THREE-DIMENSIONAL CLOUD RETRIEvals FROM THE 2009 DOE ARM CLOUD TOMOGRAPHY FIELD EXPERIMENT

Dong Huang

Submitted to the American Geophysical Union Fall Meeting,
San Francisco, CA, Dec. 13-17, 2010

November 2010

Atmospheric Sciences Division/Environmental Sciences Dept.

Brookhaven National Laboratory

U.S. Department of Energy
Office of Science

Managed by
Brookhaven Science Associates, LLC
for the United States Department of Energy under
Contract No. DE-AC02-98CH10886

ABSTRACT

A field campaign was conducted by the DOE Atmospheric Radiation Measurement program in the Summer of 2009 to examine the feasibility of the cloud tomography method for long-term 3D observation of cloud and water vapor. Five scanning microwave radiometers were arranged linearly to continuously scan the upper hemisphere. Radiation closure studies show that the calculated brightness temperatures during clear sky conditions agree with the observed ones within 1.0 K. A 2D slice of both the cloud liquid and the water vapor fields is obtained every two minutes. We then construct 3D images of cloud and water vapor by combining sequential 2D slices in the same way as a spiral CT scanner reconstructs a 3D human image from multiple 2D slices. Cloud and water vapor retrieval results for a variety of sky cover conditions will be presented.