QUANTIFYING THE ROLE OF CCN AND GIANT NUCLEI IN WARM RAIN

Robert McGraw and Yangang Liu

For presentation at the
Atmospheric Radiation Measurement (ARM) Program
Science Team Meeting,
Louisville, KY
March 30-April 3, 2009

Environmental Sciences Department/Atmospheric Sciences Division
Brookhaven National Laboratory
P.O. Box, Upton, NY
www.bnl.gov

ABSTRACT

Homogeneous nucleation theory forms the foundation for a new theoretical model of drizzle formation in warm clouds: the kinetic potential (KP) theory of drizzle formation [McGraw and Liu, Phys. Rev. E 70, 031606 (2004)]. Key cloud properties entering the KP theory are droplet number concentration, liquid water fraction, and a parameterized turbulence, from which are predicted a well-defined critical droplet size, defined by the condition that the rate of droplet growth by condensation and collection is balanced by evaporation, a nucleation barrier height, and a barrier crossing rate, which is identified with the drizzle rate. In this presentation the KP theory is unified with aspects of Kohler theory to provide a quantitative description of effects of CCN and giant nuclei on drizzle rate. It is found that giant nuclei (particles in the 1-10 micron range) act to lower the barrier and thereby increase rate in a way similar to a heterogeneous nucleation process. The extended KP theory should provide a quantitative framework for analysis and testing through comparisons with cloud and precipitation measurements.

NOTICE: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.