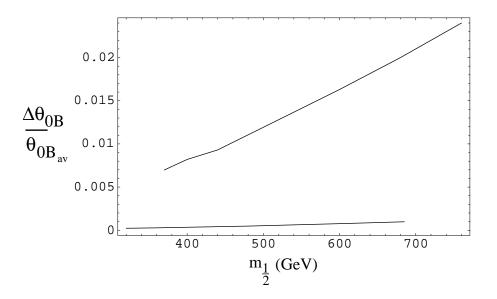
• If we require $\frac{\Delta\theta_{0B}}{\theta_{0Bav}}>1\%$, the lower values of $m_{1/2}$ are disfavored.



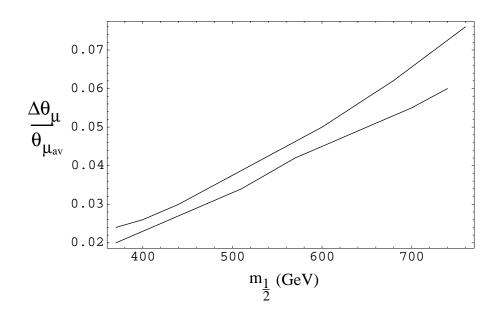
 $\frac{\Delta \theta_{0B}}{\theta_{0Bav}}$ vs $m_{1/2}$ for tan $\beta = 15$, $A_0 = 0$.

The upper line is for $\phi_1 = 0.9$ and the lower line is for $\phi_1 = 1.2$.

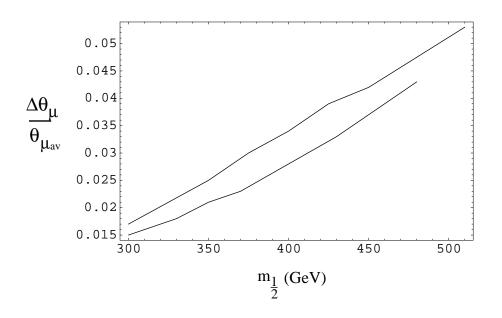
- If we require $\frac{\Delta \theta_{0B}}{\theta_{0Bav}} > 1\%$, $\phi_1 > 1.2$ is disfavored .



 $\frac{\Delta \theta_{0B}}{\theta_{0Bav}}$ vs $m_{1/2}$ for $\tan\beta = 40$ and $\phi_1 = 0.9$. The upper line is for $A_0 = 0$ and the lower line is for $A_0 = 2m_{1/2}$ and $\phi_{0A} = 0.5$.

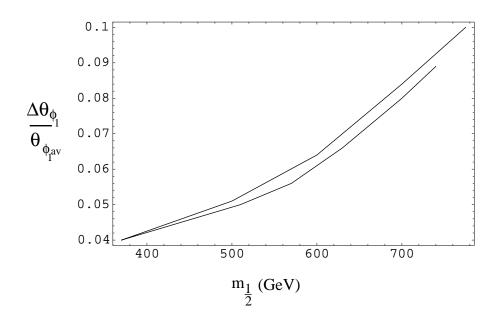


The upper line is for $\phi_1 = 0.9$ and the lower line is for $\phi_1 = 1.2$.



 $\frac{\Delta \theta_{\mu}}{\theta_{\mu_{av}}} ~\mathrm{vs}~ m_{1/2}$ for $\tan\beta = 15$, $A_0 = 0$.

The upper line is for $\phi_1 = 0.9$ and the lower line is for $\phi_1 = 1.2$.



The upper line is for $\theta_{\mu}=0.2$ and the lower line is for $\theta_{\mu}=0.3$.

Conclusion:

- The phases allowed by EDM of electron are not necessarily very small. This happens due to some cancellation among the contributing diagrams.
- This cancellation is necessary for the entire region of the parameter space allowed by a_{μ} in order to allow large CP violating phases.
- However, the phase of *B* can become fine tuned at the GUT scale in certain regions of the parameter space.

If fine tuning less than 1% is excluded then for tan $\beta = 15$, $\phi_1 \leq 1.2$ in the parameter space allowed by a_{μ} bound. For the allowed values of ϕ_1 , the lower values of $m_{1/2}$ are disfavored. For example, for $\phi_1 = 0.9$, $m_{1/2} < 380$ GeV is disfavored.

The large tan β scenarios are better since a_{μ} allows higher values of m_0 and $m_{1/2}$. The lower values of $m_{1/2}$ are again disfavored and depend on ϕ_1 , for $\phi_1 = 0.9$, $m_{1/2} < 470$ GeV is disfavored. J.L. Lopez, D.V. Nanopoulos and X. Wang, PRD 49, 366, 1994; U. Chattopadhyay and P. Nath, PRD 53, 1648, 1996; T. Moroi, PRD 53, 6565, 1996; T. Blazek, hepph/9912460; T. Ibrahim and P. Nath, Phys.Rev.D6 095008, 2000; PRD 62,015004, 2000; M. Drees, Y. G. Kim, T. Kobayashi and M. Nojiri, hep-ph/0011359.

J. Feng and K. Matchev, Phys.Rev.Lett.86, 3480, 2001; U. Chattopadhyay and P. Nath, hep-ph/0102157; S. Komine, T. Moroi and M. Yamaguchi, Phys.Lett.B506, 93,2001; hep-ph/0103182; T. Ibrahim, U. Chattopadhyay and P. Nath, hep-ph/0102324; J. Ellis, D.V. Nanopoulos, K. A. Olive, hepph/0102331; R. Arnowitt, B. Dutta, B. Hu and Y. Santoso, Phys.Lett.B505, 177, 2001; H. Baer, C. Balazs, J. Ferrandis and X. Tata, hep-ph/0103280; F. Richard, hepph/0104106