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Combined cycle
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Figure 3 — 35% renewables have a minor impact on other generators during an easy week
in July, 2006. WestConnect dispatch - no renewables (left) and 30% case (right)
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Figure 4 - 35% renewables have a significant Impact on other generation during the

hardest week of the three years (mid-April 2006). WestConnect dispatch - no renewables (left)

and 30% case (right)
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Why does variability matter?

Integration Costs of Solar Dramatically
Impacted By Geographic Diversity, and May

Be Less than for Comparably Sited Wind

Increased Reserve Costs (S/MWh)

Time Scale

1-min Deltas
(Regulation)

Reserves Constant Throughout

Year

Reseryes Change
with Fosition of Sun

Solar

Wind = Solar

5 Sites

25 Site Grid
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(Load Following)

60-min Deltas
iReszrve Margin
for Hour-ahead
Forecast Error)

Example cosis
based on 10%
penetration of
solar or wind on
capacity basis

Why are solar
costs lower?

Reserves can be
held in proportion
to clear-sky
insolation for solar

Heserves are held
at the same level
all year for wind

Total Cost

Source: Andrew Mills, Lawrence Berkeley National Lab




The plight of Solar Data

National Solar Radiation Database (NSRDB) Stations
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Variability of Solar Irradiance

- Variability of Irradiance
- Variability of spatially averaged irradiance
-Variability of PV power plant

Further Reading: Stein J., 4" International DER Conference,
http://www.4thintegrationconference.com/downloads/Session%205-
5 Sandia%20National%20Labs Stein.pdf; Mills, A. et al. LBNL-2855E



http://www.4thintegrationconference.com/downloads/Session 5-5_Sandia National Labs_Stein.pdf
http://www.4thintegrationconference.com/downloads/Session 5-5_Sandia National Labs_Stein.pdf
http://www.4thintegrationconference.com/downloads/Session 5-5_Sandia National Labs_Stein.pdf

PV Systems in San Diego County and UC
ariapility

San Diego: Testbed for Solar V
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Average 1-sec irradiance ramp event look like?
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GHI [W m?2]

Spatial Averaging Effect of PV Array

* Irradiance measured by point sensor = spatial
averaging occurs for PV array

PV size A2 < shadow / clear size: decrease of ramp rate, but same amplitude

PV size A2 > shadow\/ clear size: decrease of ramp rate and amplitude
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Effect of PV Array Size on Ramp Rates

Simulating different size PV plants through moving averages at
timescale t. t ~ A2 / Cloud speed U = DCY2 / (n¥2 U), where DC:
power rating in kW.

10 MW plant,atn=0.1, U=5ms?t:t=63sec
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Wavelets — A new tool to quantify
variability
* Fit shape to clear sky index data

* Change duration and magnitude of increase to
determine best fit
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clearness index and wavelet perlodograms for EBUZ and AVG 22-Aug-2009
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Reduction in Variability at 6 sites vs 1 site:
Fluctuation Power Index

> Reduction in variability
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7;Timescale of variability (t)
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- — ramp rates: if [PV size / cloud
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~ smooth out ramps: Pxt
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Other Solar Variability Research Needs

* Validated methods to estimate and predict single and
aggregated PV plant output profiles for historical periods
with minimal ground based measurements

— lIrradiance at a point to 2D irradiance
— 2D irradiance to PV output (Kuszmaul et al., 2010)

* High time resolution (minute or less) = downscaling in
time and space

Why?

* Link average solar forecasts to high frequency ramp rate
forecasts estimates

* Provide inputs to grid integration studies that can help
determine how large amounts of PV can be accommodated
most cost-effectively

Stein, 2010



Solar Forecasting

Total Sky Imagery and Cloud Tracking



Solar Forecasting Benefits

Use of state-of-art wind and solar forecasts reduces
WECC operating costs by up to 14%, or S5 billion/yr, as
compared to not using wind or solar forecasts for
day-ahead unit commitment ($S12-20/MWh of wind and
solar generation). WECC operating costs could be reduced
by an additional $500 million/yr in the 30% case if wind
and solar forecasts were perfect.
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Total Sky Imager: Cloud Detection
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Final Cloud Detection

2010-03-10 15:53:00.000 RER > 0.6 RE ratio

RER > Sunshine parameter = 0.83343

sunshine parameter



Cloud Motion Vectors

* Apply cross-correlation method to coordinate-transformed
sky image.

Retain only vectors for which high correlation is obtained
 Assume homogeneous cloud velocity
2009-10-04 16:26:30.000

U: -5.8532m/s V: 0.54762m/s

. Crop image




Global Horizontal

Irradiance [W/ m2]

Forecast results
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Table 5 Percentage co-occurrence of clear and cloudy conditions for measured/nowcast.

CLR/CLR CLR/CLD CLD/CLR CLD/CLD

September 14, 2009 20.6 8.1
October 4, 2009 9.9 3.2
March 4, 2010 18.3 7.8

March 10, 2010 12.8 4.2




Conclusions

e Solar variability analysis tools developed

— Quantify variability for different array sizes and
geographic layout

— Quantify ramp rates

 Demonstrated sky imagery in testbed at UCSD

* Preparing for online sky imager forecast at
UCSD and large PV plant
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